Effect of Feeding Cumin (Cuminum cyminum) on the Performance and Some Blood Traits of Broiler Chicks

Galib A. M. Al-Kass
Department of Public Health, Veterinary Medicine College, University of Baghdad, Baghdad, Iraq

Abstract: This study was conducted to identify the effect of using cumin (Cuminum cyminum) on the performance and some blood traits of broilers. Two hundred one day-old unsexed broiler chicks (Arbor-Acres) were divided into four groups of 50 birds each and assigned to four feeding treatments. Group 1 is considered as a control group where there was no addition of Cuminum cyminum. Group 2, 3 and 4 involved the addition of 0.5, 1 and 1.5% of Cuminum cyminum respectively. The results showed that group 2 and group 3 performed significantly higher (p<0.05) in the average live weight, weekly weight gain, feed consumption, mortality rate and feed conversion ratio. Results showed that chicks in treatment 3 developed a significant decrease in the level of cholesterol in blood serum compared to other treatments.

Key words: Cuminum cyminum, performance, blood traits

INTRODUCTION
The huge development in poultry industry that interests researchers and rears to find different methods and means to maintain the development and continuity of this industry, to the increase in productive capacity of poultry projects and then increasing the concentration on nutritional and hygienic aspects of birds. This in turn increase birds resistance against different outbreaks which of mortality causes a high economic losses (Siegel, 1995).

One of the methods is to introduce medical plants to poultry through their diets as a nutritional and medical sources for different purposes. Cumin plant is considered as one of these sources because of its nutritional and medical properties. Scientific information from American Ministry of Agriculture has shown that cumin contains most dietary nutrients such as carbohydrates, fat of both saturated and unsaturated fatty acids, proteins. Moreover minerals, vitamins and water. Jazani et al. (2008) have indicated the potential use of cumin essential oil for the control of some diseases caused by Pseudomonas aeruginosa infections. An antimicrobial activity of cumin ethanol extract that inhibits growth of lactobacillus, LP plantarum was detected by Jonas et al. (2007). Serna et al. (2007); Friedman et al. (2004); Dorman and Deans (2000) were able to identify the antimicrobial activity against E. coli infections. Ahmed et al. (2004) concluded that the addition of animal manure to soil can enhance the essential oils production and improve chemical structure of cumin oil. Many experiments indicated moderate effects of cumin essential oils on inhibiting microbial activity, mainly, G-positive especially from seeds. Cuminum cyminum. It has seen that analytical contents are moisture 11.9; protein 18.7; ether extraction 15.0; carbohydrates 36.6; mineral matter 5.8; calcium 1.08; phosphorus 0.49%; iron 31.0 mg/100 g; carotene calculated as vitamin A 870 I. U./100 gm and vitamin C 3.0 mg/100 g. The seeds on distillation yield a volatile oil (2.0-4.0%) having an unpleasant characteristic odor, spicy and somewhat bitter taste. The oil is colorless or yellow when fresh, turning to dark where it is stored. Nutritionally, inclusion the broiler diets with cumin seed meal induces an increase in the relative weight of the crop. An improvement in the absorption process as a result of increasing diet fibers was also noticed (Mansoori et al., 2008).

Other researchers proved an increase in body weight, feed conversion ratio, with decreasing in Hematological values (Hb, PCV, RBC) when using 2% of cumin in broiler diets (Ibrahim et al., 2007).

As mentioned above it has become very clear that there is a quite bite of benefits of cumin as a medical and nutritional resource to be used for poultry. This study therefore had come out from the understanding that this medical plant can improve the performance of broiler chicks under our environmental conditions. However the literature is not rich dealing with the subject and we think that further studies are required to quantify and characterize the parameters that involved this field. This study is a trial along this direction.

MATERIALS AND METHODS
A total of two hundred one day old unsexed broiler chicks (Arbor Acres) were divided into 4 groups of 50 birds each and assigned to 4 treatment diets. The experiment was carried out in 42 days. Each treatment group was further more sub- divided into 2 replicates and fed on a starter and finisher diets. Cumin seeds were purchased from local market, grounded separately to a fine powder and then mixed with the basal diet Table 1. Feed and water were provided ad libitum during the experiment. In
control group the birds were fed the basal diet with no added cumin (T1). The other three groups (T2, T3 and T4) were given cumin in diets at levels of 0.5, 1 and 1.5% respectively.

