Asian Journal of Information Technology 5(5) : 518-521, 2006
© Medwell Online, 2006

Real-time Systems Course in Undergraduate Computer
Science/Software Engineering Programs

Imran Anwar Ujan and Lubna Mustafa
Institute of Information Technology, University of Sindh, Jamshoro, Sindh, Pakistan

Abstract: Interactions with industry hiring new software engineers from undergraduate computer science and
engineering programs show, case after case, that universities do not pay enough attention to practical aspects
of software development. Another well-known deficiency of the undergraduate programs is mn the area of time-
critical, reactive programming. The present study describes a senior course in a computer science
undergraduate program designed to address some of the above problems. The real-time course provides the
students not only with the basic concepts of real-time programming, but also provides a velucle for the
development of small class projects which address methods, tools and the critical aspects of a modern software
development life cycle. The experience with teaching the course may serve as a model for similar offerings in
other computer science, computer engineering and software engineering college programs. The paper describes
lessons learned and future plans. The critical observation we submit in this paper 1s that the development of
areal-time system 1s an exercise in software engineering. It 1s widely known that real-time software developers
are very often self-taught. They represent discipline varying from electrical engineering to nuclear physics.
They are frequently brilliant computer hackers, real experts in low level programming and operating system
details and wizards of non-standard device mterfacing. Too often, however, they do not follow the
methodology and established paradigm of the software engineering discipline. Historically, the real-time,
embedded systems were small enough for a single developer to worl on the entire application. This is not the
case in the modern industrial world, where various subsystems of a large time-critical system need to be
coupled and synchronized. The paper describes the status of real-time component i the undergraduate
computer science/engineering curriculum and comments on the software engineering aspects of the course
offering.

Key words: Real-time system, Software Enginreeing,

PLACEOF REAL-TIME SYSTEMS IN THE
UNDERGRADUATE CURRICULUM real-time layers [ZaleS4]:

In ACMIEEE-CS “Computing Curricula » System specification and design

system knowledge umt must mnclude elements of all four

19917 [Tuck91], the computer discipline 1s divided mto
nine subject areas. Each subject area, in turn, is divided
into several knowledge units, further subdivided into
lecture topics. The topics related to real-time systems are
treated marginally as a knowledge umt within the
operating systems subject area. In the practical
implementation most of the programs consider real-time
systems as an equivalent of operating systems (and
justifiably so, considering the theoretical underpinning
and the basic concepts of concurrency, task scheduling,
interprocess communication, etc.). In some electronics,
control and computer engineering programs a real-time
course 18 treated as equivalent to an interfacing class,
discussing non-standard input/output, device drivers and
simple computer based control applications.

A complete and comprehensive picture of real-time

» Host computer implementation

+ Downloading and cross-testing on target with real-
time kernel

» Testing on independent target with external
hardware connections.

The specification and design layer describes the
mmitial software development life cycle phases
commencing with the requirements collection and
progressing through the early design. The implementation
layer takes the next step through language constructs,
detailed design and testing. The kemel layer introduces
specific features of real-time kernels and practical
implementation of the system within the hard real-time
constraints. The hardware architecture layer gets to the
hardware level, including downloading to the target

Corresponding Author:
Mustafa

Engr.Imran Institute of Information Technology,University of Sindh,Jamshoro,Sindh, Pakistan. Mrs.Lubna
518

Asian J. Inform. Tech., 5(5) : 518-321, 2006

systems, debugging and analyzing timing effectiveness
of the system.

Not too many computer sclence/engineering
programs can provide a course (or a sequence of courses)
covering all these aspects. The most important reason is
lack of necessary resources. To cover and explore the
material properly it is required to have a well-equipped
laboratory with elements of the four above-mentioned
real-time layers. Another important obstacle is lack of
manpower. Real-time systems require unique faculty
multi-disciplinary expertise covering elements of software
engineering, computer science, computer engmeering and
often lacks background in the other, producing a one-
sided curriculum biased toward either computer sci.
(operating system) or electrical engineering (interfacing
and control 1ssues). The solution 18 to promote
interdisciplinary co-operation and encourage faculty to
cross-teach outside their native departments.

