Detection of *Listeria monocytogenes* Bacteria in Four Types of Milk Using PCR

Alaa Kareem Niamah
Department of Food Science, Agriculture College, Basrah University, Basrah City, Iraq

Abstract: In this study, detection of *prfA* gene of *Listeria monocytogenes* bacteria in four types of milk (cow, buffalo, camel and sheep) electrophoresis was showed products of gene amplification clear bands at 274 bp. In all samples inoculated with bacteria after 0 h and 24 h. The numbers of bacteria ranging from 44x10^-5 - 55x10^-5 cfu/ml directly after inoculation and 29x10^-5 - 65x10^-5 cfu/ml after 24 h at inoculation.

Key words: *Listeria monocytogenes*, milk types, PCR

INTRODUCTION
Listeria monocytogenes is a motile, gram positive, coccobacillus, non-spore forming, aerobic to facultative anaerobic and an intracellular bacterium within leukocytes (Rocourt, 1988). *L. monocytogenes* has been causative agent of major food-borne epidemics in which dairy products including cheese, raw milk and pasteurized milk have been incriminated as the contaminated foods (Vardar-Unlu *et al.*, 1998). The classical detection method for *L. monocytogenes* in milk and milk products involves enrichment for 48 h and subsequent colony formation on selective agar medium for 48 h, followed by a set of biochemical and morphological confirmation tests which typically take days to complete (IDF, 1990). This process takes a minimum of 5 days to confirm a sample free of Listeria and about 10 days to characterize to the species level (Niederhauser *et al.*, 1992). If a 24-h detection method is preferred, total analysis time for DNA extraction and PCR detection methods in high-throughput volumes must be within approximately 4-5 h after a 19-20 h enrichment process. Fluorescence technology has aided in significantly decreasing post-PCR analysis time by replacing gel electrophoresis steps for PCR product detection (Cano *et al.*, 1995). The aim of this study was use of PCR in the detection of *Listeria monocytogenes* in types of milk (cow, buffalo, camel and sheep) samples.

MATERIALS AND METHODS
Bacterial strains and growth conditions: The standard strain of *Listeria monocytogenes* ATCC 9525 was obtained from (ATCC; Manassas, Va., USA) and used for artificial contamination of pasteurized milk samples. Standard strain was grown on Brain-Heart Agar (BHA) (Hi-media, India) and buffered peptone water at 37°C.

Milk samples and preparation: Milk samples were obtained from the Agricultural Research Station in Agriculture college at Basrah University, 25 ml of pasteurized milk (cows, buffalo, camel and sheep) for the inoculated bacteria *Listeria monocytogenes* ATCC 9525 by 1 ml contains 1x10^5 cfu/ml DNA was extracted from 10 mL of milk Samples, after 0 h and 1 mL after 24 h of incubation at 37°C.

Amplification of DNA extracted from milk: DNA in all the elute was extracted by standard methods. 2.5 volumes of ethanol and 1/10 volume of 0.3 m sodium acetate pH 5.2 were added to the sample. After 30 min at -20°C, the sample was centrifuged at 15000 g for 15 min, washed with 50 µl of 70% ethanol, centrifuging for 5 min as above and resuspended with 20 µl of nuclease-free water (Sambrook *et al.*, 1989). 10 µl of the extracted DNA were used for PCR assay.

As a positive control, 5 µl of *L. monocytogenes* ATCC 9525 DNA, obtained by lysis at 100°C, were included. PCR and PCR product detection by gel electrophoresis.

Multiplex PCR assay: The *LM lip1* primers (Forward 5-GAT ACA GAA ACA TCG GTT GGC-3 Reverse 5- GTG TAA TCT TGA TGC CAT CAG-3) 274 bp are specific for the *prfA* gene of *L. monocytogenes* serovar. The reaction mixture consisted of 2 µl of extracted DNA, 2.5 µl of 10 x PCR buffer, 1.5 µl MgCl2 (50 mM), 0.5 µl dNTP (10 mM), 1.25 µl of each primer, 0.4 µl of Taq DNA polymerase (5U/µl) and deionized water to a final volume of 25 µl. The reaction mixture was amplified in a thermocycler (Thermo, U.S.A.) with the following PCR conditions: denaturation at 94°C for 5 min, 33 cycles with denaturation at 94°C for 45 sec, annealing at 56°C for 30 sec and extension at 72°C for 1 min and final extension at 72°C for 5 min. The PCR product was separated by electrophoresis in 1.5% agarose gel at 100 V for 40 min in Tris-acetate buffer, visualized by ethidium bromide staining, illuminated by UV transilluminator. A 100-1500 bp DNA ladder was used as a size reference for PCR assay (Jami *et al.*, 2010).

RESULTS
The detection method for *L. monocytogenes* was applied in 10 and 1 ml of types milk (cows, buffalo, sheep, camel and goats), The samples was artificially contaminated with *L. monocytogenes* (Table 1).
Fig. 1: Agarose gel electrophoresis of the amplification LM lip1 gene obtained from artificial milk samples and L. monocytogenes Lanes: M, Marker (1), (2), (3) and (4) The milk (cow, buffalo, camel and sheep) samples after 0 h of incubation. (5), (6), (7) and (8) The milk (cow, buffalo, camel and sheep) samples after 24 h of incubation, Lane (9) The LM lip1 gene extract from L. monocytogenes ATCC 9525

<table>
<thead>
<tr>
<th>Table 1: The numbers L. monocytogenes ATCC 9525 in types milk samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Times (h)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>24</td>
</tr>
</tbody>
</table>

Numbers of L. monocytogenes ATCC 9525 in the milk samples were convergent after incubation, while the numbers were different after 24 h of incubation in the samples ranged between (10^2-10^3) cfu/ml in cow's milk and buffalo milk and sheep's milk and did not increase numbers in the milk of camels.

The PCR assay, using LM lip1 primers that amplify a 274 bp fragment of the pf1A gene of L. monocytogenes was performed. Using this method, the contamination rates of the raw milk samples with L. monocytogenes were determined as types milk after 0 and 24 h of incubation (Fig. 1). The results showed that these primers can detect at least 4.4x10^7 cfu/ml of bacterial cells in samples milk and in specificity test the results clearly indicated that the primers have a high affinity for the correct target sequence and are specific for L. monocytogenes.

DISCUSSION
The detection of pathogenic bacteria is a fundamental objective of food microbiology ensuring food quality. The current microbiological culture procedures are laborious and time-consuming. Consequently, there is an increased need for a rapid and reliable detection method to guarantee food safety. Regarding this, PCR technology has successfully shortened analysis time and has been widely applied for the detection of food borne pathogens (Bruce, 1994). The PCR technology was using for the detection of L. monocytogenes bacteria in four types of milk and bacteria numbers ranged between (44x10^2-65x10^5) cfu/ml directly after inoculation and (29x10^5-65x10^6) cfu/ml after 24 h at incubation. The hlyA gene of L. monocytogenes specific product was reproducibly detected and showed a sensitivity of 10 cfu/ml (Amaglia, et al., 2004). Finally the possibility of detection of L. monocytogenes bacteria in the four types of milk (cows, buffalo, camel and sheep) by using PCR even if the numbers a few bacteria.

REFERENCES