Numerical Study of the Natural Ventilation in House: Cases of Three Rectangular Scale Models

1Augustin Memeledje, 2Maurice Djoman, 1Alhassane Fofana, 2Aboudramane Gbané and 1Aboubakar Sako

1Laboratoire de Physique de l’atmosphère et mécanique de fluides UFR-SSMT Université d’Abidjan Cocody, 22 BP 582 Abidjan 22, Côte d’Ivoire
2Laboratoire d’Energie Solaire, UFR-SSMT Université d’Abidjan Cocody, 22 BP 582 Abidjan 22, Côte d’Ivoire

Corresponding Author: Augustin Memeledje, 22 BP 195 Abidjan 22, Côte d’Ivoire Tel: (225) 22 48 38 38, 225 07 28 77 20

ABSTRACT
In a rectangular room of scale model, we have simulated the turbulent airflows in two dimensions. These simulations have aimed to determine dynamic and thermal fields with a view to do recommendations to realize the natural ventilation in a room to reach a sufficient thermal comfort. Three simulations have being performed in following order in the different configurations: C12, C13 and C23. The results of those have seemed to show difficulties to ventilate the room. These difficulties proceeded from the incapability to guide air at will. So, we have noticed that the level of velocity was feeble in central regions which were often occupied in a room.

Key words: Natural ventilation, numerical simulation, dynamic field, thermal field, extraction

INTRODUCTION
The thermal comfort in house dealt with in many studies (Ziskind et al., 2002; De Dear and Braer, 2002; Memeledje et al., 2006, 2010); however today, it often gives rise to an interest for reasons of economy energy and of productivity depending on the user’s health. In tropical areas, the thermal comfort is often obtained by air-conditioning apparatus. However, these last years, the dearness of energy encouraged or favoured different searches of natural ventilation in scale models (Da Graca et al., 2002) and buildings (Sacre et al., 1992; Sangkertadi, 1994). So, we tried to purpose, in scale model an approach to realize the ventilation. The realization of the comfort without air-conditioning is very worrying when interior ambiances of houses are very hot. This state is more felt in absence of airflow. In these works, our researched aim is not to study different energies balances, but only to try to apprehend airflows distributions in a room to reach natural ventilation when extraction is produced at the ceiling.

FLOW MODELLING
Mathematical modelling: In turbulent state, we study airflow in a rectangular room. This flow is due to density variations in volume forces and extraction forces at the ceiling. It is described in steady state, incompressible conditions without wells or substance sources or internal heat sources. For a physical property \(\phi \), in two-dimensional Cartesian representation, the conservation equations (Rodi, 1980), in unsteady state, are generally expressed as:
\[
\frac{\partial \rho \Phi}{\partial t} + \frac{\partial (\rho U)}{\partial x} + \frac{\partial (\rho V)}{\partial y} = \frac{\partial}{\partial x} \left(\Gamma^+ \frac{\partial \Phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\Gamma^+ \frac{\partial \Phi}{\partial y} \right) + S_x
\]

This generic form gives a system of different partial differential equations following results as:

- **Mass conservation equation:**
 \[
 \frac{\partial \rho}{\partial t} + \frac{\partial (\rho U)}{\partial x} + \frac{\partial (\rho V)}{\partial y} = 0
 \]

- **Impulse conservation equation in x:**
 \[
 \frac{\partial U}{\partial t} + \frac{\partial (UU)}{\partial x} + \frac{\partial (VU)}{\partial y} = \frac{\partial}{\partial x} \left((v + v_1) \frac{\partial U}{\partial x} \right) + \frac{\partial}{\partial y} \left((v + v_1) \frac{\partial U}{\partial y} \right) + \frac{1}{\rho} \frac{\partial P'}{\partial x}
 \]