We submit here that the basic tenet of a real-time
system class, mn a computer science/engineering program,
is the development of interactive and time-critical
software. Assuming this approach the real-time class must
rely on the disciplme of software engineering and
discuss the critical elements of the software development
life-cycle, concentrating on elements critical in real-time
applications. Keeping this as the starting point we
developed an undergraduate course structure to be used
as an example offermg in the real-time knowledge umt 111

SOFTWARE ENGINEERING FOR REAL-TIME
SYSTEMS

There is a consensus that the software engineering
discipline 18 required in development of any software,
regardless of the application The 1ssues of
maintamnability, expandability and reliability are of primary
importance. These issues are particularly important in
development of time-critical and reactive software. Such
real-time software 1s used often in safety-critical
applications where the margin of errors is really narrow.
Therefore, it 18 critical to indoctrinate future software
developers with the importance of using good software
engmeering;: starting from a requirement and specification
document, through design, implementation, testing and
maintenance.

Real-time system development has its particularities
and there 1s room for some rapid prototyping and low-
level umt testing before the actual design takes place.
Lots of practitioners admit that real-time software
development is a place of both: an orderly top-down
design as well as occasional elements of bottom-up
prototyping and implementation of low-level hardware

519

specific interface details. Such an approach is often
termed “sandwich development”.

The undergraduate computer science curriculum™
places emphasis on software engmeering. The
students begin with a three-course sequence (an
introduction to programming and computer sci. an
introduction to data structures, a course m advanced data
structures and algorithms) that uses the Ada
programming language and emphasizes principles of
software engineering (separation of specification and
implementation, modular design, information hiding,
reusability, design for mamtenance, etc). In the freshman
year, they take two computer organization courses
(covering the fundamentals of digital logic, computer
orgamization, assembly language and interfacing). In the
semor Real-time class, Ada tasking allows for an easy
implementation of concurrency and interprocess
communication on the language level. Tt is critical that
future mdustrial application system developers have
hands-on experience not only with the basic Ada syntax,
but also with tasking, operating systems interactions and

low-level programming

REAL-TIME COURSE IMPLEMENTATION

The objective of the real-time systems senior
undergraduate course, offered for the computer science
majors, 1s to have students:

Understand the concepts of real-time process and
comntrol

Understand the role of the computer as a real-time
machine

Represent a real-time system using established
software engineering methodologies

Understand the concepts of multitasking and
intertask communication

Understand issues of time-critical computing

Be familiar with a real-tuime operating system and
application software

Have hands-on experience with development of time-
critical real-time systems

Use Ada as the unplementation language
Appreciate the role of real-time systems
aviation/aerospace applications

n

As part of the class requirements students are
developing significant elements of the software life cycle
for real-time system. The course introduces the concepts
of real-time systems from the user and the designer
viewpomts. It explores the comnection of external
processes to a computer by means of hardware and

Asian J. Inform. Tech., 5(5) : 518-321, 2006

software interfaces. The structure programming and basic
properties of real-time systems are described with an
overview of the system software. Such related topics as
mterrupts, concurrent task scheduling and
synchronization, sharing resources and reliability factors
are discussed.

The early part of the class focuses on discussing
theory and building necessary skills. The material
includes real-time design and programming concepts, with
a review of software engineering notation and discussion
of the practical aspects of concurrent processing, timing,
scheduling and mntertask communication.

In the past, the available laboratory resources
allowed us to offer the real-time class only within the
constraints of “soft” real-tim [Korm93] Instructions was
lamited to the first two rea-time layers
(Specification/design and language concepts). The
implementation plateform was a network of TUNIX
workstations with scaffolding software that siumulated
external sources of data and interrupts. The course has
been offered, on average, once each year since 1989.
Tnitially, the student teams worked on a semester-long
project divided imnto three to four phases, each with
separate deliverables. The final project report compiled
the results of the preliminary phases. An integral part of
the project is always a prototype demonstration and a
formal project presentation by the development team. The
project was dived into three phases of about four weeks
each. Each phase had pre-defined tasks and deliverables.
To keep track of the process, the students were requested
to submit logs of their project activities and records of
their meetings and co-operative work. The results for each
phase discussed and the necessary revisions were
requested.

