Asian Journal of Information Technology 5 (1) : 96-106, 2006

© Medwell Onlline, 2006

Controlling Information Flows Among Object-Oriented
Systems to Prevent Information Leakage

Shih-Chien Chou
Department of Computer Science and Information Engineering
National Dong Hwa University, Hualien 974, Taiwan

Abstract: Many information flow control models were available to prevent information leakage within a system.
Since systems may cooperate, 1t 1s necessary to prevent information leakage among cooperating systems when
they communicate. Our survey shows that no existing model offers the prevention. Tn the past years, we
developed an information flow control model based on RBAC (role-based access control), which is named
OORBAC (object-oriented role-based access control). Like other existing models, OORBAC cannot prevent
mformation leakage among systems. To offer the prevention, we extended OORBAC. The extension is based
on the consideration: when information is passed from a system to another one, the security level of the
information being passed should be the same as or lower than the security level of the variable receiving the
mformation. This study shows the extended model and its evaluation.

Key words: Information security, information flow control, information leakage, object-oriented system

INTRODUCTION

Access control within a system prevents leakage of
sensitive information managed by the system. Information
leakage prevention can be achieved by controlling
mformation flows and therefore quite a few mformation
flow control models are available! ", Existing models were
generally based on approaches such as discretionary

access control (DAC)'™, mandatory access control
(MACY ™, role-based access control (RBAC)P'™ and
label-based approach ™" Cur survey reveals that
existing models prevent information leakage within a
system. Nevertheless, they fail to prevent information
leakage among systems. In our opimon, the latter
prevention is necessary because systems may exchange
information when they communicate. Important issues of
the latter prevention are described below:

* Information passed from a source system to a
destination system should not be leaked to
unauthorized users in the destination system.

* Information passed from a source system to a
destination system should not be leaked to another
systems (if this kind of leakage occurs, the

destination system becomes a Trojan horse!'*'*,

In the past years, we developed an RBAC-based
information flow control model for object-oriented
systems named OORBAC (object-oriented role-based
access contro)™. Its original design is for controlling
mformation flows within a system. Therefore, it cannot

96

prevent information leakage among systems. Since
preventing information leakage among systems 1s
necessary, we extended OORBAC to achieve the
prevention. The extended model 15 called CORBAC*, in
which the super-script ar means that the model prevents
both intra-system and mter-system mformation leakage.
Here intra-system information flows refer to information
flows within a system. On the other hand, inter-system
information flows refer to information flows among
systems. This study presents OORBACT.

RELATED WORK

The model in! is based on DAC. Tt controls
information flows within object-oriented systems. Tt uses
ACLs of objects to compute ACLs of executions (which
are composed of methods). A message filter filters out
possibly non-secure mformation flows. Flexibility 1s added
by allowing exceptions during or after method
execution”. More flexibility is provided using versions'!.

The model presents by Bell and LaPadula’™ is an
important milestone of MAC, which categorizes the
security levels of objects and subjects. Information flows
1in the model follow the no read up and no write down
rules”. Bell and LaPadula’s model was generalized into
the lattice model®™. In the typical lattice model presents
i, a lattice (SC,~,& ) is constructed using SC, which is
the set of security classes, the symbol =, which is the can
flow relationship, and the symbol @, which 1s the join
operator. The can flow relationship controls mformation
flows and the join operator avoids Trojan horses
(i.e., indirect information leakage).



Asian J. Inform. Tech., 5 (1): 96-106, 2006

RBACIY can also be used in information flow
control. Tt is primarily composed of users, roles, sessions,
permissions, assignment relationships, and constraints. A
role is a collection of permissions'?. Within a session, a
user possesses the permissions of the role he plays.
RBAC was proved to be a super set of both DAC and
MACH, Since DAC and MAC are useful in information
flow control’®, RBAC can also be used m that control.
Nevertheless, we can only identify the models "™ uses
RBAC for the control. The model classifies object
methods and derives a flow graph from method
mvocations. Non-secure
identified from the graph.

The approach in""! presents a labeling system in
UNIX. Every file, device, pipe, and process is attached
with a label. Jom operation 1s used to avoid Trojan horses.
The decentralized label approach!*'”! marks the security
levels of variables using labels. A label is composed of
one or more policies, which should be sinultaneously
obeyed. A policy ina label 1s composed of an owner and
zero or more readers that are allowed to read the data. JToin
operation is used to avoid Trojan horses.

As a summary of the survey, no model controls inter-

mmformation flows can be

system information flows. This motivates our research.
OVERVIEW OF OORBAC

OORBAC controls information flows within object-
oriented systems™. The most importance mechanism in
OORBAC is ICRel (Information flow Control Relationship)
as defined below:

Definition 1: An  ICRel among if
information may directly flow among the
instances of the classes. Each ICRel 1s
associated with a security policy for class
instances to obey. If multiple security

exists classes

policies must be obeved by class instances,
more than one ICRels should be defined
among the classes, in which an ICRel
enforces a security policy.