- **Impulse conservation equation in y Eq. 4:**
 \[
 \frac{\partial V}{\partial t} + \frac{\partial (UV)}{\partial x} + \frac{\partial (VV)}{\partial y} = \frac{\partial}{\partial x} \left((v + v_1) \frac{\partial V}{\partial x} \right) + \frac{\partial}{\partial y} \left((v + v_1) \frac{\partial V}{\partial y} \right) + \frac{1}{\rho} \frac{\partial P'}{\partial y} + \xi \beta (T - T_0)
 \]

- **Enthalpy conservation equation:**
 \[
 \frac{\partial T}{\partial t} + \frac{\partial (UT)}{\partial x} + \frac{\partial (VT)}{\partial y} = \frac{\partial}{\partial x} \left((a + \frac{\nu}{\sigma_t}) \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left((a + \frac{\nu}{\sigma_t}) \frac{\partial T}{\partial y} \right)
 \]

- **Turbulent energy conservation equation:**
 \[
 \frac{\partial k}{\partial t} + \frac{\partial (kd)}{\partial x} + \frac{\partial (kd)}{\partial y} = \frac{\partial}{\partial x} \left((v + \nu) \frac{\partial k}{\partial x} \right) + \frac{\partial}{\partial y} \left((v + \nu) \frac{\partial k}{\partial y} \right) + P_t + G - \epsilon
 \]

where, production term \((P_t)\) is given by:
\[
P_t = \nu \left[\left(\frac{\partial U}{\partial x} \right)^2 + \left(\frac{\partial V}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} \right)^2 \right]
\]

Destruction-production term \((G)\) is calculated by the following Eq. 8:

- **Near of vertical wall:**
 \[
 G = \rho g \frac{\nu}{\sigma_t} \frac{\partial T}{\partial x}
 \]
Near of horizontal wall:

\[G = \beta g \frac{v_y}{\sigma_y} \frac{\partial T}{\partial y} \]

(8b)

Dissipative energy conservation Eq. 9:

\[\frac{\partial \varepsilon}{\partial t} + \frac{\partial (\varepsilon U)}{\partial x} + \frac{\partial (\varepsilon V)}{\partial y} = \frac{\partial}{\partial x} \left[\left(\frac{v_x}{\sigma_x} \frac{\partial \varepsilon}{\partial x} \right) + \frac{\varepsilon}{\sigma_x} \frac{\partial v_x}{\partial y} \right] + \frac{\partial}{\partial y} \left[\left(\frac{v_y}{\sigma_y} \frac{\partial \varepsilon}{\partial y} \right) + \frac{\varepsilon}{\sigma_y} \frac{\partial v_y}{\partial y} \right] + C_{1k} \frac{\varepsilon}{k} (P_{+} + C_{2k} G) - C_{1k} \frac{\varepsilon^2}{k} \]

(9)

where, \(c_{1k}, c_{2k}, \sigma_k, \sigma_k, \sigma_k, \sigma_k, \sigma_k \) and \(\sigma_k \) are turbulence constants.

For this study, the adopted constants are those of standard model: \(c_{1k} = 1.14, c_{2k} = 1.92, \sigma_k = 1, \sigma_k = 0.09, \sigma_k = 1, \sigma_k = 1.3, \sigma_k = 1.3 \).

Numerical modelling: The transport diffusion Eq. 1 is integrated by numerical technique. The discretization was performed using the mesh method described by Patankar (1980). The method uses three shifted meshes for the variable described in dynamic and thermal fields (Fig. 1). The scalar variables (P, T, k, c) are determined for points (p) located in the principal mesh (1), where E, W, N, S are respectively the cardinal locations East, West, North, South. So, the integration on the principal control volume gives this expression:

\[A_p \Phi_p = A_{pe} \Phi_{pe} + A_{ew} \Phi_{ew} + A_{ns} \Phi_{ns} + A_{ns} \Phi_{ns} + B_{pe} \]

(10)

