M Asian Journal of Information Technology 6 (5): 544-547, 2007

onllrne © Medwell Journals, 2007

Efficient Utilization of Computing Resources Using Highest
Response Next Scheduling in Grid

K. Somasundaram, 3. Radhakrishnan and M. Gomathvnavagam
Department of CSE, A K. College of Engineering, Krishnankoil, Tamilnadu, India

Abstract: Grid 1s a type of parallel and distributed computing environment. Alchemi s one of the open source
toolkit for implementing grid environment. Tn Alchemi, Grid manager provide services associated with managing

the execution of grid applications and their constituent thread. When a client node sends request to the
manager or entry portal node, which distributes jobs among the executor or worker node. Here the threads are
scheduled on a priority and First Come First Served (FCFS) basis. Most previous research on job scheduling
for heterogeneous system considers the scenario where each job or task is mapped into single processor. In
this study, we address the scheduling of parallel jobs in grid enviromment, where each site has a homogeneous
cluster of processor, but processor at different sites has different speed. Here, we use Highest Response Next

scheduling scheme where jobs are allotted to number of processor based on job’s priority and processor’s
capability. This scheme is adaptive for local jobs and remote jobs without any loss of performance and highly

adaptive for grid environment.

Key words: FCFS, Highest Response Next Scheduling Algorithm (HRN), grid computing, efficient utilization,

resources

INTRODUCTION

A computational Grid is a hardware and software
mfrastructure that provides dependable, consistent,
pervasive and inexpensive access to high-end
computational capabilities. According to the function,
Grid is classified into three types: Computational Grid,
Data Grid and Service Grid. Computational Grid 1s used to
connect various computing resources on the network to
construct a virtual high performance computer, which
could offer high performance computing facilities
(Ranganathan and Foster, 2002). The traditional
computational Grid systems involve many technologies
such as certification, task scheduling, commumcation
protocols, fault tolerance and so on. The task of Grid
resource broker and scheduler 1s to dynamically identify
and characterize the available resources, select and
allocate the most appropriate resources for a given job
(Mitrani and Palmer, 2003). The resources are typically
heterogeneous and locally admimstered and accessible
under different local policies. Advance reservation (Foster
et al, 2004) 1s currently being added to Portable Batch
System (PBS).

Alchemi Grid Architecture (Akshay et al., 2005) has
the following major components like: Manager, Executor,
Owner and Cross Platform Manager. Manager manages
the execution of grid application and provides services
associated with managing thread execution. Here threads

are scheduled on priority and FCFS basis. HExecuter
accepts threads from manager and executes them. It can
be either dedicated or non-dedicated. Grid applications are
created by using owner component Cross platform
manager is an optional sub components of manager.

In this study, we present Highest Response Next
(HRN) scheduling algorithm, where the highest priority
job to choose suitable resource based on its CPU and
Memory requirements.

RELATED WORK

So far researchers have focused on allocating a single
resource type (e.g., CPU usage) to jobs m the ready
queue. The use of many scheduling algorithms has been
limited due to restriction in application designs, runtime,
system, or the job management system itself. Therefore,
simple allocation scheme such as First Come First Serve
(FCFS) or FCFS with First Fit back fill (FCFS/FF) are used
1n practice (Vijay et al., 2002).

Current jobs scheduling practices, support various
resource allocations to a job and run to complete the
scheduling. Scheduling policies are also heavily based on
First-Come-First-Serve (FCFS) algorithms (Bitten et af.,
2002). A FCFS scheduling algorithm allocates resources
to jobs in the order that they arrive. The FCFS algorithm
schedules the next job in ready queue as soon as
sufficient system resources become available to meand! of

Corresponding Author: K. Somasundaram, Department of CSE, A K.College of Engineering, Krishnankoil, Tamilnadu, India

Asian J. Inform. Tech., 6 (5): 544-547, 2007

the job requirements. The advantage of this provides the
level of determinism on the waiting time of each job
(Ememann et al., 2002). The disadvantage of FCFS shows
up when the jobs at the head of the ready queue cannot
be scheduled immediately due to insufficient system
resources, but jobs further down the queue would be able
to execute given the currently available resources. These
latter jobs are essentially blocked from executing while the
system resources are remaining idle (Hong et al, 2003).

AppLes (Fran et al, 1997) 13 a application level
scheduler which builds agents for each application
responsible for offering a scheduling mechamsm. It
concentrates to particular application whereas HRN
focuses common to all applications

Nimrod/G (David et al., 2000; Rajkumar et al., 1993) is
also an application level meta scheduler where a jobs to
be submitted by a user and operate by selecting resources
based on information available about those resources. It
mainly concentrates on resource cost and deadline.

GrAds (Sathish et af, 2002) and Utopia (Songnian
et al., 1993) are Global meta scheduler. Tt maintains
account information about resources and other jobs. The
resulting is the better application performance and
resource utilization.

