The Influence of Glimepiride on the Biochemical and Histomorphological Features of Streptozotocin - Induced Diabetic Rabbits

Sajad Hussain Mir¹, M.M. Darzi², Fayaz Ahmad¹, M.Z. Chishti¹ and M.S. Mir²
¹Postgraduate Department of Zoology, University of Kashmir, Srinagar - 190006, Kashmir,
²Department of Veterinary Pathology, FVSC and AH, Shuhama (Alusteng), SKUAST, Srinagar - 190006, Kashmir

Abstract: An experiment was conducted to study the efficacy of glimepiride (a new sulphonylurea) on the biochemical values and histomorphological features of streptozotocin-induced diabetic rabbits. Eighteen New Zealand white male rabbits were selected for the study. The rabbits were randomly divided into three groups of six each. Group I was kept as normal healthy control (NC), Group II and Group III were made diabetic by single intravenous administration of streptozotocin (65 mg/kg. b.w). Glimepiride was given to Group III rabbits by gavage @ 2mg/kg. b.w. daily for twenty-one days whereas Group I and Group II rabbits received normal saline in the similar manner. The results indicated a significant decrease in the blood sugar (P<0.01), blood urea (P<0.001) and serum creatinine (P<0.001) in Group III rabbits. Further, the histomorphological study showed an increase in the percentage of beta cells in pancreatic islets and recovery of renal tubules in Group III rabbits. The findings indicate that glimepiride improves the biochemical values and ameliorates the histopathology of diabetic rabbits particularly restoring the morphology of beta cells of islets of Langerhan's and thus, seems to be encouraging.

Key words: Glimepiride, streptozotocin, diabetes, biochemistry and histopathology

Introduction
Streptozotocin induces severe and irreversible hyperglycemia in experimental animals (Mitra et al., 1996). The action of streptozotocin in beta cells is accompanied by characteristic alterations in blood insulin and thereby glucose concentrations (West et al., 1996). It impairs glucose oxidation (Bedoya et al., 1998), decreases insulin biosynthesis and secretion (Nakatsuoka et al., 1990) and alters the histomorphology of most of the organs (Mir et al., 2008). The microvascular and macrovascular complications in diabetes are the major causes of morbidity and death in diabetic subjects (Nagappa et al., 2003). The search for more effective and safer hypoglycemic agents therefore, has continued to be an area of search of interest (Krisha et al., 2004).

Sulphonylurea have represented the backbone of NIDDM therapy for more than 30 years (Groop, 1992). The insulinothrophic effect of sulphonylurea is augmented by glucose and they apparently increase beta cell sensitivity to glucose and non-glucose stimuli (Pfeiffer et al., 1980).

Glimepiride has been developed for glycemic control in diabetic patients and represents the third generation sulphonylurea. It effectively inhibits the development of oxidative stress in diabetes (Krauss et al., 2004) by possessing a potent extrapancreatic effect on glucose metabolism and may directly stimulate glucose transport activity through phospholipid signalling pathway (Takada et al., 1996).

The present study was designed to investigate the effect of glimepiride on biochemical values and histopathological features of streptozotocin induced diabetic rabbits.

Materials and Methods
The study was conducted in 18 New Zealand white male rabbits of almost uniform age acclimatized to prescribed standard laboratory conditions (Anonymous, 2000). Twelve rabbits were made diabetic by single dose of streptozotocin (65mg/kg. b.w.) dissolved in 1ml of freshly prepared citrate buffer, pH 4.5 and administered intravenously following twelve hours fasting whereas remaining six were kept as control that received equal volume of normal saline.

When diabetes mellitus was well established in rabbits which was confirmed by fasting hyperglycemia, the rabbits were divided into three groups of six each. Group I comprised of normal untreated rabbits (NC). Group II comprised saline treated diabetic rabbits (DC) and Group III comprised diabetic rabbits that received glimepiride (2mg/ kg.b.w.) daily for 21 days. The assessment of treatment was based on blood sugar, blood urea and serum creatinine levels estimated on day 7th, 14th and 21st. At the end of 21st day the rabbits were sacrificed for histological examination of pancreas and kidneys.

Analytical procedure: The blood sugar of rabbits was estimated by Glucometer Gx (Bayer Diagnostic India, Ltd.), blood urea by "DAM Method" and serum creatinine
Table 1: Effect of glibenclamide on blood sugar (mg%), blood urea and serum creatinine of streptozotocin-induced diabetic rabbits

<table>
<thead>
<tr>
<th>Group</th>
<th>Initial Value</th>
<th>7th</th>
<th>14th</th>
<th>21st</th>
<th>28th</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BS (mg%)</td>
<td>BU (mg%)</td>
<td>SC (mg%)</td>
<td>BS (mg%)</td>
<td>BU (mg%)</td>
</tr>
<tr>
<td>NC</td>
<td>94.2</td>
<td>10.6</td>
<td>12.8</td>
<td>94.2</td>
<td>10.6</td>
</tr>
<tr>
<td>DC</td>
<td>120.4</td>
<td>25.8</td>
<td>40.5</td>
<td>120.4</td>
<td>25.8</td>
</tr>
<tr>
<td>Glib</td>
<td>200.8</td>
<td>32.6</td>
<td>60.8</td>
<td>200.8</td>
<td>32.6</td>
</tr>
<tr>
<td>treated</td>
<td>250.0</td>
<td>37.5</td>
<td>70.0</td>
<td>250.0</td>
<td>37.5</td>
</tr>
</tbody>
</table>

Values represent mean±SEM. BS (F) = Blood Sugar (Fasting); BU = Blood Urea; SC = Serum Creatinine; NC = Non-diabetic control rabbits; DC = Diabetic rabbits treated with normal saline; *p < 0.01, **p < 0.001 compared with DC.