The above defimition defines an ICRel as a
relationship among classes, which can be instantiated to
link objects of the classes. We let an instance of an TCRel
be a session, and let objects linked by the relationship be
roles within the session. For example, if managerl and
operator]l are friends, they are roles withun a friend
session. In OORBAC, objects within a session should
obey the security policy defined by the ICRel from which
the session 1s mstantiated. The security policy of an ICRel
15 exlubited by permissions, roles, access control lists

97

(ACLs) of variables (a variable can be an object attribute
or a method variable), and ACLs of method return values.
Permissions limit method invocation. For example, a
permission (ol.mdl, 02.md2) allows the method ol .mdl to
iwvoke the method 02.md2. Since permissions are not
enough to control information flows among variables,
OORBAC attaches an ACL to every variable and method
return value. An ACL 15 composed of an RACL (read
access control list) to control read access and a WACL
(write access control list) to control write access. The
union of ICRels” security policies constitutes the security
policy of a system, which requires that: (a) direct
infermation flows within a session are allowed whereas
those among sessions are prohibited and (b) mformation
flows among a session’s objects should obey the security
policy of the TCRel from which the session is instantiated.
Although information cammot directly flow among
sessions, it may indirectly flow among sessions. For
example, if ol and o2 are in a session and o2 and 03 in
another, mformation of 0l may mdirectly flow to 03 via 02.
Both direct and indirect information flows should be
secure.

OORBAC should be embedded in an object-oriented
system to ensure secure information flows when the
system is being executed. Below we define OORBAC from
the perspective of embedding the model in an object-
oriented system.

Definition 2: OORBAC = (USR, CLS, ICREL, OBI, VAR,
MD, MSG, SES, PER, RLE, TH, URA, RPA,
ACLS, DSOURCES, CNS), m which

¢+ TSR is aset of users. A user may be a human being
or another system. Users play roles when a system is
being executed.

+ CLS is a set of classes. A class can be instantiated to
create objects.

» ICREL 15 a set of ICRels defined in Defimtion 1. An
ICRel can be instantiated to create sessions.

»  OBIJ 1s a set of objects instantiated from classes when
the object-oriented system 13 bemg executed.
OORBAC regards an object as a role.

* VAR 1s the umon of the set of object attributes, that
of private method variables, and that of method
return values.

»  MD is a set of object method.

*  MSG 1s a set of messages passed among objects. A
message corresponds to a method invocation.

»  SES 15 a set of sessions. A session 1s an instance of
an ICRel.

» PHR is a set of permissions. A permission has the
form (objl mdl, obj2.md2), which allows the method
objl.md1 to mvoke the method obj2.md2.



Asian J. Inform. Tech., 5 (1): 96-106, 2006

¢+ RLEis aset of roles. A role is an object. Moreover, a
role 1s composed of a set of permissions.

* URA 1s a set of user-role assignments, which is
defined as USR~ 27*.

+ RPA is a set of role-permission assignments, which
is defined as RLE 27

* [His aset of mhentance relationships among classes.
An object instantiated from a class possesses all the
permissions of the class’s super classes. Since
objects m OORBAC are roles, IH facilitates
establishing role hierarchies (which are important
components n RBAC) when an object-oriented
system is being executed.

« ACLS 1s a set of ACLs. As described before,
permissions are not enough to control mformation
flows among variables, QORBAC attaches ACLs to
variables for more detailed control. The ACL ACL,
of a variable var 1s defined below:

ACL,. = {RACT.,. WACL, .}, in which

RACL,, € 2", in which methods in RACL.  are allowed to
read var.

WACL,, € 2"", in which methods in WACL.,, are allowed
to write var.

+ DSOURCES is a set of data sources (DSOURCES).
Each variable m OORBAC is associated with a
DSOURCE to facilitate write access control. Suppose
the attribute attName is derived from the variable varl
and var2, and varl and varZ are respectively written
by the methods mdx and mdy. Then, the DSOURCE
of attName is the set (mdx, mdy) after the derivation.

* (NS s a set of cardinality and modality constraints.

As mentioned before, direct mformation flows within
a session are allowed whereas those among sessions are
prohibited. Moreover, among a
session’s objects should obey the permissions, roles, and
ACLs of the ICRel from which the session 1s instantiated.
Therefore, the security of direct information flows can be
enforced by the following security conditions:

information flows

First security condition: If mformation directly flows
among objects, the objects should be within a session.

Second security condition: For an mformation flow
caused by a method invocation from obl.mdl to
obj2.md2, objl should possess the permission (objl.mdl,
obj2.md2).

During method mvocation, the ACLs and DSOURCEs
of arguments should first be copied to the corresponding

98

parameters. The copying is necessary because a
parameter receiving the value of an argument inherits the
security level of the argument. Note that if an object 1s
passed as an argument, the copying 1s bypassed because
ACLs and DSOURCEs of the object’s variables are
already defined. After the copying, every information flow
in the invoked method should fulfill the following two
secure flow requirements. In defimng the requirements, we
suppose that: (a) the variable d var is assigned a value
derived from the variables in the set {var; | var; € VAR in
Definition 2 and 1 1s between 1 and nn}, (b) the assignment
appears in the method mdl, (¢) the original ACL of d_var
is {RACL, ,.; WACL, ..}, (d) the ACL of the i* variable
that derives d var is {RACL,.;; WACL,,}, and (e) the
DSOURCE cof var, is DSOURCE,,

First secure flow requirement: (RACL, .=  2pacL )
A(mdle rracrL, )
Second secure flow requirement: WACL, o

ULDSOURCE,, U {md1}

The first secure flow requirement controls read
access. The condition RACL, .= = "RACL,, requires that
d var must be at least the same restricted as the variables
deriving d var. The ARACL,
necessary because mdl reads the variables deriving
d_wvar. The second secure flow requirement controls write
access. It requires that the data sources of the variables
deriving d_var should be within WACL, ., because the
data derived from the vanables are written into d_var. The
requirement also requires that the method mdl must be
within WACL, . because the method performs the write
operation.