HRN SCHEDULING APPROACH

In this approach, jobs are allotted based on its
priority, its CPU and Memory requirements. We have
used Highest Response Next (HRN) scheduling algorithm,
to correct some of the weakness in both Shortest Job First
and FCFS. In particularly, the excessive bias against
longer jobs and the excessive favoritism toward short
new job. HRN is a non preemptive discipline in which the
priority of each job is a function not only of the job’s
service time but also of the amount of time the job has
been waiting for service. Once a job gets the CPU cycle,
1t runs to completion.

HRN SCHEDULING MODEL

HRN 18 a non preemptive and priority based
scheduling. Here priority is calculated dynamically.
Dynamic priority n HRN 1s calculated according to the
following formula:

Tp=(Tw+Ts;) / Ts,

Where
Tpi = Priority of each job. (i=0,1,..n Jobs)
Twi = Waiting time of each Jobs (1=0,1,.n Jobs)

Tsi = Service time of each jobs (i=0,1,..n JTobs)

545

In HRN, Service time is also calculated dynamically
with starting and finishing time of each jobs.

Ts,=Tf - Tst,
Where,

Ts; = Service time of each jobs (1=0, 1, n Jobs)
Tfi = Finishing time of each Jobs (i=0,1,..n Tobs)
Tst, = Starting time of each jobs (1=0,1,...n Jobs)

Because the service time appears in the denominator,
shorter jobs will get preference. But the waiting time
appears in numerator, longer jobs that have been waiting
and also give favorable treatment to them. Hence the total
system’s response time is calculated as:

R=
i

TWi + TSi

¥
=0

The following Pseudo code shows the algorithm of
Highest Response Next scheduling.

procedure main()
begin:
int j=0;
for i=1 to n jobs
begin:
initially all jobs service time = 0y,
J= (G 1)%610000;
if (=0
begin:
job is in processing state;
call process() sub procedure;

else
job is added in queue;
call add process sub procedure;
end;
end;
end;

end procedure;

procedure addprocess(unsigned servicetime)
begin:
for i=1to n jobs;
begin:
if{current job’s service time==)
begin
current job’s service time= service time;
current job’s waittime=(0;
else
slot is filled
end;
end;
end;

end procedure;

Asian J. Inform. Tech., 6 (5): 544-547, 2007

procedure processQ()
begin:
low=0;
for i=1 to n jobs
begin:
it (job’s service time!=0)
begin:
priority = (job’s waiting time + job’s service time)/ (job’s
service time);
it ((i=1) || (low < priority))
begin:
low = priority;
id=T;
end;
job’s wait time ++;

job’s service time--;
if (jobs service time =—0)
begin:
job is removed from the slot;
end;

end;

end procedure;

Table 1: CPU, memory and priority table of each jobs

Scheduling epochs FCFS§ HRN
1 0,1 1042
2 2 13,1
3 i3 I5 j4
4 AENA]
Table 2: Job queue ordering

Priority

CPU Memory Waiting Service TP=(Ts+
Jobs requirement requirement time time Tw)/Ts
JO 8 4 0 0.125 1
J1 4 2 0.125 0.0625 4
J2 7 16 0.1875 0.5 2
I3 11 20 0.6875 0.625 3
J4 1 12 1.3125 0.375 5
I5 1 10 1.6875 0.3125 3]
Table 3: FCFS scheduling
FCFS
Jobs to Tot.CPU Memory

Epochs be completed requirement requiremnent.
1 jo, j1 12 6
2 i2 7 16
3 i3 11 20
4 . i3 2 2

PERFORMANCE ANALYSIS OF HRN WITH FCFS

As an example given in the Table 1, it shows the
memory and CPU requirements, waiting and service time
of each jobs. The job allocation scheme maps the 6 jobs
1 job queue to two resource system with 16 CPU and 32
Gbytes of memory. Assume that the order in the job
queue represents the order of arrival and that each job

546

Table 4: HRN scheduling

HRN
Jobs to Tat.CPU Memory
Epochs be completed Requirement Requirement
1 jo, j2 15 20
2 il, i3 15 22
3 i, is 2 22
4 R - -
16- [] oo
F— utilized (HRN)
144 O NeofCPU
utilized (FCFS)
121
% 10+
]
g &
b
s 6
& 61
Z
4.
2.
5 /
0 1 2 3 4
No of epachs

Fig. 1: CPU utilization of FCFS5 and HRN

requires the different amount of execution time. Under the
assumption, a job allocation scheme would select a set of
jobs for execution during the scheduling epochs. The
number of epochs required to schedule all jobs 1n the job
queue 1s used to compare different job allocation scheme.
Table 2 shows the jobs allocated to each scheduling
epochs for FCFS and HRN. The FCFS allocation scheme
allocates jobs 0 and 1 in first epoch, but it can not allocate
job 2, due to total CPU requirement of three jobs being
greater than the system provides (8+4+7 >16). In FCFS,
jobs are processed as it is coming and it takes
approximately 4 epochs to complete all the jobs.

In HRN, jobs are allocated based on its priority and
resource availability. Hence lowest service time jobs will
get highest priority to get CPU for processing. For ex, jobs
10, 12 are completed mn first epoch. So, the CPU and
Memory requirements of first epoch are only (8+7< 16)
and (4+16<=20). Tobs j3 and j1 are completed in second
epoch and jobs j5 and j6 are completed with in third epoch
only. Soover all TAT (Tum Around Time) of HRN 15 less
than over all TAT of FCFS.