Standard management practice (lighting, ventilation and spaces) of commercial broiler production was applied. Chicks were vaccinated against New-castel and infectious Bronchitis diseases.

Average body weights, body weight gains and feed conversion ratios (kg feed/kg gain) for each group were recorded weekly. A number of 4 birds from each group were slaughtered at the end of the experiment. Blood samples was collected from each bird for hematology and serum analysis. Hemoglobin (Hb) concentration, Packed Cell Volume (PCV ), Red Blood Cell (RBC) counts, were measured by standard methods (Schalm et al., 1975). Cholesterol and uric acid were measured according to the methods of Ellefsen and Garaway (1967).

Data were analyzed by using the General, Linear Model procedure of SAS (2002). Duncans multiple ranges test was used to detect the differences at level of (p<0.05) among different means (Steel and Torrie, 1980).

Cumin powder is added to this basal at levels of 0.5, 1 and 1.5% in the treatments T2, T3 and T4 respectively. All nutrients are provided to chicks according to their requirements as shown in NRC (1994).

RESULTS AND DISCUSSION

Body weight changes: Data of broiler chicks body weight, body weight gain and feed conversion ratio are presented in Table 2. Chicks fed diet supplemented with 1% Cuminum cyminum had significantly (p<0.05) higher weight and body weight gains compared to other treatment groups, followed by group 2 that received a diet with 0.5%, Cuminum cyminum. This improvement may be attributed to the biological functions of cumin that are essential for growth (Coweson et al., 2003; Ghazalai et al., 2005). Also that may be due to its role as a stimulant, carminative, digestion, anti-microbial properties and the prevention of gastric toxicity (Jones et al., 1997; El-Husseiny et al., 2002).

The case of depression in the growth which appeared for group 4 when high level of Cuminum cyminum (1.5%) was used could be explained as due to the damage to the intestine, liver and kidneys, due to mechanisms by which the plant constituents may cause a damage to body tissues (Ibrahim et al., 2007).

Scientific evidence demonstrated that many of these herbs and spices do have medicinal properties that alleviate symptoms and may prevent diseases (Srivastava, 1989; Jalali-Heravi et al., 2007). Also the high intake of herbal plant may cause poisoning due to its strong bitter test.

Cumin is one of the popular spices that regularly used as a flavoring agent and an alternative antimicrobial agent that is safe for human applications (Jannahradi et al., 2006).

Finally this improvement in body weight leads to an improvement in feed conversion in treatment 2 and 3 in Table 2, in spite of the low consumption compared with other groups, the fact that this herb plant may provide some compounds that enhance digestion and absorption of some nutrients in the diet.

Table 3 showed the hematological and serological changes due to Cuminum cyminum. These parameters indicate that the low values are related to the high level of cumin in which a significant decrease is resulted when compared with the control group or low levels of cumin supplementation. In treatment 4 a severe decrease (p<0.05) in the above parameters may be due to the high level of cumin used that leads to the damage of the intestines, liver and kidneys. These results suggest that these plants may contain materials involved in the derangement of the haemopietic process of the body (Ibrahim et al., 2007).

The decrease in the level of cholesterol in treatment 3 compared with other groups is expected to be due to the active compound that found in cumin which acts as inhibitors to the active enzyme hepatic 3- hydroxyl-3 methyglutaryl coenzyme A (HMG-CoA) that synthesized the cholesterol (Crowell, 1999). Furthermore this reduction in blood cholesterol could be contributed in some cases to the reduction in some hormones secreted by the cortex of the adrenal glands, which in turn causes the reduction in the secretion of fatty acids from the adipose tissues or the reduction of fat oxidation, which leads to the reduction of the level of fatty acids including blood cholesterol (Ganong, 2005).
Table 2: The effect of added cumin (Cuminum cyminum) to the diet on broiler performance for 6 weeks