After the derived data 13 assigned to the variable
d var, the ACL of d var should be changed by the join
operation''*"!. This change prevents indirect information
leakage. We use the symbol & to represent the join
operater. With jom, ACL, ., will be changed to be
®LACL,, after the derived data 15 assigned to the variable
d var.

condition mdle is

Definition 3: (=% ACL 7(m]_1RACL =\J,_1WACL )The_]O]Il
operatlon trusts less or the same set of

readers. Therefore, join will not lower down
security level. On the other hand, the
operation trusts more writers. This s
reasonable because a writer that can write a
variable should be regarded as a trusted
data source for the data derived from the
variable. If a variable 1s assigned a constant,
no join operation will be executed and the



Asian J. Inform. Tech., 5 (1): 96-106, 2006

ACL of the variable remains unchanged™.
for the proof that the join operation
prevents indirect information leakage. In
addition to jomning ACLs, the DSOURCE of
d var will be adjusted as follows:

DSOURCE s« = 2 DSOURCE,, w{mdl)

DSOURCE, .., is set the union of the DSOURCEs of
the variables deriving d_var and the method {mdl}. The
union of the DSOURCEs 1s obvious because all data
sources deriving the computation result should be
considered data sources of the result. The method mdl is
also a data source because the computation result is
written by mdl tod_var.

We embedded OORBAC m JAVA to obtain the
language OORBACL. Please refer to” for the use of
OORBAC and the details features offered by OORBAC.

THE OORBAC” MODEL

OORBACH information flows among
cooperating systems. It is orgamzed as cooperating
OORBACs. We give the following assumptions for

OORBAC™:

controls

The network 1s secure. Since cooperating systems
may exchange information through the network, the
network should be secure.

The cooperating systems are well-known. This
assumption allows programmers to know every
object of the cooperating systems. With this,
programmers can correctly determine the security
level of information.

The objects and methods for communication among
cooperating systems are well-known by the systems.
Weuse JAVA RMI (remote method invocation)? to
communicate systems. As long as an object in a
system 1s registered, the object’s methods can be
kmown and invoked by other systems.

Qorbac™: OORBAC® achieves inter-system information
flow control through the assistance of RMI objects and
methods. The model 1s designed based on the
consideration: when inter-system communication (inter-
system information flow) occurs, the security level of the
mformation being passed should be the same as or lower
than the security level of the varnable receiving the
information. Under this consideration, the passing of
arguments and return values in RMIs should be
controlled to ensure secure mter-system information
flows. We define the followng secure inter-system

99

information flow protocols, which control RMIs between
two systems. In describing the protocols we assume that:
(a) the method mdl of the object objl in the system apl
(1e, apl.objl.ndl) invokes ap2obj2md2, (b)
apl.objl.mdl passes the arguments argl, arg2, . . ., argnto
ap2.0bj2.md2, in which the latter method receives the
arguments using the parameters parl, par2, . . , parn, and
(c) ap2.02.md2 returns the value ap2.0bj2.md2.rtv and
apl.objl.mdl receives the value using apl.objl .mdl .varl.

First secure inter-system information flow protocol:
Every parameter pari in the method ap2.0bj2.md2 1s
associated with an ACL ACL,, and a DSOURCE
DSOURCE, ;. The ACL and DSOURCE of pari define the
lowest security level of a variable that can receive the
value of pari. The ACL and DSOURCE of a parameter
requires that the variable obtaining the parameter’s value
should possess a security level at least the same as that
of the parameter. This prevents low security level
variables from obtammg values from high security level
arguments passed by apl.objl.mdl. For example, if a
variable varl in the system apl contains a value that can
be access by managers or higher rank employees, then
employees with a rank lower than a manager should not
read varl. If varl is passed to ap2.objZ.md2 as an
argument and the argument is received by the parameter
parl, then a variable in the system ap2 that obtains the
value from parl should possess a security level at least
the same as a manager’s security level.

Second secure inter-system information flow protocol:
Pseudo parameters are associated with the method
apl.objl . mdl. They ares_parl, s_par2, ..,s_parn. Every
pseudo parameter s_pari n the method apl.objl.mdl 1s
associated with an ACL ACL, .. and a DSOURCE
DSOURCE, ... The ACL and DSOURCE define that can
be passed as arguments to the method ap2.0obj2.md2. The
ACLs and DSOURCEs of pseudo parameters require that
the arguments passed to ap2.obj2.md2 possess security
levels at most the same as those of the pseudo
parameters. This prevents high sensitive information from
being leaked to low sensitive variables. For example, if the
ACL and DSOURCE of a parameter parl i ap2.obj2.md2
state that parl can be accessed by managers and lower
rank employees in the system ap2, then an argument argl
passed to parl’ by the system apl should not possess a
security level higher than that of a manager. In thus case,
the pseudo parameter s_parl of apl.objl.mdl limits the
security level of argl.