As for the horizontal and vertical components U and V of the velocity, they are respectively determined in the two secondary meshes Eq. 2 and 3, where the orientations are given by e and n; secondary mesh Eq. 2 centred on (e) gives horizontal velocity \(U_e \):

Fig. 1: Representation of 3 control volumes
\[A_i U_i = A_{\text{e}} U_{\text{e}} + A_{\text{n}} U_{\text{n}} + A_{\text{s}} U_{\text{s}} + A_{\text{w}} U_{\text{w}} + B_u \] \hspace{1cm} \text{(11)}

where:

\[B_u = B_{\text{u}} + d_n (P_\text{r} - P_\text{h}) \] \hspace{1cm} \text{(12)}

secondary mesh Eq. 3 centred on (n) determines vertical velocity \(V_n \):

\[A_n V_n = A_{\text{e}} V_{\text{e}} + A_{\text{n}} V_{\text{n}} + A_{\text{s}} V_{\text{s}} + A_{\text{w}} V_{\text{w}} + B_v \] \hspace{1cm} \text{(13)}

where:

\[B_v = B_{\text{n}} + d_m (P_\text{f} - P_\text{m}) \] \hspace{1cm} \text{(14)}

du and dv are the coupling coefficient between velocity and pressure fields by the Eq. 12 and 14. The coefficients \(A \) in the correlations Eq. 10, 11 and 13 are calculated with the help neighbouring cardinal points (E, W, N and S) round unknowns U, V, P, T, k and \(\epsilon \).

Afterwards, these linear integrated equations on respective meshes lead to a system of finite difference equations expressed as:

\[A_i \Phi_i = \sum A_{ij} \Phi_j + B_{si} \] \hspace{1cm} \text{(15)}

\[B_{si} = S_{si} \left(\frac{\Delta x \Delta y}{\Delta t} \right) \] \hspace{1cm} \text{(16)}

where, \(B_{si} \) represents sources terms of \(\Phi_i \), the coefficients \(A_i \) and \(A_{ij} \) are respectively calculated by the following formulas according to the type of variable (scalar or vector):

\[A_i = \rho \frac{\Delta x \Delta y}{\Delta t} + F_{ci} + \sum A_{ij} \] \hspace{1cm} \text{(17)}

\[A_{ij} = D_j A \left(|P_{ji}| \right) + \text{Max}(\pm F_j, 0) \] \hspace{1cm} \text{(18)}

where, \(A(|P_{ji}|) \) is a function of Peclet number (Pe) which is the ratio between convection and local diffusion. It depends on the adopted scheme. In this calculation, we have chosen the hybrid scheme. This scheme used the following relation:

\[A(|P_{ji}|) = \text{Max}(0.1 - 0.5 \ |P_{ji}|) \]

where, \(Pe_{\leq 2} \) and \(Pe_{>2} \). Moreover, \(F_j \) takes the sign (-) when a convective flux is going out a control volume and (+) when it is entering it. \(F_{ci} \) is the mass default of the mesh around a node i; for example, for the principal grid (E, W, N, S) around a point (p):

\[F_{cp} = \left(\rho U_x \Delta y_p - \rho U_w \Delta y_p \right) + \left(\rho V_x \Delta x_p - \rho V_s \Delta x_p \right) \] \hspace{1cm} \text{(19)}
Table 1: Boundary conditions

