Functional Aspects of Plant Growth Promoting Rhizobacteria: Recent Advancements

Munees Ahemad and Mohammad Saghir Khan
Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh-202002, U.P., India

Abstract: Background: Numerous bacterial species inhabiting rhizosphere are known to exert beneficial effects upon plant growth. Such bacteria facilitating plant growth are generally referred to as plant growth promoting rhizobacteria. To exert their beneficial effects, rhizobacteria generally must colonize the root surface efficiently. This review therefore, commences with describing the bacterial traits and conditions which are required for the root colonization. Results: Several mechanisms by which microbes can act beneficially on plant growth are subsequently described. The beneficial rhizobacteria facilitate the plant growth through N₂ fixation, solubilization of insoluble phosphorus, production of siderophores and production of phytohormones, lowering of ethylene concentration, production of antibiotics and antifungal metabolites and induced systemic resistance. The application of plant growth promoting rhizobacteria as bio-inoculants may be a feasible preference to chemical fertilizers to increase the productivity of various crops. Conclusion: In future, the next step should be to explore the rhizobacteria (with multiple plant growth promoting properties) which might flourish well in the geographically diverse niches and to develop appropriate carriers to maintain their viability and plant beneficial activities.

Key words: Plant growth promoting rhizobacteria (PGPR), indole acetic acid, siderophore, phosphate solubilization, rhizosphere

INTRODUCTION

An unanticipated amplification in agricultural practices with the aim to maximize the crop productivity at an unprecedented rate had led to exploitation of the technologies and strategies which are not in favor of the sustainability of soil health (Fox et al., 2007; Kumar et al., 2010). The excessive and ill-advised application of agro-chemicals (fertilizers and pesticides) in agricultural fields is posing grave threats to the soil fertility (Yu et al., 2009). The progressive diminution in the application of plant protectants and agrochemicals in farming practices without affecting yield or quality of the crops can only be possible with the advancement of new generation technologies. During the last couple of decades, the recent biotechnological advancements specifically in agriculture have unlocked new avenues for the augmentation of the agricultural productivity in a sustainable mode and have made possible exploitation of soil microorganisms for improving the crop health (Tank and Saraf, 2010; Khan et al., 2010) and in turn, have presented an economically feasible and ecologically sound alternative to minimize the common agricultural practices which result into decreased soil fertility and also affect the long term stability of soil ecosystem (Oves et al., 2009).

The complexity of the soil ecosystem is established by the numerous and diverse interactions among its physical, chemical and biological components (Buscot, 2005). Especially, the variable genetic and functional activities of the heterogeneous microbial populations have a vital effect on soil functions, as such microbes are considered powerful forces for specific enzyme mediated fundamental metabolic processes (Ahemad et al., 2009). Microorganisms in the soil habitat play key roles in ecosystem functioning through controlling nutrient cycling reactions essential for maintaining soil fertility and also contributing to the genesis and maintenance of soil structure (Kirk et al., 2004). Moreover, these microorganisms affect the biogeochemical cycling of nutrients and consequently help plants to grow better both under conventional and stressed soil environment (Wani et al., 2008; Khan et al., 2009). Microbial communities inhabiting soils interact with plant roots and soil constituents at the root-soil interface (Glick, 1995). And hence, the rhizosphere can be defined as any volume of soil specifically influenced by plant roots and/or in association with roots hairs and plant-produced materials (Dessaux et al., 2009). Largely, three separate but interacting components are recognized in the rhizosphere: the rhizosphere (soil), the rhizoplane and the root itself. Of these, the rhizosphere is the zone of soil
influenced by roots through the release of substrates that affect microbial activity. The rhizoplane, on the other hand, is the root surface, including the strongly adhering soil particles (Fig. 1) while the root itself is a part of the system because certain micro-organisms (like endophytes) colonize root tissues (Bowen and Rovira, 1999). The unique physico-chemical and biological characteristics of the soils that are associated with roots, compared to the soils away from the root and root surface are responsible for the enhanced microbial diversity together with increased numbers and activity of microorganisms in the rhizosphere (Zaidi et al., 2009).

During microbes-plant interaction, plant roots exude the organic materials which are used up by root-associated microorganisms as nutrients as well as organic material is also supplied to the soil micro biota through the death and decay of plants as either growth substrates and structural components or signal molecules. Microbial activity in the rhizosphere affects the rooting patterns and the supply of available nutrients to plants, in a manner that modify the quality and quantity of root exudates (Gryndler, 2000).