Third secure inter-system information flow protocol: A
pseudo return variable ap2.obj2.md2.s_rtv 1s associated



Asian J. Inform. Tech., 5 (1): 96-106, 2006

with the method ap2.0bj2.md2. The pseudo return variable
is associated with an ACL ACL_,0nm.+ and a
DSOURCE  DSOURCE; wizmis 1he ACL  and
DSOURCE of ap2.0bj2.md2.s_rtv state that the security
level of the return variable ap2.0bj2.md2.rtv should not be
higher than that of apZ.obj2.md2s rtv. The ACL and
DSOURCE of a pseudo return variable requires that the
variable being returned should possess a security level at
most the same as the variable receiving the retumn value.
This prevents information leakage
description m the second secure mter-system information
tflow protocol

similar to the

Fourth secure inter-system information flow protocol: A
pseudo variable apl .objl.mdl.r_rtv is associated with the
method apl.objl.mdl to receive the return value of the
method ap2.0bj2.md2. The pseudo variable is associated
with an ACL ACL_ 4z and a DSOURCE
DSOURCE st it e The ACL and DSOURCE of
apl.objl.mdl.r rtv state that  the variable
apl.objl.mdl.varl should not possess a security level
lower than that of apl.objl.mdl.r rtv. The ACL and
DSOURCE of a pseudo variable requires that the variable
receiving the return value of ap2.0bj2.md2 should possess
a security level at least the same as that of the pseudo
variable. This prevents information leakage similar to the
description in the first secure mter-system information
tflow protocol.

Fifth secure inter-system information flow protocol:
Arguments passed to a system should not be passed to
another systems. This protocol avoids Trojan horses
mentioned in section 1.

The first two secure inter-system mformation flow
protocols ensure that inter-system parameter/argument
passing 18 secure. The third and fourth secure mter-
system information flow protocols ensure that inter-
system return value passing is secure. And, the fifth
secure inter-system information flow protocol ensures
that no system will become a Trojan horse. We extended
OORBAC according to the secure inter-system
information flow protocols above. The extension is
described below:

Add a component TAP (inter-system security
protocol) to QORBAC for controlling inter-system
information flows.

Disallow arguments passed to a system to be passed
to other systems.

Extend the security policy (i.e., security conditions
and secure flow requirements) mentioned m section
3 as follows.

100

First extended security condition: If no RMT is invoked in
an information flow, the security conditions and secure
flow requirements mentioned in secton 3 should be
fulfilled to make the flow secure.

Second extended security condition: If an RMI appears in
an nformation flow, the following RMI secure flow
requirements should be fulfilled.

First RMI secure flow requirement: If a variable vari in
the method ap2.objm.mdn reads the value of the parameter
pari, the conditions below should be true.

(RACL,;c RACL_ ) A (ap2.objm.mdn € RACL ;)

*  WACL,, 3 (DSOURCE, v {ap2Z.objm.mdn})

This RMI secure flow requirement implements the
first secure inter-system information flow protocol. The
two conditions above are actually the two secure flow
requirements mentioned in section 3. They respectively
control read and write access of the parameter pari, which
requires that the variables receiving the arguments passed
by the remote method should be at least the same
restricted as the arguments.

Second RMIT secure flow requirement: If a variable argi in
the system apl is passed as the i" argument when
invoking the method ap2.0bj2.md2, the conditions below
should be true (remember that the remote invocation is
performed by the method apl.objl .mdl).

o

(RACL, ., RACL, ) A (apl.objl.md]l € RACL,)
+  WACL, 2 (DSOURCE_;u {apl.objl. mdl})

This RMI secure flow requirement mmplements the
second secure inter-system information flow protocol.
The two conditions respectively control read and write
access of the argument argi, which requires that the
arguments passed to the remote method should be at
most the same restricted as the pseudo parameters of the
method apl .objl.mdl.

Third RMI secure flow requirement: If a vanable vari in
the method ap2.0bj2.md2 1s returned, the conditions
below should be true.

(RACL ;o mizscw = RACL,,) A (ap2.obj2md2 €
RACL..)
WACL 4 iz mz.c w2 (DSOURCE, ;U {ap2.0bj2.md2})

This RMI secure flow requirement mmplements the
third secure mter-system mformation flow protocol. The



Asian J. Inform. Tech., 5 (1): 96-106, 2006

two conditions above respectively control read and write
access of the retumn variable vari, which requires that the
return value of a remote method should be at most the
same restricted the pseudo return variable
ap2.obj2.md2s rtv.

das

Fourth RMI secure flow condition: If a vaniable vari in the
method apl.objl.mdl receives the return value, the
conditions below should be true.

(RACL,,; = RACL _, jimar ) /A (apl.objl.mdl €
RACLapl objlmdl r_rtv)
WACL, ;= (DSOURCE, i me o fapl.objl.mdl})

This RMI secure flow requirement mmplements the
fourth secure inter-system information flow protocol. The
two conditions above respectively control read and write
access of the variable vari that receives the return value
of the method ap2.obj2.md2, which requires that the
variable receiving the return value from a remote method
should be at least the same restricted as the pseudo
variable apl.objl . mdl r rtv.

Fifth RMI secure flow condition: If a variable argi m the
system apl is passed as an argument to a remote method,
the DSOURCE of argi should not contain any method
belonging to the systems other than apl. This RMI secure
tflow requirement inplements the fifth secure inter-system
information flow protocol.

