Enhancement of *Chlorella vulgaris* Growth and Bioremediation Ability of Aquarium Wastewater Using Diazotrophs

1Sayeda Mohammed Ali, 2Hoda Shafeek Nasr and 3Wafaa Tawfolk Abbas
1Department of Microbiology, Aswan Research Station, National Institute of Oceanography and Fisheries, Egypt
2Department of Hydrobiology, El-Qanater Research Station, National Institute of Oceanography and Fisheries, Egypt
3Department of Hydrobiology, National Research Center Dokki, Giza, Egypt

Abstract: Treatment of aquarium wastewater represents an important process to clean and recycle wastewater to be safely returned to the environment, used for cultivation or to minimize the multiple renewal of water. *Chlorella vulgaris* was an important freshwater microalgae which used in wastewater treatment, and increasing its potential of treatment can be achieved with existence of N$_2$-fixing bacteria. Co-culturing of *Chlorella vulgaris* with the diazotrophs, *Azospirillum brasilense* or *Azotobacter chroococcum* in three different media; aquarium wastewater (AWW), sterile enriched natural aquarium wastewater (GPM) and synthetic wastewater media (SWW) were studied. Biomass yield of the microalgae was estimated by determination of chlorophyll (a and b), total carotenoid and the dry weight of *C. vulgaris*. Also determination of ammonia, nitrite, phosphate and nitrate in the culture were done. The presence of diazotrophs significantly increased the biomass of *C. vulgaris* by increasing its microalgae pigments (chlorophyll a and b, and total carotenoids). The highest pigments percentage was reported due to addition of *A. brasilense* to *C. vulgaris* (18.3-133.3%) compared to *A. chroococcum* (23.9-56.9%). As well as increased dry weight from 12 to 50%. There was also improved removal of nitrate, nitrite, ammonia and phosphate; where, the highest removal percentage was reported due to addition of *A. chroococcum* to *C. vulgaris* (0.0-52%) compared to *A. brasilense* (0.6-16.4%). *A. brasilense* and *A. chroococcum* can support *C. vulgaris* biomass production and bioremediation activity in the aquarium to minimize the periodical water renewal.

Key words: *Chlorella vulgaris*, diazotrophs, biomass production, bioremediation, aquarium wastewater

INTRODUCTION

Shortage of fresh water represents a problem due to many reasons such as climatic changes and bad use of water. Treatment and recycle of water can maintain the sustainable supplies of water for future generations. Nitrogen and phosphorous discharged through agricultural, sewage and industrial effluent are the major constituents of the wastewater. Treated wastewater still include some nitrogen and phosphorus in the form of nitrate, nitrite, ammonia and phosphorus. Aquarium wastewater also contains high levels of nitrogen and phosphorus due to fish feeding and excretion so, fish developers need to change aquarium water at least every three days. Microalgae play an important role in wastewater treatment since it requires nitrogen, phosphorous, CO$_2$ and light for their autotrophic growth (Abe et al., 2002; Ma et al., 2004).

Microalgae are unicellular microscopic algae which live in freshwater and marine ecosystems. Microalgae are capable to perform photosynthesis so they are very important for life on earth; they can use carbon dioxide gas and produce high percent of oxygen to grow photosynthetically. Moreover, they are used in water bioremediation (Oswald, 1992; Wilde and Benemann, 1993), feeding humans and animals (Becker, 1988; De Paww and Persoon, 1988), pigment production (Johnson and An, 1991) and in agriculture (Metting, 1992).

Chlorella vulgaris is a green freshwater unicellular microalga and known as one of the fastest growing microalgae. Many authors have reported that *C. vulgaris* is used for removal of nitrogen and phosphorus compounds as well as heavy metals from wastewater (Oh-Hama and Miyachi, 1992; Tam et al., 1994, 1998).