![Graph](image)

Fig 1: Comparative percentage of beta cells in different groups of rabbits.

by "Alkaline Phosphatase Method" using commercially available kits. Histological examination was done by fixing pancreas and kidneys of rabbits in 10% formalin, processed and embedded in paraffin wax. Tissue blocks were sectioned 5 micron thick and stained with Harris Haematoxylin and Eosin (Luna, 1988). However, to demonstrate pancreatic islet cells, a modification of Gomori's staining technique (Scott, 1952) was used.

For quantitative assessment of beta cells, cells of approximately four islets of each tissue and forty islets of each group were counted under trinocular microscope at a magnification of ×1000.

Statistical analysis: All values were expressed as mean and analyzed using students 't' test (Prasad, 2000). 'P' value was obtained from the distribution of 't' probability chart.

Results

Diabetes mellitus in rabbits was induced by single intravenous administration of streptozotocin that was confirmed by elevated levels of fasting blood glucose, blood urea and serum creatinine levels. The subsequent effects of streptozotocin induced diabetes resulted in degenerative and lytic changes in pancreatic islets and kidneys of rabbits.

Glibenclamide treatment effectively improved the biochemical levels in diabetic rabbits and the drug was not found to cause hypoglycemia. Table 1 shows the efficacy of glibenclamide on blood glucose, blood urea and serum creatinine levels of diabetic rabbits. The histological study of the pancreatic sections by using special stain showed restoration of beta cell morphology in Group III rabbits (Fig. 2) that was also evident by the comparative percentage of beta cells with Group II rabbits (Fig. 1). Further, recovery of renal morphology was observed histologically in Haematoxylin and Eosin stained sections of Group III rabbits.

Discussion

The induction of diabetes mellitus in rabbits was confirmed by elevated levels of fasting blood glucose. Streptozotocin is well known for its selective pancreatic islet beta-cell cytotoxicity and has been extensively used to induce diabetes mellitus in animals. It interferes with cellular metabolic oxidative mechanisms (Papacott et al., 2000) and induces severe and irreversible hyperglycemia (Mitra et al., 1996). Intravenous administration of streptozotocin (55 mg/kg b.w.) in the present study effectively induced diabetes mellitus in rabbits and is in consonance with earlier methods of induction (Tawfeeg and Sheiff, 2001; Mir et al., 2008).

A decline of blood sugar level following glibenclamide treatment observed in the present study is in total.
agreement with earlier workers (Takada et al., 1996; Krauss et al., 2004). Sulphonylurea bind to specific receptors on beta cells resulting in closure of potassium ATP channels and subsequently open calcium channels leading to an increase in cytoplasmic calcium that stimulates insulin release (Pilipson and Steiner, 1995). There is much controversy about the mode of action of sulphonylurea and specifically whether they lower blood glucose through extra pancreatic mechanisms other than stimulation of insulin secretion (Groop, 1992). However, studies suggest that glimepiride has a potent extra pancreatic effect on glucose metabolism and may directly stimulate glucose transport activity through phospholipid signaling pathway (Takada et al., 1996). Further studies have shown that glimepiride has more rapid onset than previous sulphonylureas (both glyburide and glipizide) and consequently less risk of hypoglycemia (Geisen, 1988).

The degenerative changes in pancreatic beta cells of streptozotocin-induced diabetic rabbits observed in the present study can be attributed to the production of free radicals (Tesfamariam, 1984) that damage beta cells selectively (PusztaI et al., 1996). However, an increase in the number of beta cells in the islets of Langerhan’s in glimepiride-treated diabetic rabbits in comparison to saline treated diabetic rabbits can be attributed to the fact that glimepiride affect the activation of the redox sensitive transcription factor NF(Kappa)B in vitro and in vivo and possesses the free radical quenching properties (Schietkofer et al., 2003). Although the mechanism of beta cell neogenesis is not clear but there is strong evidence that islet stem cells may exist in the pancreatic duct and that these ductal epithelial cells may be switched into a proliferative/regenerative phase leading to nesideoblastosis (neogenesis of islets) (Hellerstrom, 1984; Bonner-Weir et al., 1993). Lipsett and Finegood (2002) reported beta cell neogenesis from precursor cells in the pancreatic duct of diabetic rats. According to Waguri (1997) the beta cells can regenerate either through differentiation of the precursor cells from the pancreatic duct, or proliferation from existing or surviving mature beta cells.

In the present study the improvement in blood urea, serum creatinine and subsequent amelioration of histomorphological changes in kidneys of glimepiride treated rabbits can be attributed to the recovery of renal function (Tedorog et al., 2006), which is explained by the regenerative capability of the renal tubules (Kissane, 1985). Studies have shown that good metabolic control is beneficial in slowing the progression of nephropathy in diabetes and if the duration of diabetes is prolonged before reinstitution of normoglycemia, nephropathy is not easily reversed (Floreto et al., 1995; Renu et al., 2004). Tedong et al. (2006) have reported that the normoglycemia in diabetic rats with treatment therapies could ameliorate the glomerular and tubular lesions that characterize diabetic nephropathy and subsequently recover renal morphology and function.

References

Mir et al: Efficacy of Glimepiride