The term rhizobacteria is used to describe a subset of rhizosphere bacteria capable of colonizing the root environment (Klopper et al., 1991; Klopper, 1994). Beneficial, root colonizing, rhizosphere bacteria, the PGPR (plant growth promoting rhizobacteria), are defined by three intrinsic characteristics: (i) they must be able to colonize the root (ii) they must survive and multiply in microhabitats associated with the root surface, in competition with other microorganisms, at least for the time needed to express their plant growth promotion/protection activities and (iii) they must promote plant growth. Plant growth-promoting rhizobacteria are thus free-living, soil-borne bacteria which when applied to seeds/soils or crops, enhance the growth of the plant directly by providing nutrients to plants or indirectly by reducing the damage from soil-borne plant pathogens (Klopper et al., 1980). The present review enlightens the functional aspects of PGPR, their mechanisms of plant growth promotion and their agricultural importance.

Root colonization by PGPR: The distribution, colonization, multiplication and establishment of introduced PGPR are profoundly affected by biotic and abiotic factors (Khan et al., 2010). The optimal temperature for growth of many PGPR in vitro is above 25°C but root colonization is generally greatest below 20°C (Loper et al., 1985). Better root colonization at lower temperature probably reflects the fact that microbial activity in the soil declines with temperature. Further, slower root growth at lower temperatures may facilitate more effective transport of the bacteria from the inoculum source to the roots. Although PGPR grow best in vitro at neutral pH or above, colonization is better at lower pH (Edwards et al., 1998).

The biological composition of the rhizosphere dramatically influences root colonization. Accordingly, the nutrient availability rather than space is the primary determinant of microbial population size in the rhizoplane and rhizosphere (Pal, 1998; Zaidi et al., 2009). Thus, inoculation of PGPR does not lead to a change in the total rhizosphere population but a shift in the composition of the microflora such that introduced bacteria preempts establishment of the normal indigenous strains. The root colonization hence will be greater in sterile or pasteurized soils than in raw soil due to lack of competition, antibiosis and predation from the natural inhabitants of soils. In contrast, as microbial activity increases in unsterilized soils, through inputs of nutrients, the level of colonization by introduced PGPR is reduced (Casida, 1992). Pathogens that are targets of PGPR can influence PGPR populations either positively or negatively (Edwards et al., 1998).

Root colonization is a multistage event involving many bacterial traits and genes. Adhesion of PGPR to roots may be either non-specific resulting from electrostatic forces or involve glycoprotein termed agglutinin (Anderson et al., 1988). For instance, Buell and Anderson (1992) characterized a locus, agg A, from Pseudomonas that encodes a 50.5 kDa protein required for agglutinability and adherence. Similarly, several exopolysaccharides (EPS) are reported to be involved in the attachment of rhizobacteria to plant cells and in the nodulation of legumes by Rhizobium (Cangelosi et al., 1987; Ahemad and Khan, 2010c). However, one approach to increasing root colonization by PGPR is to increase the level of bacterial inocula applied to the seeds (Bull et al., 1991). Enhancement in colonization by increasing the
initial dose of bacteria on the seeds has, however, limitations (Osburn et al., 1989). Another strategy to increase the colonization involves the use of multiple bacterial strains. PGPR research has focused primarily on the use of single strains. However, Weller and Cook (1983) reported that the use of P. fluorescens 2-79 in combination with P. fluorescens 13-79 was superior to either strain when used alone in about 50% of the trials. Furthermore, recombinant DNA technology has provided the most exciting and potentially successful means to improve root colonization and biological control by PGPR (Natsch et al., 1997).

Agricultural importance of PGPR: The PGPR belonging to various bacterial genera are known to participate in many important biological activities, such as the biological control of plant pathogens, nutrient cycling and seedling/plant growth (Persello-Cartetueux et al., 2003; Zahir et al., 2004; Ahmed and Khan, 2010d,e) through the production of various substances (Table 1). Among PGPR, *Pseudomonas* and *Bacillus* are the most commonly described genera possessing plant growth promoting activities but many other taxa are also included in PGPR group. Selected strains of PGPR are being used as seed inoculant (Sahin et al., 2004; Zahir et al., 2004; Rani et al., 2009; Ahmed and Khan, 2010f, Ahmed and Khan, 2009a).