Using OORBAC™: We use two cooperating systems to
depict the use of OORBAC®. They are the case lustory
management system and the doctor management system.
The case history management system manages patients’
case histories. In the system, a patient 13 assigned to a
doctor. A doctor can read and change the case histories
of the patients assigned to him. On the other hand, a
doctor can only read the case histories of the patients not
assigned to him. The system offers remote methods for
the doctor management system to retrieve the case
histories of patients assigned to a doctor.

The doctor management system manages doctors’
ranks. A manager of the hospital can read and write
(change) the rank of a doctor. To change a doctor’s rank,
the case histories of the patients assigned to the doctor
should be taken as a reference. The case histories are
retrieved from the case lustory management system
through RMI. The retrieved case lustories can only be
read by the manager. We disallow doctors to access the
in the doctor management system.
Nevertheless, a docter can access the case histories mn the
case history management system.

case histories

101

The cooperating systems are implemented in
APPENDIX 1 using the language of OORBAC™, which
15 named OORBACL® The first system i the appendix
15 the case listory meanagement system. The second
is the doctor management system. The first system
offers methodcase history service.
get_case history doctor for the second one to invoke.
The remote method 1s defined within the class
case_history service (lines 16 through 21 in APPENDIX
1). The object HSOBT in main offering the remote method
15 defined and registered (lines 20.3 through 20.4). The
second system invokes the remote method offered by the

a remote

object HSOBT in the method
doctor rank mng.change doctor rank  (lines 335
through 33.6).

To ensure mter-system information flow security,
both systems include an TAP. The TAP in the first system
(lines 7 through 8) defines ACLs to fulfill the first and
third RMI secure flow requirements mentioned in section
4.1. The IAP 1n the second system (lines 24 through 25)
defines ACLs to fulfill the second and fourth RMI secure
flow requirements. We trace the TAPs to explain the RMIT
secure flow requirements.

Lme 7.1.1 defmes the ACL of the parameter of
the remote methodcase history service.
get case history doctor offered by the first system. A
variable receiving the parameter should be at least the
same restricted as the parameter (1.e., the first RMI secure
flow requirement should be fulfilled). For example, using
the attribute case history service.patient case history
to receive the parameter 1s considered non-secure
because the first RMI secure flow requirement is false
(please compare the ACLs in lines 5.3.1 and 7.1.1). Line
7.3.1 defines the ACL of the pseudo return value of the
remote method offered by the first system. A variable
being returned should be at most the same restricted as
the pseudo return value (i.e., the third RMI secure flow
requirement should be fulfilled). For example, returning the
variable doctor mng.doctor 1s considered non-secure
because the third RMI secure flow requirement 1s false
(please compare the ACLs in lines 5.3.2 and 7.3.1).

Line 24.1.1 defines the referenced name of the pseudo
parameter for the second system. Line 24.3.1 defines the
ACL of the pseudo parameter when invoking the remote
method rmiObyj.get case history doctor offered by the
first system. An argument sending to the pseudo
parameter should be at most the same restricted as the
parameter (1.e., the second RMI secure flow requirement
should be fulfilled). For example, using the attribute
doctor_ mng.doctor as an argument is considered non-
secure because the second RMI secure flow requirement
1s false (please compare the ACLs m lines 22.3.1 and



Asian J. Inform. Tech., 5 (1): 96-106, 2006

24.3.1). Line 24.5.1 defines the ACT. of the pseudo variable
that can receive the remote method’s return value. A
variable receiving the return value should be at least the
same restricted as the pseudo variable (1e., the fourth
RMI secure flow requirement should be fulfilled). For
example, using the variable manager.doctor name to
receive the return value 15 considered non-secure because
the fourth RMI secure flow requirement 1s false (please
compare the ACLs in lines 22.3.2 and 24.5.1).

EVALUATION

OORBAC* was embedded in the TAVA language to
produce the language OORBACLY. The syntax of
OORBACL™ can be informally understood by tracing
APPENDIX 1. We implemented an enviwonment for
OORBACL®, which is primarily composed of an
OORBACL® preprocessor. The preprocessor translates
OORBACL™ program mto a pure JAVA program, which 1s
composed of the orignal JAVA program and a security
checker. During program execution, the security checker
checks the security of every information flow in the
original JAVA program. The security checker for
OCRBACL™ and that for OORBACL are nearly the same.
The only difference is the management of pseudo
parameters, pseudo return variables, and pseudo variables
to receive return values. We evaluated OORBAC™ using
the following cooperating systems:

An employee management system, which handles the
hiring, promoting, downgrading, salary computing,
firing, and retiring of employees. It also manages the
responsibility of employees in a company.

An mventory management system, which manages
the current levels and re-order levels of items. When
a problem occurs (e.g., an item’s current level 1s
under its re-order level but no re-order is initiated),
the inventory management system communicates
with the employee management system to identify
the employees that are responsible for the problem.
A report generator that periodically produces a report
showing the sold amounts of items. Clearly, the sold
amounts of items should be retrieved from the
inventory management system (1.e., the two systems
will communicate).