<table>
<thead>
<tr>
<th></th>
<th>Lateral wall South</th>
<th>Lateral wall North</th>
<th>Floor</th>
<th>Ceiling</th>
<th>Admission orifice</th>
<th>Extraction orifice</th>
<th>Symmetry conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>U (m sec$^{-1}$)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>U known by continuity</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V (m sec$^{-1}$)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$V = 0.45$</td>
<td>$\frac{\partial V}{\partial n} = 0$</td>
</tr>
<tr>
<td>P'</td>
<td>$\frac{\partial P'}{\partial n} = 0$</td>
<td></td>
</tr>
<tr>
<td>T(°C)</td>
<td>$T_{w} = 29.5$</td>
<td>$T_{w} = 29.5$</td>
<td>$\frac{\partial T}{\partial n} = 0$</td>
<td>$\frac{\partial T}{\partial n} = 0$</td>
<td>$T_{w} = 24$</td>
<td>$\frac{\partial T}{\partial n} \neq 0$</td>
<td>$\frac{\partial T}{\partial n} \neq 0$</td>
</tr>
<tr>
<td>k</td>
<td>$k = 0$</td>
<td>$k = 0$</td>
<td>$k = 0$</td>
<td>$k = 0$</td>
<td>$\frac{\partial k}{\partial n} = 0$</td>
<td>$\frac{\partial k}{\partial n} = 0$</td>
<td>$\frac{\partial k}{\partial n} = 0$</td>
</tr>
<tr>
<td>e</td>
<td>$\frac{\partial e}{\partial n} = 0$</td>
<td></td>
</tr>
</tbody>
</table>

Note that for closing the system of five equations with five unknowns.

One supplementary equation has been added to separate pressure and velocity fields. This equation is linearly expressed as:

$$A_{pp}P'_p = A_{ep}P'_e + A_{mp}P'_m + A_{sp}P'_s + A_{pp}P'_p + B_{pp}$$ (20)

where, P' is the variable correction of pressure; the new estimated value of pressure is $P+P'$. This last value is estimated until that convergence is reached. The separation (pressure-velocity) is obtained by the algorithm SIMPLE (Semi-Implicit Method for Pressure Linked Equation). To solve this equation, the Alternating Direction Implicit (ADI) method is used on the representation with three successive nodes (Dainese, 1994; Estivalez, 1989). Consequently, by the Eq. 15, we have obtained a system of 6 non linear equations with Eq. 6 unknowns (U, V, P, T, k, e). This studied field has been meshed into a regular grid with (60x60) measure points.

Boundary conditions: The boundary conditions are given in Table 1 for non symmetrical and symmetrical studies. This Table presents Dirichlet and Newman conditions according to the type of studied configurations. Three configurations have been defined:

- **C12:** One admission orifice (in lateral wall) and two extraction orifices (in ceiling) (non symmetrical study)
- **C13:** One admission orifice (in lateral wall) and three extraction orifices (in ceiling) (non symmetrical study)
- **C23:** Two admission orifices (in lateral wall) and three extraction orifices (in ceiling) (symmetrical study)

Moreover, for a calculation in regular grid and to avoid solving neighbouring wall fluid layers, wall functions were adopted (Brunet, 1989) such as:

For $0 < Y^* \leq 11.5$, \hspace{1cm} $U^* = Y^*$ \hspace{1cm} where, $Y^* = \frac{U}{v}$

141
For $11.5 < Y^* \leq 100$,
\[U^* = \frac{1}{\kappa} \ln C^*_y Y^* \]

where, Y^* and U^* are respectively dimensionless variable and velocity.
For $30 < Y^*_o \leq 100$, we adopted:

- **Turbulent energy:**
 \[k_0 = \frac{U^*_w^2}{\sqrt{C^*_v}} \]

- **Dissipative energy:**
 \[\varepsilon_0 = \frac{U^*_w^2}{\kappa Y^*_o} \]

where, U_w is the friction velocity and κ is Von Karman constant, $\kappa=0.41$.

VALIDATION AND TEST PROCEDURE

This validation has been done in a symmetrical model (Memeledje, 1998, 2007) named C22 configuration (2 admission orifices and 2 extraction orifices). Here, we compared two dynamic profiles [theoretical (numerical simulation results) and experimental] between two distinct regions as shown on (Fig. 2); we also compared two thermal profiles:

- The Lower Region (LR), defined by position 4.8 cm
- The Higher Region (HR), characterised by position 84 cm

We have chosen these regions to avoid the very heavy instabilities that we have precisely noticed at the altitude 54 cm during the different measurements. These have respectively been performed by a fire file anemometer and a thermometric system. Last system, provided with a HP3421A scanner at 30 channels, gives different temperatures to ambience. It uses K thermocouple (K defines chromium-nickel and aluminium-nickel).