In general, PGPR can be divided into two categories (i) extracellular PGPR (ePGPR), existing in the rhizosphere, on the rhizoplane or in the spaces between cells of the root cortex and (ii) intracellular PGPR (iPGPR) which exist inside root cells, generally in specialized nodular structures. The latter includes *Rhizobia* and *Frankia* species, both of which fix N in symbiosis with higher plants (Gray and Smith, 2005). Functionally, the PGPR have been separated into two groups: (i) those involved in nutrient cycling and phytostimulation (direct activity) and (ii) those involved in the biocontrol of plant pathogens (indirect activity) (Bashan and Holguin, 1998).

The use of PGPR to augment crop productivity has been limited largely due to the variability and inconsistency of results observed under laboratory, greenhouse and field trials. Soil is an unpredictable environment and an intended result is sometimes difficult to achieve. Climatic variations also have a large impact on the effectiveness of PGPR but sometimes unfavorable growth conditions in the field are to be expected as a normal functioning of agriculture (Zaidi et al., 2009). Despite all these factors, increase in crop yields following PGPR applications in the growth chambers and field trials have also been observed as presented in Table 2.

How PGPR facilitate plant growth? The PGPR strains facilitate growth of plants either directly or indirectly (Fig. 2) (Glick, 1995). The direct mechanism of plant growth promotion involves the production of substances by bacteria and its transport to the developing plants or facilitates the uptake of nutrients from the recipient environment (Azcon, 1989). The direct growth promoting activity of PGPR includes (i) N fixation (Wani et al., 2007c) (ii) solubilization of insoluble phosphorus (Khan et al., 2006, 2009) (iii) sequestering of

Table 1: Growth promoting substances released by selected PGPR

<table>
<thead>
<tr>
<th>PGPR</th>
<th>Plant growth promoting traits</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhizobium leguminosarum</td>
<td>IAA, siderophores, HCN, ammonia, exo-polysaccharides</td>
<td>Ahemad and Khan (2009a)</td>
</tr>
<tr>
<td>Mesorhizobium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizobium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azospirillum amazonense</td>
<td>IAA, nitrogenase activity</td>
<td>Eil SET et al. (2006)</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azotobacter chroococcum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas, Bacillus</td>
<td>Phosphate solubilization, IAA and siderophores</td>
<td>Wani et al. (2007c)</td>
</tr>
<tr>
<td>Klebsiella oxyaca</td>
<td>IAA, phosphate solubilization, nitrogenase activity</td>
<td>Jha and Kumar (2007)</td>
</tr>
<tr>
<td>Bacillus spp., Pseudomonas</td>
<td>IAA, ammonia production</td>
<td>Joseph et al. (2007)</td>
</tr>
<tr>
<td>Azotobacter spp., Rhizobium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizobium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas, fluorescens</td>
<td>Induced systemic resistance, antifungal activity</td>
<td>Sarawananmaare et al. (2007)</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>Antifungal activity</td>
<td>Liu et al. (2007)</td>
</tr>
<tr>
<td>Glucosolobacter diazotrophicus</td>
<td>Zinc solubilization</td>
<td>Cazorla et al. (2007)</td>
</tr>
<tr>
<td>Brevibacillus</td>
<td>Zn resistance, IAA</td>
<td>Saravanan et al. (2007)</td>
</tr>
<tr>
<td>Pseudomonas, putida</td>
<td>Siderophores, Pb and Cd resistance</td>
<td>Vivas et al. (2006)</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azospirillum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azospirillum amazonense</td>
<td>IAA, P solubilization, nitrogenase activity, antibiotic resistance</td>
<td>Thakuria et al. (2004)</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elodea ascorbata</td>
<td>ACC deaminase, siderophores, metal resistance</td>
<td>BUR et al. (1998)</td>
</tr>
</tbody>
</table>

Table 2: Examples of plant growth promoting rhizobacteria tested for various crop types