In evaluating OORBAC™, we collected non-secure
mformation  flows  mduced by  mter-system
communications. We selected ten students to program the
above systems. We then required them to execute their
programs using five different sets of mput data and
collected the mumber of non-secure inter-system

102

-9~ Input data get 1
S Inpit dain et 3 -
g 20 3 Topt datn st 4 Experimental results
-+ Input data set 3
T 157
2810l
82
Z 0 ——————————r—r———
1 2 3 4 5 6 7 8 9 10
Student

Fig.1: Experiment result

information flows. To ensure that OORBAC® is capable of
identifying non-secure inter-system information flows, we
required the students to imject five non-secure nter-
system information flows in each program. The experiment
result 15 shown m Fig. 1. When we checked the
experiment results, every injected non-secure ones were
identified. Note that the identified non-secure mter-
system information flows were more then those injected
because students usually committed errors. According to
Fig. 1, we conclude that OORBACT 1s capable of
identifying non-secure inter-system information flows.

CONCLUSIONS

Our survey reveals that no existing information flow
control model controls information flows among systems.
In our opmion, controlling inter-system information flows
(i.e., controlling information flows among systems) is
essential because systems may exchange information
during execution. We thus extended our previous model
OORBAC (object-oriented role-based access control) to
offer the control.
consideration: when inter-system information flow occurs,

The extension 1s based on the

the security level of the information being passed should
be the same as or lower than the security level of the
variable receiving the information. We named the
extended model OORBACY, m which the super-script ar
means that the model prevents both intra-system and
inter-system mformation leakage. OORBAC™ uses the
mechanisms provided by OORBAC to control intra-
system information flows and uses JAVA RMI (remote
method invocation) and the following protocols to control
inter-system information flows.

Every parameter in the invoked remote method is
associated with an ACL (access control list) and
DSOURCE (data source). The ACT, and DSOURCE
define the lowest security level of a variable that can
recelve the value of the parameter.



Asian J. Inform. Tech., 5 (1): 96-106, 2006

¢+  Pseudo parameters are associated with the method
mvoking the remote method. Every pseudo parameter
1s assoclated with an ACL and a DSOURCE, which
define the most sensitive argument that can be
passed to the remote method.

+ A pseudo return variable is associated with the
remote method being mvoked. The pseudo return
variable 1s associated with an ACL and a DSOURCE,
which define the most sensitive information that can
be returned by the remote method.

» A pseudo variable is associated with the method
invoking the remote method. The pseudo variable is
assoclated with an ACL and a DSOURCE, which
define the lowest security level of a variable that can
receive the return value of the remote method.

»  Arguments passed to a system cannot be passed to
another systems. This avoids Trojan horses among
systems.

We evaluated OORBAC* and found that it did
identify non-secure inter-system information flows.

Appendix 1: The two cooperating systems mentioned in section 4.2 are coded below using OORBACL®,

Systemn 1: Case history management system

1ICRel assigned {

1.1 classes {doctor; patient}

1.2 cardinality {doctor: 1, patient: *} /* A doctor can have many patients but a patient can be assigned to only one doctor */
1.3 meodality {doctor: O, patient: M} /* A doctor can have no patient but a patient should be assigned to a doctor */

1.4 permissions {

1.4.1 p1 {doctor.get patient_case_history, patient.get_case_history};

1.4.2 p2 {doctor.change patient case_history, patient.change case_history };

15 1}

1.6 roles {
1.6.1 r1 {pl, p2};
1.7 1}

1.8 UA {/* User assignment, which assigns objects toroles. */

1.8.1 doctor: r1; /* Patients have no rights on doctors. */

1.9

1.10 attributeACLs { /* An ACL is composed of an RACT. and a WACL. A semicolon separates them, in which the former is the RACT. and the latter the
WACL. */

1.10.1 patient.case history
doctor.change_patient_case_history};
1.10.2 doctor.patient_case_history {doctor.get_patient_case_history; doctor.get_patient_case_history, patient.get case_history };

1.10.3 doctor.new patient_case history {doctor.change patient_case history, patient.change case history; doctor.change patient case history};
1.11 }/* end of attributeACLs */

2} /* end of ICRel */

3ICRel not_assigned {

3.1  classes {doctor; patient}

3.2 cardinality {doctor: ®, patient: *} A many-to-many relationship */

3.3 modality {doctor: M, patient: M}

34 permissions {

3.4.1 pl {doctor.get_patient_case_history, patient.get_case history};

{patient.get case history, doctor.get_patient case history; patient.change case history,

35 )

36 roles {
361 1l {pl};
37 0}

4}

STCRel remoteMethodTnvocation {

5.1 class {doctor, patient, doctor_mng, case_history_service}

52 /..

53 attributeACTs {

5.3.1 case_history_service.patient_case_history {case_history_service.get_case_history_doctor, patient.get case_history; patient.get case history}; /* This
variable cannot receive the parameter */

5.3.2 doctor_mng.doctor {doctor_mmng,search_doctor; NONE}; /* This variable cannot be returned */

533 /4.0

54 )

55 ...