Each system is connected to an own microcomputer and makes measures at a distance in using cables.

After the calibration of these two systems, we have obtained following precisions:

- In a range of velocities (0 to 120 cm sec$^{-1}$), the absolute incertitude doesn’t reaches 2 cm sec$^{-1}$
- In a range of temperatures (0 to 60°C), this incertitude doesn’t exceed 0.3 K

The retained conditions for this validation are specified by mechanical extraction and room temperature condition; at the ceiling, mechanical extraction conditions were used:

- Mass rate flow: $m^*_m = 0.089$ kg sec$^{-1}$
- extraction velocity: $V^*_m = 0.41$ m sec$^{-1}$
- Reynolds number in extraction orifice: $Re = 5466$, this last value indicates that flow is turbulent
Fig. 2: Location of measure points
Room temperature conditions are characterized by two controlled walls (South and North wall) and two walls in natural evolution (ceiling and floor). The measurements performed respectively, in the lower regions (identified with letter L) and in the upper regions (with letter H) led to the following temperatures and their variations:

- **South wall temperatures:**
 \[T_{P_L} = 29.8^\circ C, \quad T_{P_H} = 29.4^\circ C, \quad |T_{P_L} - T_{P_H}| = 0.4^\circ C \]

- **North wall temperatures:**
 \[T_{P_L} = 32.1^\circ C, \quad T_{P_H} = 32.8^\circ C, \quad |T_{P_L} - T_{P_H}| = 0.7^\circ C \]

- **Ceiling temperatures:**
 \[T_{c_L} = 22.4^\circ C, \quad T_{c_H} = 22.0^\circ C, \quad |T_{c_L} - T_{c_H}| = 0.4^\circ C \]

- **Floor temperatures:**
 \[T_{f_L} = 21.7^\circ C, \quad T_{f_H} = 21.0^\circ C, \quad |T_{f_L} - T_{f_H}| = 0.7^\circ C \]

- **Room central region (air temperature):**
 \[T_{a_L} = 23.2^\circ C, \quad T_{a_H} = 21.0^\circ C, \quad |T_{a_L} - T_{a_H}| = 2.2^\circ C \]

It can be observed that the temperature variations between lower and upper regions are very small for walls excepted air temperature variation that reaches 2.2°C. We can suppose that this variation cannot modify appreciably different velocity fields when study is done by mechanical extraction.

In lower regions \((Y = 4.8 \text{ cm, Fig. 3})\), the temperature variation is \(0.5^\circ C\) between experimental and theoretical results; in upper regions \((Y = 84 \text{ cm, Fig. 4})\), experimental and theoretical graphs

![Graph showing profiles of horizontal temperatures in Lower Region (LR)](image)

Fig. 3: Profiles of horizontal temperatures in Lower Region (LR)
are almost confounded. The velocity distributions (theory and experiment) have nearly the same graph in lower and upper regions. In lower regions (Y = 4.8 cm, Fig. 5), the velocity variation between theory and experiment is important, it almost reaches 10 cm sec$^{-1}$ for x = 5 cm. In upper regions (Y = 84 cm, Fig. 6), this variation doesn't exceed to 10 cm sec$^{-1}$ (maximum value). Main
reasons of velocity variations can be caused by the heavy fluctuations of turbulent flow and the quality of measurement by a fire file anemometer. This apparatus remains enough imprecise for low velocities.

Consequently, all the wall temperatures are considered to be roughly constant, with an error about 1°C. The results of this validation are, respectively given on Fig. 3 and 5 for the lower regions and Fig. 6 and 4 for the upper regions. On the whole, the results show a fairly good agreement between theory and experiment in view of the turbulent state of airflow.