<table>
<thead>
<tr>
<th>POTR</th>
<th>Plant</th>
<th>Conditions</th>
<th>Results of addition of bacteria to plants</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas sp. PS1</td>
<td>Green gram</td>
<td>Pots</td>
<td>Significantly increased plant dry weight, nodules, total chlorophyll content, leghaemoglobin, root N, shoot N, root P, shoot P, seed yield and seed protein</td>
<td>Ahemad and Khan (2010a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizobium</td>
<td>Pea (Pisum sativum)</td>
<td>Pots</td>
<td>When herbicide tolerant Rhizobium strain MRPI was used with herbicide, it increased the growth parameters at all tested concentrations of herbicides (quinazolin-4-yl and chlorothalonil)</td>
<td>Ahemad and Khan (2009a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizobium leguminosarum</td>
<td>Pea (Pisum sativum)</td>
<td>Pots</td>
<td>Significantly increased the growth, symbiotic properties (nodulation and leghaemoglobin content), amount of N and P nutrients in plant organs, seed yield and seed protein of pea plants</td>
<td>Ahemad and Khan (2010a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesorhizobium sp.</td>
<td>Chickpea (Cicer arietinum)</td>
<td>Pots</td>
<td>Significantly increased symbiotic properties (nodulation and leghaemoglobin content), root N, shoot N, root P, shoot P, seed yield and seed protein</td>
<td>Ahemad and Khan (2009a),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fields</td>
<td>Plant height, seed weight, number of seed per ear and leaf area, shoot dry weight significantly increased</td>
<td>Ahemad and Khan (2010a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas putida strain R-168</td>
<td>Maize (Zea mays L.)</td>
<td>Fields</td>
<td>Seed yield (21%), plant height (5%), and microbial population in soil (41%) increased over their respective controls while boll weight and staple length remained statistically unaffected</td>
<td>Anjum et al. (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas putida CC-E2-4, Bacillus subtilis CC-pg104, Azospirillum amazonense</td>
<td>Leucaena leucocephala</td>
<td>Fields</td>
<td>Grain dry matter accumulation (7 to 11.9%), the number of panicles (5 to 10.0%) and nitrogen accumulation at grain maturation (3.5 to 18.5%) increased</td>
<td>Elizet et al. (2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas species</td>
<td>Rice (Oryza sativa L.)</td>
<td>Greenhouse</td>
<td>In vitro Pseudomonad isolated from rice showed a higher ability to control bacterial and fungal root pathogens than that obtained from maize</td>
<td>Laroque et al. (2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azospirillum brasilense Sp245</td>
<td>Common bean (Phaseolus vulgaris L.)</td>
<td>Greenhouse</td>
<td>Root growth increased</td>
<td>Remans et al. (2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rice (Oryza sativa)</td>
<td>Micro-plots</td>
<td>Increased rice grain yield maximum upto 76.9%</td>
<td>Thakur et al. (2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>Barley (Hordeum vulgare)</td>
<td>Greenhouse</td>
<td>Increased root weight upto 16.7% and shoot weight upto 34.7%</td>
<td>Cambel et al. (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Solanum lycopersicum L. (tomato), Abelmoschus esculentus (okra), Amaranthus sp. (African spinach)</td>
<td>Greenhouse</td>
<td>Dry biomass increased 31% for tomato, 29% for okra and 40% for African spinach</td>
<td>Adesemoye et al. (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidentified FGPR isolate</td>
<td>Unidentified FGPR isolate</td>
<td>Greenhouse</td>
<td>Increases in root elongation (up to 17.3%), root dry weight (up to 13.5%), shoot elongation (up to 37.9%) and shoot dry weight (up to 36.3%) in inoculated wheat seedlings</td>
<td>Khalid et al. (2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bradyrhizobium sp. (vigna) RME</td>
<td>Green gram</td>
<td>Pots</td>
<td>Enhanced the number of nodules by 82%, leghaemoglobin by 120%, seed yield by 34%, grain yield protein by 136%, root N by 41% and shoot N by 37% at 250 mg Ni kg(^{-1}) soil.</td>
<td>Wani et al. (2007a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesorhizobium sp. R33</td>
<td>Chickpea</td>
<td>Pots</td>
<td>Increased the dry matter accumulation, number of nodules, seed yield and grain protein by 71, 85, 36 and 169%, respectively, compared to noninoculated plants. Nitrogen in roots and shoots increased by 46 and 80%, respectively, at 136 mg Cr/kg.</td>
<td>Wani et al. (2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizobium sp. R35</td>
<td>Pen</td>
<td>Pots</td>
<td>Enhanced the dry matter, number of nodules, root N, shoot N, leghaemoglobin, seed yield and grain protein by 19, 23, 26, 47, 111, 36 and 18%, respectively, at 250 mg Ni kg(^{-1})</td>
<td>Wani et al. (2007b)</td>
</tr>
</tbody>
</table>
iron by production of siderophores (Wani et al., 2008; Rajkumar et al., 2006) (iv) production of phytohormones such as, auxins, cytokinins, gibberellins and (v) lowering of ethylene concentration (Liu et al., 2007; Elise et al., 2008; Wani et al., 2008). On the contrary, the indirect mechanism of plant growth promotion by PGPR includes (i) antibiotic production (ii) depletion of iron from the rhizosphere (iii) synthesis of antifungal metabolites (iv) production of fungal cell wall lysing enzymes (v) competition for sites on roots and (vi) induced systemic resistance (Saravanakumar et al., 2007; Cazorla et al., 2007). Briefly, the indirect promotion of plant growth takes place when PGPR lessen or prevent the injurious effects of plant pathogens by synthesizing inhibitory substances or by increasing the natural resistance of the host to the pathogens.