PHASE ONE: REQUIREMENTS

Task a-Narrative description of the entire system and the
enviromment

Task b-System context Diagram

Task c-Description of the system functionality
Task d-State Transition Diagram detailing the timing
behavior

Task e-Event List and a discussion of timing
requirements

Task f{-Data/Control Flow Diagrams
information flow

detailing

Phase two: Design

Task g-Process/Control Specifications

520

Task h-Data Dictionary identifying the data shared
by the subsystems

Task 1-Identification of interfacing processes and
data exchange paradigmTask j-Ada Task Graph and
packaging decisions

Phase three: Implementation

Task k-Listing of Ada code, including specifications,
bodies and interfaces

Task 1-Description of the hardware/software base
used for project implementation

Task m-Test plan for the prototype

Task n-Class presentation and demonstration of
working prototype.

The final week was spent on report editing, code
testing and final project integration. The grading was
based on the reports from each of the phases, the final
report and the project demonstration. Additionally, the
instructor requested, from each team member, a
confidential e-mail evaluation of the project in terms of
individual contribution of the team members. The student
teams coordmate ther work though classroom
discussions, meetings and documentation exchange
(also on e-mail). They used a formal software engineering
approach for a real-time system based on the works of
Ward/Mellor, Hatley/Pirbhai, Gooma and Nielsen/Shumate
[Niel90, Shum92, and Sando4]!+71,

In the last two course offerings

we introduce

individual programming assignments dealing with
the critical 1ssues of real--time programming
(exception handling, Concurrency, intertask

communication, resource contention). The team Project
was assigned in the last six weeks of classes and the
teams worked from artifacts reused from the past course
offerings. The project was of shorter duration, consisting
of only two phases. The first covered specification and
design tasks (a) through (j)-as the teams were given
specific requirements , in a form of partial artifacts from
tasks (a) through (f). The second phase covered
implementation and testing tasks (K) through (m). Each
teamn, however, after consulting with the client (the course
wnstructor) had to prepare an updated version of
consistent artifacts in the form of a Context Diagram,
Data/Control Diagrams, State Transition Diagrams, an
Event List, Ada Task Diagrams, Data Dictionaries, etc.
The major part of the project focused on implementation
and testing based on the individual programming
assignments done in the earlier part of the semester. The
students also were required to collect some personal
performance data.

Asian J. Inform. Tech., 5(5) : 518-321, 2006

LESSON LEARNED AND FUTURE PLANS

From the instructor perspective the major problems
in the course were related to the formal process
presentation, team coordmation, system interfaces and
final integration.. Generally the students had a positive
attitude toward the course and the project. They
generously commented on the complexity, scope and
realistic nature of the project. Their criticism focused on
the need for maimntaining consistency between design and
implementation pointing out deficiencies, specifically, in
the software development process defimtion Also, the
students who did not take the software engineering class
(not required, but a recommended pre-requisite), struggled
with software engineering concepts in the early project
development stage.

Modern software development requires an extensive
knowledge of both reactive and distributed computing, as
well as a team-oriented software engineering process.
There is a need to provide an environment to support
such instruction. Many universities cannot provide such
an environment because they lack either a dedicated
faculty or the laboratory infrastructure (or both). Potential
solutions to these limitations are:

Cross mterdisciplinary boundaries,
engineering faculty to teach real-time classes (with
close cooperation from computer science faculty)

utilizing

521

Use industry personnel to support teaching selected
classes

Use personal software processes early in the
curriculum

Use soft real-time systems with simulated scaffolding
software

Use an available low cost PC platform based real-time
operating system

Engage industry to provide funding to develop the
laboratory infrastructure

We believe that real-time computing is a critical area
for the majority of industrial applications. Our experience
1s that the real-time classes offerings have provide and in
the future will provide, the mix of concepts and skills
essential for a successful real-time software developer.

REFERENCES
1. Cooling, 1.E, 1991. Software Design for Real-Time

Systems, International Thompson Computer Press,
London, England.

2. Halang, W.A and A Curriculum, 1990. for Real-Time
Computer and Control Systems Engineering, TEEE
Tranon Educ., pp: 171-178.

3. Hilburn, T., I. Hirmanpour and A. Kornecki,1995. The

Integration of Software Engineering into a Computer
Sei. Curriculum, Proec. 8th SEI Conf. on Software
Engineermg Education, R.L, Ibralum, ED. Spring-
Verlag, Berlin, pp: 87-95.