NUMERICAL RESULTS

After the software validation, the three configurations were scrutinized. To this end, a set of boundary conditions were chosen (Table 1), including the entry temperature (T_e), the lateral walls temperature (T_m and T_p) and the room air temperature (T_{air}); then the characteristic flow parameters and the heat transfer in the room were calculated. Moreover, for a temperature difference between lateral wall and air $\Delta T_p = 1.5°C$, the following non dimensional numbers were considered:

- Rayleigh cavity number $Ra_{avg} = 2.10^8$

 for C12,

 - Reynolds cavity number $Re_{avg} = 6882$
 - Richardson cavity number $Ri_{avg} = 6$

 for C13 and C23,

 - Reynolds cavity number $Re_{avg} = 8437$
 - Richardson cavity number $Ri_{avg} = 4$

These numbers (Re_{avg}) indicate that the flow is turbulent and predominated by forced convection. As for the Nusselt cavity number $Nu_{avg} = 78$, it shows that convective transfers are more important than thermal conduction in the cavity.

For the different defined configurations, the numerical simulations were carried out that allowed to obtain the streamlines, the isovelocitys and the isotherms; meanwhile the results of the C12 and C23 configurations are given by Fig. 7 and 8 because the C13 results are fairly identical with those of C12, excepted to the extraction orifice located the middle region of the ceiling.

For the C12 configuration, the streamlines (Fig. 7a) shows two stretched vortex along the vertical Y axis; they are located near the vertical south and north walls. The south vortex is smaller than the north one which is stretched all along the wall. The isovelocitys (Fig. 7b) show that the high velocities are located near the walls. Far away from the walls, in the central zone, they become low and vary from 10 to 20 cm sec$^{-1}$. The isotherms contour (Fig. 7c) indicates heavy thermal variations near the walls especially in soud wall, in the ceiling and the floor. The north wall is not well cooled. It can be seen that the central room region does not undergo sensitive thermal
Fig. 7: Continued
Fig. 7: (a) Streamlines C12 simulation, (b) isovelocity C12 simulation and (c) isotherms C12 simulation

modifications; this region has a uniform temperature (28°C). Consequently, the velocity levels of the central region are low, which does not create any thermal comfort. Then a new configuration (C13 configuration) was scrutinized. This configuration is adopted to lower the pressure in the ceiling middle, so that to increase the velocity levels in the central room regions and to cool the North wall.

For the same extraction velocity (0.45 m sec⁻¹) by ceiling orifice, C13 configuration shows that the dynamical and thermal fields are almost similar to those of C12 configuration.

Noticing that the neighbour regions of the north wall of C12 and C13 configurations do not undergo heavy thermal variations, the C23 configuration (Fig. 8) was simulated. In symmetrical study, it is noticed a stretched vortex along the vertical Y axis like in the configurations C12 and C13. In the same way, the heavy velocity variations are located near the walls, especially at the south wall and the ceiling (Fig. 8a). The central region has low velocities (Fig. 8b) which vary from 10 to 18 cm sec⁻¹ approximately. The thermal field (Fig. 8c) shows a heavy thermal variation near by the south wall, the admission orifice and a low thermal variation near by the ceiling and the floor. A vertical thermal stratification is more sensitive in the central region. Moreover, the velocity distribution is more uniform in the central region than in the C12 configuration. Here the thermal field shows a heavy thermal variation near walls. The central regions have a uniform temperature (28.1°C). In this C23 configuration as previously observed for all the other configurations, the admission air temperature (24°C) does not especially influence the central regions.
Fig. 8: Continued
Fig. 8: Continued
Fig. 8: (a) Streamlines C23 simulation, (b) isovelocity C23 simulation and (c) isotherms C23 simulation
CONCLUSIONS