Direct mechanisms of action

Nitrogen fixation: Nitrogen (N) is one of the most common nutrients required for optimal plant growth and productivity. Even though, more than 78% of N is present in the atmosphere, yet it remains unavailable to growing plants. It therefore, needs to be converted into ammonia, an available form to plants and other eukaryotes. Atmospheric N is converted into plant utilisable forms by three different processes: (a) conversion of atmospheric N into oxides of N in the atmosphere (b) industrial N fixation that involves the use of catalysts and high temperature (300-500°C) to transform N into ammonia and (c) Biological N Fixation (BNF) which changes the nitrogen to ammonia by microorganisms using a complex enzyme system known as nitrogenase (Kim and Rees, 1994). Of all the processes, BNF fixes about 60% of the earth’s available N and represents an economically beneficial and environmentally sound alternative to chemical fertilizers (Ladha et al., 1997).

Nitrogen fixing organisms can broadly be divided as: (a) symbiotic N₂ fixing bacteria, that includes members of family rhizobaceae and forms symbiosis with leguminous host plants (e.g., rhizobia) (Zahir, 2001; Ahemad and Khan, 2010a, c, d) and non-leguminous trees (e.g., Frankia). Gram-negative soil bacteria (rhizobia) within the rhizobiaceae phylogenetic family (α-proteobacteria) possess the unique ability to infect and establish a nitrogen-fixing symbiosis with the roots of leguminous plants. The establishment of the symbiosis involves a complex interplay between host and symbiont (Giordano and Hirsch, 2004) resulting in the formation of a novel organ, the nodules which the bacteria colonize as intracellular symbionts (b) non-symbiotic (free living, associative and endophytes) nitrogen fixing forms such as cyanobacteria (Anabaena, Nostoc), Azospirillum, Azotobacter, Gluconacetobacter diazotrophicus and Azocarcus etc. Plant growth-promoting rhizobacteria that fix N₂ in non-leguminous plants are also called as diazotrophs capable of forming a non-obligate interaction with the host plants (Glick et al., 1999). The process of N₂ fixation is carried out by the nitrogenase enzyme coded by nif genes (Kim and Rees, 1994). Nitrogenase was elucidated by Dean and Jacobson (1992) as a two-component metalloenzyme consisting of (i) dinitrogenase reductase which is the iron protein and (ii) dinitrogenase which has a metal cofactor. Based on the metal cofactor three different N fixing systems have been identified (a)
Mo-dinitrogenase (b) V-nitrogenase and (c) Fe-
nitrogenase. The existence of the N₂ fixing system differs
among bacterial genera (Bishop and Joerger, 1990).

Phytohormones: Another direct mechanism by which
PGPR facilitates plant growth is the production of plant
growth regulators or phytohormones (Glick, 1995;
Wani et al., 2008; Ahemad and Khan, 2009a; Ahemad and
Khan, 2010a). Frankenberger and Arshad (1995) have
discussed in detail the role of auxins, cytokinins,
gibberellins, ethylene and Abscisic Acids (ABA) which
when applied to plants, have shown a substantial increase
in growth and yield of plants. The production of
phytohormones such as, auxins (IAA), cytokinins and
gibberellins by natural soil microbical communities have
been reported by various workers over the last 20 years
(Poonguzhali et al., 2008, Ahemad and Khan, 2010g, h).

As an example, the production of Indole-3-Acetic
Acid (IAA) by microorganisms in the presence of the
precursor tryptophan or peptone has been reported
(Wani et al., 2008; Ahmad et al., 2008). Indole-3-acetic
acid, a main auxin in plants is known to control many
important physiological processes of plants, such as, cell
enlargement, cell division, root initiation, growth rate,
phototropism, geotropisms and apical dominance etc.,
(Zaidi et al., 2009). In plant cells, IAA is largely formed
by de novo synthesis from tryptophan which undergoes
either oxidative deamination (via the formation of indole-3-
pyruvic acid) or decarboxylation (via the formation of
tryptamine with indole-3-acetic aldehyde as an
intermediate.

