Characteristics of Etawa Crossbred Dairy Goat Rumen Fluid and Digestibility of Palm Oil Industry By-Products

Arief1, N. Jamarun1 and B. Satria2
1Faculty of Animal Science, Andalas University, West Sumatera, Indonesia
2Faculty of Agriculture, Andalas University, West Sumatera, Indonesia

Abstract: The in-vitro characteristics of the rumen fluid of etawa crossbred dairy goats was analyzed to determine the digestibility of range of feeds based on palm oil industry by-products. The research used completely randomized design (CRD) with 5 different ratios of Palm Kernel Cake (PKC) and Palm Oil Sludge (POS) as follows: A; (10% PKC+50% POS), B; (20% PKC+40% POS), C (30% PKC+30% POS, D (40% PKC+20% POS), E; (50% PKC+10% POS). The characteristics of rumen fluid that were measured were pH, Volatile Fatty Acid (VFA) and NH₃-N and digestibility of Dry Materials (DDM) and Organic Materials (DOM) in-vitro. The in-vitro study was performed according to the method of Tilley and Terry (1983). The results showed that the measured characteristics of the rumen fluid were within normal limits with pH 6.87-6.94, VFA 102.40-133.62 mM and NH₃-N 8.00-9.91 mM. The digestibility of Dry Matter (DDM) ranged from 40.13 to 45.52% and the digestibility of Organic Materials (DOM) ranged from 38.94 to 44.56%. Most of the parameters depended significantly on the ratio of PKC and POS.

Key words: Rumen in-vitro, digestibility, Etawa, by-products of palm oil industry

INTRODUCTION
One of the factors affecting the level of livestock productivity is feed. Adequate availability and quality of food with assured continuity is required to sustain production levels. Also the largest cost in the process of farm production is the cost of feed. Some studies show that feed costs may reach 60-70% of the cost of production. Obtaining feed is becoming increasingly difficult because many ingredients such as corn, soybean meal and fish meal are imported. In the long term, alternative feed ingredients with adequate availability and quality need to be found to reduce dependence on the expensive imported feed materials and meet projected increasing demand. One possible local feed alternative is the by-products of the palm oil industry.

Indonesia is the largest palm oil producer in the world with Crude Palm Oil (CPO) production of 27 million tonnes/year (Whardani, 2012). The total area of oil palm plantations is 11.5 million hectares (Direktorat Jendral Perkebunan, 2012). Each hectare of oil palm plantation produces around 16 tonnes of fresh fruit bunches (FFB) from which 4 tonnes of CPO is extracted (Liwang, 2003). The by-product from each tonne of FFB include 294 kg of sludge and 35 kg palm kernel cake. Palm kernel cake (PKC) and palm oil sludge (POS) which has potential as animal feed alternatives (Carvalo et al., 2005; Mathijs, 2004).

Unfortunately these by-products of palm oil industry have low nutritional values especially with regard to protein content and digestibility and some components are unpalatable and potentially polluting (Hanafi, 2004). The cell wall of FFB is covered with complex crystalline silica, has a high degree of lignification and contains cellulose structures that are difficult to digest (Devendra, 1990), hence the utilization still not optimal (Ningrat et al., 2013). One way to improve the digestibility of fibrous feed is to use probiotics. The use of probiotics improves dry matter intake, digestibility of dry matter and organic matter resulting in better productivity of livestock (Winugroho et al., 2000).

The vegetation that naturally grows alongside oil palm in plantation also has potential as a source of forage for livestock (Mathews, 2008). Chen et al. (1991) states that this vegetation can produce 2.6-2.8 tonne of dry matter/hal/year. Assuming that 60% of the total area of Indonesian plantation are at a productive stage the by-products from the palm oil industry along with this vegetation would be sufficient to feed the current number of cattle in Indonesia (Mathius, 2008).

Another form of livestock other than dairy cattle that has potential for milk production in Indonesia is the Crossbred Etawa (CE) Goat. The CE goat can adapt to most environments in Indonesia, is dual-purpose (meat and milk), has good reproductive properties and produces milk with better nutritional properties as the fat globules are smaller resulting in easier absorption. CE goat's milk has a higher content of fluorine (10-100 times) than cow milk's which provides a natural antiseptic that can suppress the growth of pathogenic

Corresponding Author: Arief, Faculty of Animal Science, Andalas University, West Sumatera, Indonesia
bacteria in the body (Damayanti, 2002). Goat's milk is also reported to cure various diseases such as asthma and tuberculosis (Mulyanto and Wiryanta, 2002). The use of by-products of the palm oil industry combined with the naturally growing plantation vegetation as feed is the focus of this study. The potential to use oil palm plantations as a source for the dairy goat industry is high. Goat are raised in areas close to the plantation and integrating these two industries could play a significant role in achieving the national 2020 goal of self-sufficiency in food production, particularly milk. Research was conducted to determine the quality and digestibility of PKC and POS as dairy goat feed using in-vitro testing.