Corresponding Author: Wafaa Tawfolk Abbas, Department of Hydrobiology, National Research Centre, P.O. Box 12622, El-Tahrir Street, Dokki, Giza, Egypt Tel: 00202-25272439/002-01001125171 Fax: 00202-33371362
Plant Growth-promoting Bacteria (PGPB) used in the agriculture to enhance the growth of numerous agricultural crops (Bashan, 1998; Ali et al., 2005). Such bacteria are also used as “Microalgae-growth Promoting Bacteria” (MGPB) to enhance growth of the unicellular microalgae. For example Flavobacterium sp. can promote the growth of marine microalgae, Chaetoceros gracilis (Sumimoto and Hirayama, 1996). Also, Bacillus pumilus (Hernandez et al., 2009), Phyllobacterium myrsinacearum (Gonzalez-Bashan et al., 2000) and A. brasilense (Gonzalez and Bashan, 2000) enhanced growth of the freshwater microalgae C. vulgaris.

The microalgae are always associated with bacteria in natural and artificial aquatic environments (Mouge et al., 1995). Microalgae growth-promoting bacteria, Azotobacter and Azospirillum were used as biofertilizers in aquaculture (Puente et al., 1999, Garg and Bhatragar, 1999, Tripathy and Ayyappan, 2005, Ali et al., 2011) and significantly increased the phytoplankton population and consequently the yield of fish.

The aim of this study is to minimize the withdrawal of aquarium wastewater and maintain the same water for longer time through supporting the growth of the freshwater microalgae C. vulgaris by Co-culturing with A. brasilense or A. chroococcum. This enhancement of C. vulgaris growth in aquarium wastewater increases fish natural food and improves chemical properties of aquariums.

MATERIALS AND METHODS

Microorganisms: The freshwater microalgae C. vulgaris was isolated from assembler wastewater pond of fish farm Research Station, El-Qanater Elkhyara, Egypt and purified as recommended by Pringshiem (1946). Two strains of Plant Growth-promoting Bacteria (PGPB) were used, A. brasilense (Azos. R7) was isolated from Ricinus communis and A. chroococcum (Azt) was isolated from Hordeum vulgare (Hamza et al., 1994). They were grown on N-deficient combined carbon sources medium, CCM (Hegazi et al., 1998) at 32°C in a rotary shaker for 3 days for A. brasilense and 5 days for A. chroococcum. The PGPB cells were harvested by centrifugation at 7000 rpm for 15 min and washed twice with sterile solution (0.85% NaCl).

Growth medium: Three different media were separately used:

- Synthetic wastewater growth medium (SWW) of De-Bashan et al. (2005) which consists of (mg L\(^{-1}\)):
 - NaCl: 7, CaCl\(_2\): 4, MgSO\(_4\)\(\cdot\)7H\(_2\)O: 2, K\(_2\)HPO\(_4\): 21.7, KH\(_2\)PO\(_4\): 8.5, Na\(_2\)HPO\(_4\): 33.4 and NH\(_4\)Cl: 3
- Aquarium wastewater medium (AWW) was prepared by filtered aquarium wastewater through membrane filter paper (47 mm prefiltre pad and 0.45 μm porosity) under vacuum to remove indigenous planktonic organisms, then it was pasteurized (EPA, 1971)
- The sterile enriched natural aquarium wastewater (GPM medium of Loeblich, 1975), it comprises of, 750 mL from latter filtered aquarium wastewater, 204 mL distilled water, KNO\(_3\): 0.238 g L\(^{-1}\), soil extract: 15 mL L\(^{-1}\), KH\(_2\)PO\(_4\): 0.397 g L\(^{-1}\), vitamin B\(_2\): 1 μg L\(^{-1}\) and 30 mL L\(^{-1}\) trace elements solution (mg L\(^{-1}\)): (NaH\(_2\)PO\(_4\): 1.27, H\(_2\)BO\(_3\): 1.14, FeCl\(_3\): 4H\(_2\)O: 0.0484, MnCl\(_2\): 4H\(_2\)O: 0.144, ZnCl\(_2\): 0.0104 and CoCl\(_2\): 6H\(_2\)O: 0.004) pH of the three media was adjusted at 7.0

Experimental design: Two experiments were prepared individually, the first used A. brasilense and the second used A. chroococcum. Each experiment contained nine treatments; three culture media, AWW, SWW, GPM and each culture media received three status of inoculation, the first was received bacteria without microalgae, the second was received microalgae without bacteria and the third was received microalgae with bacteria.