The synthesis of IAA by microbes involves one of
the three pathways as presented in Fig. 3 (Patten and
Glick, 1996): (1) IAA formation via indole-3-pyruvic acid
and indole-3-acetamide is found in the majority of
bacteria like, Erwinia herbicola; saprophytic species of
the genera Agrobacterium and Pseudomonas; certain
representatives of Bradyrhizobium, Rhizobium,
Azospirillum, Klebsiella and Enterobacter (2) The
conversion of tryptophan into indole-3-acetic aldehyde
may involve an alternative pathway in which tryptamine
is formed. This pathway is believed to operate in
pseudomonads and azospirilla and (3) IAA biosynthesis
via indole-3-acetamide formation is reported for
phytopathogenic bacteria Agrobacterium tumefaciens,
Pseudomonas syringae and E. herbicola, saprophytic
pseudomonads like (e.g., Pseudomonas putida and
P. fluorescens). The genes controlling IAA synthesis via
this pathway are also reported in symbiotic bacteria (e.g.,
Rhizobium spp., Bradyrhizobium spp. and Azospirillum
spp.), although the activity of the corresponding enzymes
is either negligible or not detectable. (4) IAA biosynthesis
that involves tryptophan conversion into indole-3-
acetonitrile is found in plants, Alcaligenes faecalis and
possibly the cyanobacterium (Synecocystis sp.) and (5)
The tryptophan-independent pathway, more common in
plants, is also found in microorganisms (azospirilla and
cyano bacteria). However, the synthesis of IAA using this
pathway is reported to be insignificant and the
mechanisms are largely unknown.

Many bacteria are known to synthesize auxins using
such pathways and help the plants to grow better. In this
context, rhizospheric microflora colonizing plant roots are
of paramount importance in the conversion of tryptophan
into IAA. And hence, the removal of tryptophan from the
culture medium leads to decrease in the level of IAA by
the microorganisms. However, the amount of the auxins
formed depends primarily on the composition of the
medium and the conditions (e.g., temperature, aeration,
etc.) of bacterial growth. Bacteria in general, forms
maximum amount of IAA during the steady-state stage of
their growth while ammonium ions and glutamine inhibit
IAA biosynthesis (Tsavkelova et al., 2006). The genes
involved in IAA synthesis in bacterial strains may be
plasmid or chromosomal borne. For example, pathogenic
bacteria contain Ti plasmids that control the formation of
the phytohormone whereas in saprophytic
microorganisms, auxin biosynthesis is governed by
chromosomal genes (Tsavkelova et al., 2006).

![Biosynthetic pathways of IAA synthesis in bacteria](image)
It is reported that 80% of microorganisms isolated from the rhizosphere of various crops possess the ability to synthesize and release auxins as secondary metabolites (Loper and Schroth, 1986). Of the various PGPR strains, bacteria belonging to the genera *Azospirillum*, *Pseudomonas*, *Xanthomonas* and *Rhizobium* as well as *Alcaligenes*, *Enterobacter*, *Acetobacter*, *Klebsiella* and *Bradyrhizobium* have been shown to produce auxins which help in stimulating plant growth (Wani et al., 2007a; Poonguzhali et al., 2008; Kumar et al., 2008; Aherad and Khan, 2010b, g, h). However, the extent of IAA production by bacterial strains could be different due in part to the involvement of biosynthetic pathways, location of the genes, regulatory sequences and the presence of enzymes to convert active free IAA into conjugated forms. Moreover, the synthesis of IAA is also influenced by environmental factors (Patten and Glick, 1996). Synthesis of IAA by *Rhizobium* spp. in the presence and absence of tryptophan has also been demonstrated (Wani et al., 2007b). Bent et al. (2001) reported that the concentration of indole compounds by three different strains, *Paenibacillus polymyxa* (L6), *P. polymyxa* (Pw-2) and *Pseudomonas fluorescens* (M20) increased with increasing rate of tryptophan (0-200 mg mL⁻¹) at different incubation interval.