MATERIALS AND METHODS

PKC and POS were combined in a concentrate with the addition of corn, rice bran and coconut cake which was then fed to dairy goats and followed by in vitro testing. The research objective was to optimize the formulation of this PKC/POS based feed based on measures of rumen fluid characteristics and digestibility. Research used completely randomized design (CRD) with 5 concentrate feed ratios:

1: Treatment A: 10% PKC+50% POS
2: Treatment B: 20% PKC+40% POS
3: Treatment C: 30% PKC+30% POS
4: Treatment D: 40% PKC+20% POS
5: Treatment E: 50% PKC+10% POS

Formulation, feed composition, nutritional content and ingredients can be seen in Table 1. Data were analyzed using analysis of Variance (ANOVA) according to Steel and Torrie (1991), while the differences between treatments were tested by Duncan's Multiple Range Test (DMRT). Parameters measured were (1). Characteristics of rumen fluid (pH, VFA and NH3) measured by gas chromatography and (2). In-vitro digestibility of nutrients (dry matter digestibility (DMD) and Organic Matter Digestibility (DOM) using the method developed by Tilley and Terry (1969).

RESULTS

The results of research on the characteristics of in-vitro rumen can be seen in Table 2. The results of statistical analysis showed that the POS/PKS ratio of the feed did not affect the pH or the NH3-N concentration or content of the rumen fluid. Volatile fatty acid (VFA) content increased with the percentage of palm kernel cake in the feed. The results of statistical analysis showed a significant difference (p<0.05) in digestibility between different POS/PKS ratios. With a higher proportion of palm kernel cake, both the dry matter and the organic matter were more digestible.

DISCUSSION

Characteristics of rumen in-vitro: Statistical analysis showed that varying the POS/PKS ratio of the feed had no significant difference (p>0.05) on the pH of rumen fluid with pH ranging between 6.87-6.94 for all trials. A range of pH values between 6-7 is normal and is good for rumen microbial activity (France and Sddon, 1993) while the pH ideal for fiber digestion is 6.4-6.8. Values obtained in this study are only slightly higher than this optimal range. Near optimal pH can help bacteria colonize the plant cell wall and can encourage bacterial cellulase activity. Digestion will only be disrupted if the rumen fluid has a pH is below 6 and at pH 5 to 6, the activity of rumen microbes to digest the feed will be hampered or even stopped (Chanjula et al., 2004). A pH of less than 6.2 will inhibit rumen microbial growth significantly (Orskov and Ryle, 1992). With the observed pH in the normal range activity of rumen microbes in the digestion process was not compromised. The average concentration of VFA observed ranged from 102.40 to 133.62 mM which is within the range suggested by previous research (Mc Donald et al., 2002), Preston and Leng (1989). According to Mc Donald et al. (2002), optimal concentration of VFA in rumen fluid for microbial growth is 80-160 mM, according to Preston and Leng (1989) the minimal amount of VFA in rumen fluid for microbial survival is 50 mM.

Silalahi (2003) stated that an increase in the number of rumen microbial cells increases the production of VFA so that rumen microbes can thrive resulting in a further increase in availability of VFA which in turn provides further energy for microbial growth. Hartati (1995) pointed out that the VFA production in rumen fluid can also be used as a measure of feed ferment ability as the higher level of ferment ability of a feed material, the greater the VFA produced. The results obtained in this study indicate that the availability of NH3-N in rumen fluid was sufficient for microbes to thrive resulting in good levels of VFA which provides an abundant source of energy for further growth and development of microbes. Sutardi (1987) suggested the optimal concentration of NH3-N in rumen fluid was between 4-12 mM and McDonald et al. (1985) suggested 8-21 mM. Availability of NH3-N in the rumen fluid in goats feed each of the 5 different POS/PKS ratio feeds in this study ranged between 8.67 and 9.91 mM. This is well within both these estimates of the normal range required to support optimum growth and activity of bacteria. Adequate NH3-N in rumen fluid leads to easier degradation of protein feed in the rumen and provide a good balance of energy and nitrogen required by rumen microbes for growth. According to Erwanto et al. (1993) the concentration of NH3-N in rumen fluid also determines the efficiency of microbial protein synthesis which ultimately will affect the fermentation of organic material in the form of volatile
fatty acid (VFA) as the main energy source in ruminants. Winugroho and Maryati (1999) showed that at concentrations of NH3 exceeding 12 mM, the conversion process of NH3 to N is disturbed and if NH3 is less than 4 mM (conditions of low dietary protein) the process of degradation may also be disrupted.

