A Heart Rate Control System Based on a Microcontroller

Mohamed Fezari, Mounir Bousbia-Salah and Mouldi Bedda
Department of Electronics, Faculty of Engineering, Laboratory of Automatic and Signals- Annaba (LASA), Badji Mokhtar University, Annaba, BP.12 Annaba, 23000, Algeria

Abstract: This study describes the development of a heart rate control system based on a microcontroller. It offers the advantage of portability over tape-based recording systems. The study explains how a single-chip microcontroller can be used to analyse heart beat rate signals in real-time. In addition, it allows doctors to get the heart beat rate file of the patient by e-mail every twenty four hours. It can also be used to control patients or athletic person over a long period. The system reads, stores and analyses the heart beat rate signals repetitively in real-time. The hardware and software design are oriented towards a single-chip microcontroller-based system, hence minimizing the size. The important feature of this study is the use of the zero crossing algorithm to compute heart rate. It then processes on real-time the information to determine some heart diseases.

Key words: Microsystems, microcontroller, real-time, heart rate control, zero crossing algorithm

INTRODUCTION

Early diagnosis for heart disease is typically based on tape recording of Electrocardiogram (ECG) signal which is then studied and analysed using a microcomputer. This study however, presents the design and implementation of a compact microcontroller-based portable system used for control of heart rate on real time.

Diagnosis of heart disease using ECG signals may be achieved by either correlating the pattern of the electrocardiogram (ECG) signal with a typical healthy signal, characterizing the typical ECG signal using basic logical decisions, or more complicated algorithms to process in depth the heart disease. The first approach requires complicated mathematical analysis to obtain the required diagnosis, while the second one involves only simple analysis in most cases.

A long-term study of ECG signal during everyday activity is required to obtain a broad spectrum of heart disease categories based on heart rate changing. Many techniques have been implemented, such as the use of a minicomputer in intensive care to observe patients, or microprocessor-based card in portable system. In this case, the disadvantage is the restriction of patient movement. A wire-free system connected to a hospital minicomputer allows patient mobility within restricted area in the hospital. Tape systems for recording ECG signals are bulky, heavy and prone to mechanical failure. In addition, these systems need large batteries.

In order to reduce the size, weight and power consumption of the system, a single chip RISC (Reduced Instruction Set Computer) architecture microcontroller was chosen. To keep the patient free of movement at home, a data transmission protocol using e-mail is implemented in the system.

Aspects that have been carefully considered are:

- The logic and arithmetic involved in the data acquisition and the analysis of the ECG signals.
- The nature of the information to be stored.
- Most single-chip microcontrollers are characterized by the limitations of the arithmetic instruction.

It is therefore advantageous to use a simple mathematical analysis of the ECG signal. Regarding memory, representation of the complete ECG signal by an equivalent diagnostic word appreciably reduces the memory size required. Figure 1 shows the P, Q, R, S and T waves of an ECG pulse. The method in storing information related to the ECG signal is considered in this study. In this method, only the time and type of variation compared to the reference heart rate are registered. At the same time, the rate is processed to detect any disease, such as, bradycardia or tachycardia either for adult or children. The system connected to the parallel port of a microcomputer is able to transmit the information or the collected data to the cardiologist by E-mail every end of the day. Further on, provision for storing a number of ECG
signals assists the cardiologist to formulate his personal analysis and to be more confident of system performance.

HARDWARE SYSTEM

The hardware design is based on an embedded system implementation using the PIC16F876 microcontroller from microchip[9]. This was used to verify the various ideas and the requirements for the final system design. The block diagram of the hardware system is shown in Fig. 2.

Heart rate sensors: Even if they are not called ECG-sensors, ECG-similar sensors exist. They use less number xof measuring points on the body but they still give heart rate according to the same principles as ECG. The market leader is the Finnish company ‘Polar Electro OY’. Their heart rate monitoring system consists of a belt worn around the chest and a receiving unit[11,12].

The pre-processing: Removal of the undesirable noise requires filtering. Noise can be filtered through the use of analogue circuitry or digital signal processing. The weak nature of the ECG signal and the noise affecting it, requires that a range of filters are implemented.

The following techniques can be used to improve the reduction of noise:

- The SNR may be achieved on the basis of different statistical properties of signal and noise. The energy mean of noise is zero compared to ECG signal which has energy mean greater than zero.
- Twisted-pair wiring use for the cable between sensors and processing system.

The input unit Fig. 3 consists of a high frequency filter, a differential-type preamplifier, a 50 Hz notch filter, a low-pass filter a variable gain control.

Fig 1: ECG Waveform.

Fig 2: Block diagram of the system.

Fig 3: Input unit.

ECG signal are picked up by three electrodes and are fed to the high frequency filter to limit noise from electrosurgical equipment. The preamplifier is protected from over voltage by diodes and is a differential type with CMRR better than 60 dB. This is achieved by a matching filter and the use of close-tolerance resistors in a dual-in-line package. Both high frequency filter and preamplifier are screened against high-frequency interference.

The signal is passed through an active twin-T 50 Hz notch filter to eliminate the mains hum frequency. It is also passed through a second-order low-pass filter and variable gain amplifier controlled by the microcontroller to obtain a normalized output. The frequency response for the amplifier section is 0.3-35 Hz at -3 dB, which is capable of eliminating any muscle artefacts caused by the patient moving[9].