6}/ end of ICRel

7IAP { /* inter-system information flow control protocols are defined below. This system offers remote methods for invocation. Therefore, parameter ACLs
and pseudo retum value ATCs should be defined. */

7.1 parameterACLs {

7.1.1 case history service.get case history doctor.doctor name {case history service.get case history doctor, doctor mng.search doctor; NONE};

7.2

7.3 pseudoReturnValueACLs {

7.3.1 case history service.get case history doctor
patirnt.get_case_history}

7.4

8} // end of IAP

J JAVA program below --------wmeemeeen *f
9/ import the necessary files

10 class doctor {

10.1 public 8tring patient._case history, new patient case history;
10.2 public void get_patient_case_history (patient p1){

{case history service.get case history doctor; case history service.get case history doctor,

103



Asian J. Inform. Tech., 5 (1): 96-106, 2006

10.2.1 patient_case history =pl.get case history();

103 }

10.4 public void change patient case history(patient p1){

104.1 {f set up new_patient_case_history

104.2 pl.change case history(new_patient_case_history);
10.5 }

11 }/*end of class "doctor” */

12 class patient {

12.1 public String case_history;

12.2 public int checked; // if it is set, the patient’s case history has been checked
12.3 public String get case history(){

12.3.1 return case_history;

124 )

12.5 public void change_case_history(String new_case_history){
12,51 case history = new case history;

12.6 }

12.7 public void set_check_mark(){

12.7.1 checked =1;

128 }

13 }//end of class

14 class doctor_mng{// this class offers methods to manage the two doctor arrays

14.1 public String doctor[]; //The array for doctor names

14.2 public doctor doc[]; // The array for doctor objects

14.3 /* there is a one-to-one mapping between the two amrays above. That is, the object of the doctor with a name doctor[1] is stored in doc[i] */
14.4 public doctor search_doctor(8tring doctor name){

14.4.1 {f search the doctor array and identify the doctor named doctor_name

14.4.2 /f retumn the coresp onding doctor object stored in the doc array

145 }

15 )

[ e The interface case_history_interface and the class case_history _service are for RMI */

16 public interface case history interface extends java.rmi.Remote {

16.1 public String get _case_history_doctor(String doctor_name);

17}

18  public class case history service extends UnicastRemoteObject implements case history interface {
18.1 public doctor d1;

182 public patient p1;

18.3 public String patient_case_history;

184 public String get_case history doctor(String doctor name){

184.1 d1 = case_history_management.dmngl.search_dortor(doctor_name);
184.2 while (TRUE){

184.2.1 pl = getObject(ICRel assigned, doctor d1); / getObject is an OORBAC™ statement. Here the statement retrieves an object existing in a
an assigned session with the object d1 */

184.2.2 if (p1.checked !'=1){

184.2.2.1 pl.checked =1;

184.2.2.2 patient_case history =pl.get case history();

184.2.2.3 return patient_case history;

184.2.3 }

184.3 3

184.4 return end of patient;

185 1}

19 }//end of class

/f RMI object HSOBJ is defined below

20 class case history management §

20.1 public static doctor_mng dmngl;

20.2 public case history service HSOBJT; // The object HSOBRT offers RMIT
20.3 public void main){

2031 /f instantiate the object HSOBT and register the object for RMT service
20.3.2 /f The registration is achieved by invoking the method Naming.rebind
20.3.3 /f instantiate dmng1

20.3.4 /* instantiate doctors to set up the array dmngl.doctor[] and dmngl.doc[] */
20.3.5 i

204}

21}

Systemn 2. Doctor management sy stem

/* An incomplete TCRel defined below will be used to explain the RMI secure flow requirements */
22 ICRel remoteMethodInvocation {

22.1 class {manager, doctor, doctor mng, doctor rank mng}

222 M.

22.3 attributeACLs {

2231 doctor mng.doctor {doctor mng.search_doctor; NONE}; /* This variable cannot be passed as an argument */

22.3.2 manager. doctor_name {manager.change_doctor_rank, doctor.get_name; manager.change doctor_rank};/* This variable cannot receive the
return value */

2233 ...

224 }

104



Asian J. Inform. Tech., 5 (1): 96-106, 2006

225 M.

23 }//end of ICRel

24 TAP { /* inter-system information flow control protocols are defined below. This system invokes remote methods. Therefore, pseudo parameter ACLs
and ACLs for pseudo variables that receive RMI retum values should be defined. */

24.1 pseudoParameters {

24.1.1 rmiObj.get case history doctor(parl);

242 }

24.3 pseudoParameterACLs {

24.3.1 rmiObj.get_case_history_doctor.parl {doctor_rank_mng.change_doctor_rank, manager. change_doctor_rank;
doctor_rank_mng.change doctor rank, manager.change doctor rank, doctor.get name}

244 }

24.5 pseudoVariableACLs {

24.5.1 rmiObj.get case history doctor {doctor rank mng.change doctor rank; NONE};
24.6 }

25}/ end of TAP

[ e JAVA program below ---------- *f

26 // import necessary files

27 class manager {

27.1 public String doctor_name;

27.2 public void change doctor rank{doctor rank mng drl, doctor d1){
27.3 // change the rank of doctor d1

2731 doctor name = dl.get_name();
27.3.2 drl.change doctor rank{doctor name);
274 }

28 )}/ end of class manager
29 class doctor {

291 intrank;

29.2 S8tring name;

29.3 public String get name(){

2031 retum name;

29.4 }

29.5 public int get rank(){

29.5.1 retum rank;

29.6 }

297 public void change rank(int new rank){
29.7.1 rank =new_rank;

29.8 }

30}/ end of class

31 class doctor mng{// this class offers methods to manage the two doctor arrays
31.1 public String doctor[]; //The array for doctor names

31.2 public doctor doc[]; // The array for doctor objects

31.3 public doctor search_doctor(String doctor_name){

31.3.1 {f search the doctor array and identify the doctor named doctor_name
31.3.2 /f retumn the coresp onding doctor object stored in the doc array