Growth conditions: Approximately 108 bacterial cells of diazotrophs and 5000 cells mL\(^{-1}\) of C. vulgaris were used. Cultures were grown in batch cultures (200 mL medium in 500 mL Erlenmeyer flask) and incubated in a locally made controlled incubator at temperature 25±1°C and light intensity of 4000 lux under a day/night program of 14 h light followed by 10 h darkness for 7 days. Samples for analysis were taken after 7 days of incubation.

Determination of biomass yield of the microalgae

Determination of the microalgae pigments: Spectrophotometric measurements of absorbance, at different wave-lengths, were adopted for estimating the chlorophylls (a, b) and total carotenoid contents of C. vulgaris alone or co-cultured with A. brasilense or A. chroococcum (APHA, 1992). Chlorophyll (a) and (b) concentrations were calculated (Jeffrey and Humphrey, 1975) and total carotenoids content was also determined (Timothy et al., 1985).
RESULTS

The biomass yield and cell pigment content of the freshwater microalga *C. vulgaris* were positively affected by the addition of either *A. brasilense* or *A. chroococcum*. Addition of *A. brasilense* to the microalgae raised chlorophylls a content from 17.8 to 23.4 µg L⁻¹, chlorophylls b from 12.8 to 22.8 µg L⁻¹, and total carotenoids from 15.9 to 24.1 µg L⁻¹ in AWW media. The addition of *A. chroococcum* was also raised chlorophylls a content from 14.8 to 18.5 µg L⁻¹, chlorophylls b from 12.4 to 16.6 µg L⁻¹ and total carotenoids from 10.2 to 15 µg L⁻¹ in AWW media (Fig. 1). Moreover, GPM and SWW media exhibited the same increase in cell pigment content after 7 days of incubation in batch cultures, SWW: Synthetic wastewater medium, AWW: Aquarium wastewater, GPM: Sterile enriched natural aquarium wastewater. Different letters differ significantly at p<0.05

Fig. 1(a-f): Pigment production by the microalga *C. vulgaris* (a, c, e) With *A. brasilense* and (b, d, f) With *A. chroococcum* after 7 days of incubation in batch cultures, SWW: Synthetic wastewater medium, AWW: Aquarium wastewater, GPM: Sterile enriched natural aquarium wastewater, Different letters differ significantly at p<0.05.
Fig. 2(a-b): Change percentages in biomass of *C. vulgaris* and nutrient contents in culture media due to inoculation with (a) *A. brasilense* and (b) *A. chroococcum* after 7 days of incubation in batch cultures, SWW: Synthetic wastewater, AWW: Aquarium wastewater medium, GPM: Sterile enriched natural aquarium wastewater, % increase or decrease = [(microalgae with bacteria-microalgae alone)/microalgae alone] × 100.0

Table 1: Statistical analysis of the effect of diazotrophs and type of culture media on *C. vulgaris* biomass and the residual nutrient