The study undertaken in this paper by means of different simulations showed that if the orifices are not well positioned, the central region is not well fed by air flows. When air flows exist in this region, their velocities are low. None of the three configurations studied with the admission air temperature equal to 24°C at the bottom, allowed to create a sensitive thermal modification in the central region. The main thermal modifications are only observed all along the vertical wall. So this wall is the main thermal source of the room, its heat transfer can be used to stabilize enough the central region temperature during a free evolution. Hence, if this wall is kept at a constant temperature, convection effects can help to drop its temperature and so to reduce the thermal gain of the room. From the analysis of the three configurations, it can be stated that a cool air admission by the floor could be a solution to increase the velocity effects in the central regions.

NOMENCLATURE

\(\phi \) : Physical property
\(\rho \) : Specific density of air
\(\beta \) : Expansion coefficient
\(g \) : gravitational acceleration
\(U \) : Horizontal component of velocity
\(V \) : Vertical component of velocity
\(\Gamma_4 \) : Diffusion coefficient of \(\phi \)
\(S_\phi \) : Source term of \(\phi \)
\(X \) : Horizontal axis or (x)
\(Y \) : Vertical axis or (y)
\(t \) : Time variable
\(\mu \) : Molecular viscosity
\(\mu_t \) : Turbulent viscosity
\(\mu_e \) : Effective viscosity \(\mu_e = \mu + \mu_t \)
\(\mu_s \) : Specific molecular viscosity \(\mu_s/\rho \)
\(\mu_t \) : Specific turbulent viscosity \(\nu_t/\rho \)
\(T \) : Temperature variable
\(k \) : Turbulent kinetic energy
\(\epsilon \) : Dissipative energy
\(\sigma_r \) : Turbulence constant for destruction
\(\sigma_k \) : Turbulence constant for production term \(k \)
\(T_0 \) : Reference temperature
\(c_p \) : Specific heat
\(\kappa \) : Molecular thermal diffusivity \(\kappa \)
\(\lambda \) : Molecular thermal conductivity \(\lambda = p/\rho + 3/2 k \)
\(p \) : Pressure variable
\(p^* \) : Total pressure
\(P_k \) : Production term
\(G \) : Destruction production term
\(D_j \) : Local diffusion on \(j \)
\(F_i \) : Local convection on \(j \)
\(P_j \) : Local Peclet number on \(j \)
\(U_* \) : Friction velocity
\(U^* \) : Dimensionless velocity \((U^* = U/U_0) \)
\(Y^* \) : Dimensionless variable \((Y^* = U_y/N) \)
\(\kappa \) : Von Karman constant \((\kappa = 0.41) \)
\(C_s \) : Turbulent constant for a smooth wall \((C_s = 9.0) \)
\(\Delta T_{ps} \) : Temperature variation between wall and air \((\Delta T_{ps} = T_p - T_s) \)
\(S_{ch} \) : Surface of a room section \((S_{ch} = L^2) \)
\(P_{ch} \) : Perimeter of a room section \((P_{ch} = 4L) \)
\(Gr_{cav} \) : Grashoff number of cavity
\(Pr \) : Molecular Prandtl number
\(D_h \) : Hydraulic diameter of cavity
\(Ra_{cav} \) : Rayleigh number of cavity \((Ra_{cav} = Gr_{cav}/Pr) \)
\(Re_{cav} \) : Reynolds number of cavity
\(Ri_{cav} \) : Richardson number of cavity
\(h_{cav} \) : Convection coefficient
\(Nu_{cav} \) : Nusselt number of cavity
\(T_{plf} \) : Temperature for measures in lower regions
\(T_{plf} \) : Temperature for measures in upper regions

REFERENCES
Rodi, W., 1980. Turbulence models and their application in hydraulics, a state of the art review. The IAHR Section on Fundamentals of Division the Experimental and Mathematical Fluids Dynamics.