314 }

32

33 class doctor rank mng { /* get case histories of patients assigned to a doctor */
33,1 public String patient_case_history;

33.2 public int doctor_rank, new_doctor_rank;

33.3 public doctor di;

33.4 public case history service rmiOhbyj;

33.5 public void change_doctor_rank(String doctor_name) {

/* the following operations invoke remote methods */

3351 // Find the object HSOBRT offering the RMI service and set the object to rmiGObj
33.5.2 /f The object can be found using the method Naming.lookup

3353 patient_case history = rmiObj.get case history doctor({doctor name);

3354 while (patient_case_history != end of patient){

33541 /fcheck and record the patient case history

33.54.2 patient_case history = rmiObj.get case history doctor({doctor name);

3355

33.5.6 dl = doctor management.dmng]l .search _doctor{doctor name);

33.5.7 doctor_rank = d1.get_rank();

33.5.8 /* set new rank of doctor to new doctor rank according to the case histories and the current rank */
33.5.9 d1.change rank(new_doctor_rank);

33.6 }

34}/ end of class

35  class doctor_management {

35.1 public static doctor mng dmngl;
35.2 public void main){

3521 /f instantiate dmngl

3522 /* instantiate doctors and set up the array dmngl.doctor[] and dongl.doc[] */
3523 i

353 }

36}

105



10.

11.

Asian J. Inform. Tech., 5 (1): 96-106, 2006

REFERENCES

Samarati, P., E. Bertino, A. Ciampichetti and 3.
Tajodia, 1997. Information Flow control in object-
oriented systems. TEEE Transactions on Knowledge
and Data Engineering, 9: 524-538.

Bertino, E., Sabrina de Capitani di Vimercati, E. Ferrar,
P. Samarati, 1998. Exception-based mformation flow
control  in  object-oriented  systems. ACM
Transactions on Information and System Security,
1: 26-65.

Ferrari, E., P. Samarati, E. Bertinoand S. Jajodia, 1997.
Providing flexibility in infermation control for object-
oriented systems. In: Proceedings of the 13th TEEE
Symposium on Security and Privacy, pp: 130-140.
Maamir A. and A. Fellah, 2003. Adding Flexibility
Information Flow Control for Object-Oriented
Systems Using Versions, Intl. T. Software Engineering
and Knowledge Engineering, 13: 313-326.

Bell, D.E.and L.J. LaPadula, 1976. Secure computer
systems:  unified  exposition and  multics
interpretation. Technique Report, Mitre Corporation,
In:http: /fesre.nist. gov/publications/history /bell76 pdf
Brewer, D.F.C. and M.J. Nash, 1989. The chinese wall
security policy. In: Proceedings of the 5’th TEEE
Symposium on Security and Privacy, pp: 206-214.
Denming, D.E., 1976. A lattice model of secure
information flow. Commumications of the ACM,
19: 236-243.

Denning, D.E. and P.I. Denning, 1977. Certification of
program for secure mformation flow. Commumcations
of the ACM, 20: 504-513.

Chou, 5.C., Embedding role-based access control
model in object-oriented systems to protect privacy,
I. Sys. Software.

Tzaki, K., K. Tanaka, M. Takizawa, 2001. Information
flow control in role-based model for distributed
objects. In: Proceedings of the 8th International
Conference on Parallel and Distributed Systems,
pp: 363-370.

Mecllroy M.D., I.A. Reeds, 1992. Multilevel Security
in the UNIX Tradition Software - Practice and
Experience., 22: 673-694.

106

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Myers, A.C., 1999, JFlow: Practical mostly-static
information flow control. Tn: Proceedings of the 26’th
ACM Symposium on Principles of Programming
Language, pp: 228-241.

Myers, A.C. and B. Liskov, 1997. A Decentralized
model for information flow control. In: Proceedings
of the 17th ACM Symposium on Operating Systems
Principles, pp: 129-142.

Myers, A. and B. Liskov, 1998. Complete, safe
information flow with decentralized labels. In:
Proceedings of the 14th [EEE Symposium on Security
and Privacy, pp: 186-197.

Myers, A. and B. Liskov, 2000. Protecting privacy
using the decentralized label ACM
transactions on  software  engineering and
methodology, 9 : 410-442.

Sandhu, R.S., E.J. Coyne, HI.. Feinstein and C.E.
Youman, 1996. Role-based access control models.
IEEE Computer, 29: 38-47.

Sandhu, R., 1996. Role hierarchies and constraints for
lattice-based access controls. In: Proceedings of the
Fourth European Symposium on Research in
Computer Security, pp: 65-79.

Nyanchama, M. And S. Osborn, 1995. Modeling
mandatory access control in role-based security
systems. Database Security IX: Status and Prospects,
pp: 129-144.

Osbom, S., 1997. Mandatory access control and role-
based access control revisited In: Proceedings of
the Second ACM Workshop on Role-Based Access
Control, 31-40.

Osborn, S., R. Sandhu and Q. Munawer, 2000.
Configuring role-based access control to enforce
mandatory and discretionary access control policies.
ACM transactions on mformation and system
security, 3: 85-106.

Niemeyer P. and I. Knudsen, 2000. Learning TAVA,
O’REILLY.

model.