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chlorophyll a (µg L⁻¹)</th>
<th>Chlorophyll b (µg L⁻¹)</th>
<th>Total carotenoids (µg L⁻¹)</th>
<th>Dry weight (mg L⁻¹)</th>
<th>NO₂-N (mg L⁻¹)</th>
<th>NO₃-N (mg L⁻¹)</th>
<th>NH₃-N (mg L⁻¹)</th>
<th>O-PO₄ (mg L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of diazotrophs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. brasilense</td>
<td>0.00⁰</td>
<td>0.00⁰</td>
<td>0.00⁰</td>
<td>0.00⁰</td>
<td>0.33⁰</td>
<td>1.50⁰</td>
<td>1.96⁰</td>
<td>41.14⁰</td>
</tr>
<tr>
<td>A. chroococcum</td>
<td>15.9⁰</td>
<td>13.8⁰</td>
<td>14.4⁰</td>
<td>0.00⁰</td>
<td>0.23⁰</td>
<td>1.30⁰</td>
<td>0.16⁰</td>
<td>38.5³</td>
</tr>
<tr>
<td>Effect of strains</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. brasilense</td>
<td>14.7⁰</td>
<td>12.1¹</td>
<td>13.7¹</td>
<td>0.00⁰</td>
<td>0.23⁰</td>
<td>2.35⁰</td>
<td>0.70⁰</td>
<td>38.4⁰</td>
</tr>
<tr>
<td>A. chroococcum</td>
<td>12.3⁰</td>
<td>11.7⁰</td>
<td>9.6²</td>
<td>0.00⁰</td>
<td>0.26⁰</td>
<td>0.35⁰</td>
<td>0.80⁰</td>
<td>39.0²</td>
</tr>
<tr>
<td>Effect of media</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AWW⁰</td>
<td>12.4³</td>
<td>10.7⁷</td>
<td>10.8⁷</td>
<td>0.00⁰</td>
<td>0.12³</td>
<td>0.28⁰</td>
<td>0.52⁰</td>
<td>39.8⁰</td>
</tr>
<tr>
<td>GPM⁰</td>
<td>13.9⁴</td>
<td>12.0⁰</td>
<td>11.5³</td>
<td>0.00¹</td>
<td>0.52¹</td>
<td>3.23⁰</td>
<td>0.79⁰</td>
<td>39.7²</td>
</tr>
<tr>
<td>SWW⁰</td>
<td>14.5⁶</td>
<td>12.1⁶</td>
<td>12.5⁹</td>
<td>0.00²</td>
<td>0.11⁸</td>
<td>0.55⁰</td>
<td>0.44⁰</td>
<td>36.5²</td>
</tr>
</tbody>
</table>

AWW: Aquarium wastewater, GPM: Sterile enriched natural aquarium wastewater, SWW: Synthetic wastewater, Means followed by the same letter are not significantly different at p<0.05. ¹Average value of treatments of diazotrophs (*A. brasilense* or *A. chroococcum*) without microalgae irrespective of culture media, ²Average value of treatments of microalgae without diazotrophs irrespective of culture media, ³Average value of treatments of microalgae with diazotrophs irrespective of culture media, ⁴Average value of treatments of *A. brasilense* with or without microalgae irrespective of culture media, ⁵Average value of treatments of *A. chroococcum* with or without microalgae irrespective of culture media, ⁶Average value of treatments using GPM culture medium with or without microalgae or diazotrophs, ⁷Average value of treatments using SWW culture medium with or without microalgae or diazotrophs.

Diazotrophs addition as shown in Fig. 1. Percentage increases ranged from 25 to 78%, 18.3 to 02.3% and 23.9 to 133.5% for the culture media AWW, GPM and SWW respectively (Fig. 2). In general, the AWW culture medium recorded the lowest pigments amount compared to SWW and GPM (Table 1). Also, the highest increase percentage was reported due to addition of *A. brasilense* to *C. vulgaris* (18.3-133.5%) compared to *A. chroococcum* (23.9-56.9%).

Dry weight of the freshwater microalgae *C. vulgaris* confirmed the positive effect of addition N₂-fixing bacteria (Fig. 3), where, increases in dry weight ranged from 12 to 49% (Fig. 2).

Removal of nutrients (NO₂-N, NO₃-N, NH₃-N and O-PO₄) from the SWW, AWW and GPM culture media was always better with addition of diazotrophs to *C. vulgaris* (Fig. 4), the removal reached up to 42% nitrite, 100% nitrate, 91% ammonia and 17% phosphate; compared to 40% nitrite, 100% nitrate, 88% ammonia and 14% phosphate by the microalgae alone. The highest removal percentage was reported due to addition of *A. chroococcum* to *C. vulgaris* (0.0% to 52) compared to *A. brasilense* (0.6-16%) (Fig. 2). Also, the significantly maximum removal was recorded in AWW culture medium (Table 1).
Fig. 3(a-b): Dry weight of *C. vulgaris* culture media due to (a) *A. brasilense* and (b) *A. chroococcum* inoculation after 7 days of incubation in batch cultures, SWW: Synthetic wastewater, AWW: Aquarium wastewater medium, GPM: Sterile enriched natural aquarium wastewater. Different letters differ significantly at $p \leq 0.05$.