Digestibility of dry matter (DDM) and digestibility of organic matter (DOM): The data of Table 3 shows that the DDM of the feed ranged between 38.94-44.55% and the DOM was 40.29-45.52%. The POS/PKS ratio E was the most completely digested (significantly different compared to the other treatments at p<0.05), with 45.52% of DOM and 44.55% of DDM digested. The higher DDM of ratio E was almost certainly due to the higher protein content of the material which resulted in greater availability of NH3 stimulating higher rumen microbe activity. Bamualim (1985) explained that the availability of adequate protein will lead to the increasing activities and growth of microorganisms resulting in more complete digestion. Oktarina et al. (2004) demonstrated that increased protein content of feed increased the rate of growth of microbes and higher rumen microbial population results in a better digestion of food. Higher protein content therefore raises the total digestible nutrient value of the feed. Digestibility of dry matter was closely linked to Total Digestible Nutrient (TDN). The higher protein content of ratio E positively impacts the TDN and the availability of energy that can be utilized by rumen microbes because TDN is the amount of organic matter that can be used as energy by both the rumen microbes and the livestock in the form of ATP (Tilman et al., 1999). The superior DDM and DOM of ratio E could be do to the lower content of relatively indigestible lignin and silica in the E ratio compare to the other ratios. than the other treatments. Silica is too hard to be fermented by rumen microbes.

Ilyuemi et al. (2006) concluded that even though the nutrient content of the palm oil industry by-products was high, its value as animal feed was low due to the high crude fiber and lignin, particularly in the oil sludge, resulting in low palatability and digestibility. DOM depends on the balance of nutrients. Van Soest et al. (1994) stated that the ability to digest the feed material was determined by several factors such as the type of livestock, the chemical composition of feed ingredients and feed preparation. The digestibility of a feed was dependent on the nutrients.

Table 1: Formulation and nutrient content of feed

<table>
<thead>
<tr>
<th>Feed ingredient</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palm kernel cake</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Palm oil sludge</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Corn</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Rice bran</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Coconut meal</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mineral</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Percentage (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2: Rumen in-vitro characteristics in goats fed on rations based on Palm oil by-products

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.87</td>
<td>6.89</td>
<td>6.9</td>
<td>6.78</td>
<td>6.94</td>
</tr>
<tr>
<td>VFA (mM)</td>
<td>102.40</td>
<td>113.64</td>
<td>114.98</td>
<td>117.39</td>
<td>133.62</td>
</tr>
<tr>
<td>NH3-N (mM)</td>
<td>9.33</td>
<td>9.13</td>
<td>8.87</td>
<td>9.5</td>
<td>9.91</td>
</tr>
</tbody>
</table>

Table 3: DMD and DOM palm oil industry by product

<table>
<thead>
<tr>
<th>Digestibility</th>
<th>Dry matter (%)</th>
<th>Organic matter (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>38.94</td>
<td>40.29</td>
</tr>
<tr>
<td></td>
<td>36.61</td>
<td>40.13</td>
</tr>
<tr>
<td></td>
<td>40.22</td>
<td>40.82</td>
</tr>
<tr>
<td></td>
<td>40.49</td>
<td>41.09</td>
</tr>
<tr>
<td></td>
<td>44.55</td>
<td>45.52</td>
</tr>
</tbody>
</table>

Feed digestibility and NH3-N content: Higher DDM and DOM indicated an increase of nutrient availability, especially volatile fatty acid (VFA) and NH3 for the growth of microbes that will be used for microbial protein
synthesis. Suryahadi et al. (1993) stated that DDM and DOM measure how efficiently rumen microbes can utilize the feed and was positively correlated with the animal's ability to utilize the nutrients in the feed. Kurniawati (2007) added that feed with low digestibility values had low degradation so is not able to provide balanced environment for fermentation in the rumen. Rumen microbial growth is low affecting the microbial fermentation in the rumen.

Oktarina et al. (2004) obtained similar results to this study. They also concluded that increased VFA and NH3-N would increase the digestibility of dry matter (DDM) and organic matter (DOM) of feed.

Conclusion: The data demonstrates that ratio E (50% PKC+10% POS) was the best feed tested as indicated by the characteristics of in-vitro rumen and digestibility of nutrients with the results of pH, VFA and NH3, respectively 6.94, 133.62 and 9.91 mM. While dry matter and organic matter digestibility were 44.55 and 45.52%, respectively.

ACKNOWLEDGMENTS

The authors are very grateful to Directorate General of Higher Education Department of National Education Republic of Indonesia that funded this experiment through the National Priorities Research Master Plan for the Acceleration and Expansion of Indonesian Economic Development (MP3EI), Contract No. 030/SP2H/PL/DIR. LITABMAS/III/2015, the date February, 5, 2015.

REFERENCES