Microbial phosphate solubilization: Phosphorus (P), a major plant nutrient is required for various metabolic processes such as, energy transfer, signal transduction, macro-molecular biosynthesis, photosynthesis and respiration (Khan et al., 2009). Phosphorus however, is also one of the major nutrients limiting plant growth (Fernandez et al., 2007). Worldwide, 5.7 billion hectares land contain too little available P for sustaining optimal crop production. Phosphorus ion concentration in most soils ranges from 0.1 to 10 μM; P required for optimal growth ranges from 1 to 5 μM for grasses and 5 to 60 μM for high demanding crops such as tomato (*Lycopersicum esculentum*) and pea (*Pisum sativum*) (Raghothama, 1999). Sub-optimal levels of P, can however, lead to a 5 to 15% losses in the yield of crops (Khan et al., 2009). Phosphorus is present in the soils both in organic and inorganic forms (Fig. 4). Of which, organic forms, as found in humus and other organic materials including decayed plant, animal and microbial tissues, is an important reservoir of immobilized P accounting for about 20-80% of total soil P (Richardson, 1994). Phosphorus in labile organic compounds can be slowly mineralized as available inorganic P or it can be immobilized as part of the soil organic matter (McKenzie and Roberts, 1990). Soil inorganic P is however, controlled mainly by solution pH and the concentration of cations and in most soils, maximum P availability occurs between pH 5.5 to 7. Within this pH range, P is fixed by hydrous oxides of Fe, Al and Mn while between pH 6 to 8 and pH 6.5 to 8.5, P is fixed by silicate minerals and Ca, respectively. As a consequence, the most efficient use of P in neutral and calcareous soils occurs between pH 6 to 7.

Fig. 4: Movement of phosphorus in soils
However, the majority of P is unavailable for uptake by plants due to its rapid rate of fixation/complex formation with other elements of soils. Therefore, phosphatic fertilizers are applied to soil to replenish the P demands of growing plants. However, a large portion of soluble inorganic P applied to the soil as fertilizer is immobilized rapidly and becomes unavailable to plants (Goldstein, 1986). Moreover, the concentration of soluble P in soil solution is very low (400-1,200 mg kg$^{-1}$ of soil) (Ehrlich, 1990; Rodríguez and Fraga, 1999). Attempts to overcome the P deficiency by applying phosphatic fertilizers is expensive and ecologically unsafe practice because the efficiency of the added P fertilizer is as low. This has led to search environment-friendly and economically feasible alternative strategies for improving crop production in low P soils. In this study, organisms endowed with phosphate solubilizing activity, often termed Phosphate Solubilizing Microorganisms (PSM), may provide the available forms of P to the plants and hence a viable substitute to chemical phosphatic fertilizers (Khan et al., 2006). Of the various PSM(s) inhabiting rhizosphere, Phosphate-Solubilizing Bacteria (PSB) are considered as promising biofertilizers since they can supply plants with P from sources otherwise poorly available by various mechanisms (Fig. 5) (Khan et al., 2006). Though, PSB are commonly found in most soils (Wani et al., 2007c; Ahemad and Khan, 2010b), their establishment and performances are severely affected by environmental factors especially under stress conditions (Wani et al., 2007c; Ahemad and Khan, 2010g). However, the beneficial effects of the inoculation with PSB used alone (Poonguzhali et al., 2008; Chen et al., 2008; Ahemad and Khan, 2010b, f) or in combination with other rhizospheric microbes have been reported (Zaidi and Khan, 2005; Zaidi and Khan, 2006; Vikram and Hamzehzarghani, 2008).

Besides providing P to the plants, the PS bacteria also augment the growth of plants by stimulating the efficiency of BNF, enhancing the availability of other trace elements (such as iron, zinc) and by synthesizing important plant growth promoting substances (Ponnurungan and Gopi, 2006; Mittal et al., 2008) (Table 3) including siderophores (Vassilev et al., 2006; Wani et al., 2008), antibiotics (Fernando et al., 2006) and providing protection to plants against soil borne pathogens (biocontrol). Accordingly, these bacterial communities when used either singly (Chen et al., 2008) or as consortia, in combination with other rhizosphere microbes (Mishra et al., 2009) have shown a substantial improvement in crop productivity in different agro-ecosystems.

Siderophores: Iron-chelating molecules termed siderophores are generally less than 1000 molecular weight and are produced by many microorganisms. More than 500 different siderophores, mostly produced by Gram-positive and Gram-negative bacteria (Wani et al., 2007a; Ahemad and Khan, 2010a, b), have been described. Despite this great variety, most have a peptide backbone with several non-protein amino acid analogs including...
both modified and D-amino acids. In general, rhizosphere bacteria differs with respect to siderophore cross-utilizing abilities; some are proficient at using siderophores of the same genus (homologous siderophores) while others could utilize siderophores produced by other rhizospheric bacteria of different genera (heterologous siderophores) (Khan et al., 2009).