The Microcontroller block: A Microchip microcontroller PIC16F876 is used to collect and process data and then stores it in a serial EEPROM. This microcontroller had been used before at the laboratory and gave good results.

The PIC16F876 is an 8k instructions program EEPROM, 256 bytes data references EEPROM, 368 bytes
of RAM, three timers a 10-bit A/D converter microcontroller. It has a RISC architecture and can use oscillators for frequency up to 20 MHz. Its power consumption is about 25 mW (at 4 MHz), thus it is ideal to be used as an embedded system.

The ECG signal is fed to the A/D converter within the PIC16F876. The internal timer is used to emulate real-time clock. In this case, the ECG signal is processed, if six consecutive zero crossing were detected, then the process increments a register.

Memory requirements are 1k of program memory for storing the system operation program 256 bytes of data EEPROM for storing up to 80 different heart diagnosis conditions. Only three bytes are required for each diagnosis (two bytes for the time and one byte for the heart condition). The number of samples of ECG signals stored depends on the available memory.

Data storage and display: The 24C256 serial EEPROM (which has eight kbytes capacity is used to store up to eight ECG signals, sampled as described above). At each variation within the number of heart beats in a minute, three bytes representing the new number and time corresponding are stored in the EEPROM. The output unit consists of a set of LED to indicate some diseases such as bradycardia and tachycardia. It also contains a buzzer to prevent the patient from detected problem and time to transfert data by e-mail.

In circuit serial transfert (ICST): To transfert data from EEPROM to PC, an easy in circuit serial transfer based on I2C protocol was developed. This circuit has two lines data transfert. The SCL and SDA lines from EEPROM are buffered with an integrated circuit 74LS07, then connected to the parallel port via Db-25 male connector. In order to transfer data 'ECG file' to the doctor, the patient or user needs to connect the system to the PC parallel port. Afterwards, he should activate a PC program that reads the data EEPROM and then stores the data bytes on an ECG-file. This will be transmitted via e-mail to the patient doctor. The final configuration of the system is shown in Figure 4.

SOFTWARE SYSTEM

The software is based on two parts design. One for getting and processing ECG signal which is implemented within the PIC16F876. The other one, is a Graphic Unit Interface easy to use by the patient. It is developed by using the Delphy language under Windows as operating system.

![Figure 4: Configuration of the system.](image)

Microcontroller Software: In this case, the method consists of computing a cardiovascular rate of the person each minute. A pre-processing step is needed to perform an amplification of the signal and a hardware filtering to eliminate noise. Many algorithms had been investigated to choose the best fit method for the microcontroller. The QRS pulse has higher energy and a heart pulse can be detected within five to six zero crossing of the signal as shown in Fig. 5. The rate counter, representing the number of pulses during 1 min, is incremented at each detection of a QRS pulse. It is then compared with two references representing bradycardia and tachycardia for adult or children. These referenced values were taken by statistical computation. The adult normal heart rate is in the range of 70 and 90 beats, while that of an enfant is in the range of 100 and 170 beats per minute at rest. If the heart rate counter is different from references then a LED indicator is lightened and an audio signal is generated. After a minute, the rate count is stored in the external EEPROM, if it is different from the previous count. This is followed by an internal clock time which should be synchronized with real-time clock. Thus, at every sensitive variation of the pulse rate, three bytes would be stored. These bytes represent the rate count, the hour and the minute of the internal clock.

PC software: As aforementioned, a Graphic Unit Interface easy to use by the patient, using Delphy language under Windows as operating system has been developed. The main menu of the application provides the user with acquisition, display and transfert.

In the acquisition function, the ICST circuit should be connected to the parallel port of the PC and the process of reading the EEPROM with saving data in a file is done. On the other hand, the display function shows to the user the contents of the EEPROM in hexadecimal mode. It also draws a graph representing the variations of the ECG.
In this system, the Microswitch (SW) is connected to the Ground (GND) for adult patient and to logic '1' (Vcc) for children. By reading the microswitch position, the system loads the corresponding references such as normal heart beat rate, tachycardia and bradycardia rate.

Implementation of the system on a single-chip microcontroller reduces the overall weight and power consumption of the hardware required in the measurement, diagnosis and storage of ECG signals. In addition, this system is quite reliable compared with magnetic recording system. This design may also measure other human health parameters such as temperature blood pressure.

DISCUSSION

In this paper, the implementation of an embedded system based on a microcontroller for real-time analysis of ECG signals has been investigated. The system has been tested successfully on simulated ECG signals for different heart diseases. In this method, a logical approach has minimized overall memory size by storing only three bytes for each heart rate variation. Hence the overall diagnosis time and the amount of data handled is also minimized. The time taken for the state of any heart condition to be assessed is the time to record two successive diagnosis bytes.

The real-time decision is taken to inform the patient on his heart rhythmic conditions. It should be noted that this system can be ported either by patient or sport-person. The programmable methodology employed in the design also allows others biomedical signals, such as breathing rate and patient movements to be transmitted.

CONCLUSIONS

A new medical wearable device has been developed as part of a study targeted to heart rate control by e-mail. Final goals of this paper are reducing the hospitalisation and assistance costs. In addition, patients and families quality of life are increased. Furthermore, we believe that elderly people as well, may benefit from this system.

ACKNOWLEDGMENTS

We are grateful to the laboratory of automatic and signals (L.A.S.A.) at Annaba university for its contribution in the development of this work.

REFERENCES