Table 3 and 4 shows the total CPU requirement and
memory requirement for FCFS and HRN scheduling
respectively. From the table, the HRN scheduling
algorithm completes all the jobs within three epochs and
forth epochs it ready to accept new jobs, but in FCFS
takes four epochs to complete all the jobs.

Asian J. Inform. Tech., 6 (5): 544-547, 2007

B Memory utilized (FCFS)
O Memory utilized

25+

’

No of epochs
Fig. 2: Memory utilization of FCFS and HRN

Figure 1 and 2 shows the CPU utilization and memory
utilization of FCFS and HRN scheduling. The system
provides maximum of 16 CPUs, but FCFS can utilize
the maximum of 12 CPUs due the nature of its scheduling.
The CPU utilization of FCFS comes only 75% only. In
HRN with priority, it utilize maximum of 15 CPUs and
complete all the jobs within three epochs and its CPU
utilization comes around 94%. From this result, we
can conclude that HRN with priority will effectively
utilize the available resources and complete all the jobs
quickly. This algorithm will effectively work well 1n grid
1LV Irorumernts.

CONCLUSION

HRN 18 a new scheduling algorithm m Grid which
provides more responses with time, memory and CPU
requirements. We have identified that the HRN model for
scheduling system is much adaptive for Grid environment.
In future, we can modify the HRN at priority level for
reducing the HRN’s over all Turmn Around Time (TAT) of
job completion from 3 epochs to 2 epochs and avoid
memory and CPU wastage in each epochs.

REFERENCES

Alkshay Luther, Rajkumar Buyya, Rajiv Ranjan and
Srikumar Venugopal, 2005, Alchemi: A. NET-based
Enterprise Grid Computing Systems, Proceedings of
the 6th International Conference on Internet
Computing (ICOMP), Las Vegas, USA |, pp: 27-30.

Alkshay Luther, Rajkumar Buyya, Rajiv Ranjan and
Srikumar Venugopal, 2005, Alchemi: A. NET-based
Grid Computing Framework and its Integration into
Global Grids. Proceedings of the 6th International
Conference on Internet Computing (ICOMP), Las
Vegas, USA., pp: 27-30.

547

Bitten, C., J. Gehring et al., 2000. The NRW-Meta
Computer: building block for a worldwide
computational Grid, proceeding of the 6th
Heterogeneous Computing Workshop, pp: 31-40.

David Abramson, Jon Griddy and T.ew Kotler, 2000. High
Perfromance Paremetric Modeling with Nimrod/G:
Killer application for the Global Gnid?, Int
International Parallel and Distributed Processing
Symposium (IPDPS), Cancun, Mexico, pp: 520-528.

Ememann, C., V. Hamscher ef al., 2002. On Advantageous
of Grid Computing for parallel job scheduling,
proceeding 2nd IEEE/ACM Int'. Symp. On cluster
computing and the Grid (CCGRID 2002), Berlin,
IEEE Press.

Foster, I. et o, 2004. The Grid 2003 Production Grid :

Principles and Practice, 13th International
Symposium on High Performance Distributed
Computing.

Fran Berman, F. and R. Wolsky, 1997. AppLes Project: A
Status Report, Proceeding of 8th NEC Research
Symposium, Germarny.

Hong Zhang Shan, Leomd Oliker ef al., 2003. Job super
Scheduler Architecture and Performance in
Computational Grid Environments ACM: Version,
pp: 15-21.

Mitrani, I. and J. Palmer, 2003. Dynamic Server Allocation
Heterogenous Clusters, 1st International working
conference on Heterogeneous Networks, Tlkley, UK.

Rajlumar Buyya, David Abramson, Jon Giddy, Nimrod/G,
2000. An Architecture for a Resource Management
and Scheduling System m a Global Computational
Grid, In: Proceedings of the HPC ASIA the 4th
International Conference on High Perfromance
Computing in Asia-Pacific Region, Beying, China,
[EEE Computer Society Press, TJSA.

Ranganathan, K and 1. Foster, 2002. Decoupling
Computation and Data Scheduling in Data Intensive
Applications, 11th International Symposium on
High Perfromance Distributed Computing, Ediburgh,
Scotland, Condor Project, Condor-G.

Sathish S. Vadhiyar and Jack T. Dongarra, 2002. A Meta
Scheduler for the Grid, In: Proceeding of the 11th
[EEE International Symposium on High Perfromance
Computing, Edinburgh, Scottland, IEEE. Computer
Soc., pp: 343.

Songman Zhou, Xiaohu Zheng, Jingwen Wang and Pierre
Delisle, 1993, Utopia: A Load-Sharing facility for
large heterogeneous distributed computing systems,
Software-Practice and Experience, 23: 1305-1336.

Vijay Subramanian, Rajkumar Kettimuthu et al., 2002.
Distributed Job Scheduling on Computational Grids
using Multiple Simultaneous Requests, IEEE.