Siderophore production and utilization by rhizobacteria is of particular interest due to the dominant role of iron in the nitrogen fixation and assimilation process. The iron enzymes involved include nitrogenase, leghemoglobin, ferredoxin and hydrogenase with nitrogenase and leghemoglobin constituting up to 12 and 30% of total protein in the bacterial and infected plant cells, respectively (Verma and Long, 1983).

Siderophores chelate iron with high affinity (the calculated affinity constant being above 10^{30} M^{-1}). Siderophores are highly electronnegative and bind Fe (III), preferentially forming a hexacoordinated complex. The iron ligation groups have been tentatively classified into three main chemical types: hydroxamate (e.g., aerobactin and ferrichrome), catechol rings (e.g., enterobactin) and hydroxyxaid (e.g., pyochelin). Some siderophores contain more than one of these three iron-chelating groups (Stintzi et al., 2000).

In Gram-negative bacteria, the ferric-siderophore complex must cross the outer membrane and the cytoplasmic membrane before delivering iron within the cytoplasm. The ferric complexes are too large for passive diffusion or nonspecific transport across these membranes (Stintzi et al., 2000); ferric-siderophore uptake is both receptor and energy dependent. Translocation of iron through the bacterial outer membrane as the ferric-siderophore requires the formation of an energy transducing complex with the proteins TonB, ExbB and ExbD which couple the electrochemical gradient across the cytoplasmic membrane to a highly specific receptor and so promote transport of the iron complex across the outer membrane (Stintzi et al., 2000). Once in the periplasmic space, the ferric-siderophore binds to its cognate periplasmic binding protein and is then actively transported across the cytoplasmic membrane by an ATP-transporter system. Two mechanisms have been proposed (i) the usual siderophore iron delivery mechanism (Fig. 6): (a) ferric siderophore is bound to the protein receptor,
causing a conformational change in the protein (b) the ferric siderophore is pumped through the receptor into the periplasmic space and (c) on release of the ferric siderophore, the receptor protein returns to its original conformation and (ii) the siderophore shuttle iron delivery mechanism (Fig. 7): (a) with the iron-free siderophore initially bound to the receptor protein, a second, iron-loaded siderophore binds to the receptor (b) iron exchange between the two siderophores occurs (c) this iron exchange causes a conformational change and the iron complex of the originally iron-free siderophore enters the cytoplasm (d) on release of the ferric siderophore, the receptor protein returns to its original conformation, now with the originally iron-loaded siderophore bound to the receptor protein (Stintzi et al., 2000).

One of the suggested modes of growth promotion of nodulated legumes under field conditions is by microbial production of siderophores which facilitate the uptake of iron from the environment (Ahemad and Khan, 2010c, d). The effects of microbial siderophores on growth and development of plants are presented in Fig. 8. A nodulated legume has been found to have an increased demand for iron compared to that of a non-nodulated plant (Derylo and Skorupska, 1993). For example, Pseudomonas sp. strain 267 enhanced symbiotic N₂ fixation in clover under gnotobiotic conditions, produced fluorescent siderophores under low-iron conditions and secreted B group vitamins (Kozaczuk and Skorupska, 2001).

However, Tn5 insertion mutants of strain 267 defective in siderophore production did not differ from the wild-type in promoting the growth of clover (Medicago sativa) suggesting that the siderophore production had no effect on stimulating nodulation. In contrast, Gill et al. (1991) demonstrated that mutants of Rhizobium meliloti that were unable to produce siderophores were able to nodulate the plants but the efficiency of N₂ fixation was less compared to the wild-type, indicating the importance of iron in N₂ fixation. In a similar study, Kluvera ascorbata, a siderophore-producing PGPR was able to protect plants from heavy metal toxicity (Burd et al., 1998).
CONCLUSION

The discussion clearly demonstrated that PGPR adopt different mechanisms to promote the plant growth and these rhizobacteria due to versatile plant-beneficial traits are promising the environment-friendly tools for sustainable agriculture. Due to a great variation in soil ecology of different regions, no single PGPR can be used universally as a bio-inoculant. Hence, the next step should be to explore the rhizobacteria (with multiple plant growth promoting properties) which might flourish well in most of the geographical niches. In this context, the optimization of PGPR inoculums must be rigorously tested in the presence of diverse biotic and/or abiotic factors. In addition, to maintain the maximum viability and activities of PGPR, an appropriate carrier should be developed.

ACKNOWLEDGMENTS

Authors are thankful for the financial assistance from University Grants Commission (UGC), New Delhi.

REFERENCES