Fig. 4(a-l): Residual concentration of nutrient in *C. vulgaris* culture media due to *A. brasilense* or *A. chroococcum* inoculation after 7 days of incubation in the three batch cultures, SWW: Synthetic wastewater, AWW: Aquarium wastewater medium, GPM: Sterile enriched natural aquarium wastewater. Different letters differ significantly at $p \leq 0.05$.

779

DISCUSSION

Bacteria and microalgae are ubiquitous and abundant microorganisms in aquatic environments, with both stimulative and inhibitory effects (Fukami et al., 1997). *C. vulgaris* is closely associated with the terrestrial plant-associative N$_2$-fixing bacteria (Gonzalez-Bashan et al., 2000). It is clearly noticed from the present study that the combination of the freshwater microalga *C. vulgaris* and a MGPB, *A. brasilense* or *A. chroococcum*, significantly increased microalgal pigments, thus reflecting the effect of MGPB on *Chlorella* population, this is in agreement with the results of Gonzalez-Bashan et al. (2000) and De-Bashan et al. (2002a), where bacteria often supply growth-promoting substances such as vitamins (Fukami et al., 1997) for phytoplankton. Also, *Azospirillum* species produce plant hormones, mainly auxins (indole-3-acetic acid), as do many other PGPB (Gonzalez-Bashan et al., 2000). In addition, the increase in pigment production, biomass, dry weight and bioremediation ability of microalgae when combined with diazotrophs in the present study can be explained by the fact that plant growth-promoting bacteria enhance bioremediation of wastewater treated with microalgae by increasing microalgal populations and metabolism (Patten and Glick, 1996; Costacurta and Vanderleyden, 1995). Concerning diazotrophs, *A. brasilense* recorded higher levels of microalgal pigments and lower removal of N-forms compared to *A. chroococcum* (Table 1), this reflects the higher ability of *A. chroococcum* in bioremediation, where it was used in industrial wastewater treatments e.g., alpechin (Hegazi et al., 2009) and baker's yeast effluent (Ali et al., 2005). Also, *Azotobacter* spp. is able to form capsular polysaccharides to entrap heavy metals (Pasetti et al., 1996) and have a mechanism for protecting their nitrogenase against high O$_2$ concentrations (Hegazi et al., 1984). Regarding the different wastewater media used in the present study, AWW recorded lower levels of microalgal pigments and higher removal of N-forms compared to other media (Table 1), this is because, the role of diazotrophs appear in the media of low combined nitrogen (Hernandez et al., 2009). Besides, the necessary nutrients existing in the GPM and SWW media did successfully support pigment production of the microalgae but these increases in biomass of chlorella were not related to the decreases in nutrients, this reflects the role of diazotrophs in supporting both assimilation and uptake of nutrients of the microalgae (De-Bashan et al., 2002b, 2004), this indicates that, AWW did not require additives to increase microalgal biomass then nutrient removal. On the other hand, the removal of phosphorus was poorer compared to N-forms in all treatments, this is in agreement with the results obtained by Hernandez et al. (2006). Also the increased phosphate and N-forms in the media containing diazotrophs is due to the ability of *A. brasilense* and *A. chroococcum* to fix nitrogen as well as the dead bacteria cells may leak phosphorus to the environment (Bashan, 1998).

CONCLUSION

The present findings strongly support the necessity of diazotrophs occurrence in the aquarium to secure the proper activity and ability of the freshwater microalgae *C. vulgaris* in bioremediation of the existing wastes. Also it increases the growth and biomass yield of *C. vulgaris* which represents a good food for fishes. This may minimize the periodical renewal of aquarium water and maintain the same water for longer time with available food and lower nitrogen and phosphorus. While this work needs more researches to be applied in the field to maintain water and face the water shortage.

ACKNOWLEDGMENT

We would like to thank the Environmental Studies and Research Unit (ESRU), Faculty of Agriculture, Cairo University for providing the required facilities.

REFERENCES