<table>
<thead>
<tr>
<th>Parameters</th>
<th>1 Control</th>
<th>2 (0.5%) cumin</th>
<th>3 (1%) cumin</th>
<th>4 (1.5%) cumin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average body weight (g)</td>
<td>2321.7±41.3(^a)</td>
<td>2456.3±38.9(^b)</td>
<td>2500.7±42.5(^b)</td>
<td>2410.9±35.4(^b)</td>
</tr>
<tr>
<td>Average body weight (g)</td>
<td>2285.0±40.9(^a)</td>
<td>2414.5±36.8(^b)</td>
<td>2518.8±40.6(^b)</td>
<td>2368.3±36.3(^b)</td>
</tr>
<tr>
<td>Total feed consumption (g/bird/day)</td>
<td>4491.5±0.91(^a)</td>
<td>4321.8±0.86(^b)</td>
<td>4382.7±1.02(^b)</td>
<td>4833.4±1.42(^b)</td>
</tr>
<tr>
<td>Feed conversion ratio g/food/g gain</td>
<td>1.9±0.03(^a)</td>
<td>1.79±0.02(^b)</td>
<td>1.74±0.02(^b)</td>
<td>2.04±0.01(^b)</td>
</tr>
<tr>
<td>Mortality rate (%)</td>
<td>7.8(^a)</td>
<td>4.1(^b)</td>
<td>3.4(^b)</td>
<td>10.5(^b)</td>
</tr>
<tr>
<td>Dressing percent (%) with out edible parts</td>
<td>68.9±2.5(^a)</td>
<td>75.6±1.9(^a)</td>
<td>77.4±1.3(^a)</td>
<td>70.3±1.8(^a)</td>
</tr>
</tbody>
</table>

Values are means±S.E. Means within row with no common on letter are significantly different (p<0.05)

Table 3: Hematological and Serobiochemical changes in chicks fed Cuminum cyminum for 6 weeks

<table>
<thead>
<tr>
<th>Parameters</th>
<th>1 Control</th>
<th>2 (0.5%) cumin</th>
<th>3 (1%) cumin</th>
<th>4 (1.5%) cumin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haematological</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>10.2±0.31(^a)</td>
<td>9.8±0.38(^b)</td>
<td>9.6±0.27(^b)</td>
<td>7.62±0.08(^b)</td>
</tr>
<tr>
<td>RBC (10^6/mm^3)</td>
<td>3.6±0.32(^a)</td>
<td>3.5±0.03(^b)</td>
<td>3.8±0.2(^b)</td>
<td>2.3±0.07(^b)</td>
</tr>
<tr>
<td>PCV (%)</td>
<td>35.7±0.47(^a)</td>
<td>32.6±0.31(^b)</td>
<td>31.8±0.41(^b)</td>
<td>29.9±0.35(^b)</td>
</tr>
<tr>
<td>WBC</td>
<td>23.8±0.15(^a)</td>
<td>22.2±0.2(^b)</td>
<td>20.3±0.3(^b)</td>
<td>19.6±0.35(^b)</td>
</tr>
<tr>
<td>H/L ratio</td>
<td>0.29±0.01(^a)</td>
<td>0.28±0.02(^b)</td>
<td>0.27±0.03(^b)</td>
<td>0.27±0.04(^b)</td>
</tr>
<tr>
<td>Serobiochemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td>149.0±3.5(^a)</td>
<td>147.3±4.2(^b)</td>
<td>145.0±3.8(^b)</td>
<td>148.3±4.1(^b)</td>
</tr>
<tr>
<td>Uric acid (mg/dL)</td>
<td>4.2±0.3(^a)</td>
<td>4.3±0.2(^b)</td>
<td>3.9±0.3(^b)</td>
<td>5.3±0.7(^b)</td>
</tr>
</tbody>
</table>

Values are means±S.E. Means within row with no common on letter are significantly different (p<0.05)

This could be explained by the fact that these herbal plants can act as an antioxidant agents for chick diets.

REFERENCES


Srivastava, K.C., 1989. Extracts from tow frequently consumed spices-cumin (Cuminum cyminum) and turmeric (Curcuma longa) inhibit platelet aggregation and alter eicosanoid biosynthesis in human blood platelets. Prostaglandins leukot Essential Fatty Acids, 37: 57-64.