Medwen

Online

ISSN: 1682-3915
© Medwell Journals, 2007

Asian Journal of Information Techmology 6 (9). 956-957, 2007

Permutation Generation Algorithm

O.V. Viktorov
P.OBox 1764 Amman 11821, Jordan

Abstract: A new permutation generation algorithm 1s presented i this study. The algorithm has the fastest
software implementation because it uses exchanges of two elements, but certain software overhead 1s present
due to analysis of generating numbers and m-module forward-backward counters.

Key words: Combinatorial algorithm, permutation, permutation generation algorithms, data structure,

generating number, generating record

INTRODUCTION

Generation of »! permutations 1s used for encryption,
matrix determinant calculation, random number generation,
data encoding and optimization methods. Over thirty
new algorithms have been presented for the last thurty
vears (Sedgewick, 1977, Roy, 1978, Kreher and
Stinson,1998; Knuth, 1998, Tyer, 2001; Latif, 2004, Knuth,
2005). However, these algorithms differ too much in
complexity and speed. Apparently, only fastest of them
can be used in practice because the number of all
possible permutation #/ grows dramatically with n. The
efficiency of permutation generation algorithm depends
data structure that 1s used to represent
permutations and simplicity of the operations used for
permutation generation. Permutation generation
algorithms based on exchange of two elements are the
fastest ones, (Ives, 1976; Sedgewick, 1977; Roy,1978) but
it is interesting to know is it possible to design an
algorithm that uses only one exchange operation to
generate each new permutation and how to choose two
elements for it? The solution of this problem is presented
in the studsy.

on the

BACKGROUND

First of all the abstract data structures used 1n
algorithms should be specified.

Data structure
Elements: Objects a, a,... a,, distinguished from each
other are located accordingly on positions 1,2, 3., nn.

Operations: the exchange of two objects, whose
positions are defined with the help of generating records
and the use of modular recalculation.

956

Algorithm

1.

Tnitialize the following variables: c(i)=0,1(i) =1, m{i)
=n-1,1=1,2.. n

2. Initialize the following variables: i=1;k=1.

3. Generate the permutation a, a, a;... a,

4. Tfe(i) = m(i) then go to the step 6.

5. Exchange the object located on the position ¢(i) + k
with the object that i1s located on the positions
c(Urtk+r (1), sete (1) = c(1)+r (1); go to the step 2.

6. Ifc(i+1)=m(i+ 1) then go to the step 8.

7. Exchange the object located on the position k with
object that 1s located on positions n - k+1; set c(1) =
n-1-m(1) and c(i+1) = c(i+1)+ 1(i+1); go to the

step 2.

8. Setr)=-r),mi)=n-1-m{);i+D=-ri+1xm(
+1)=n-i-1-mG+1)xi=1+2k=k+1,

9. Ifi<nthen go to the step 4.

10. The end

Object
Counter digit posi-

Counter Counter mode modules tion Permutation
Lk&GC GC6n ooy, mm momx x5 6 GGG
1100 090 111 132 1 06 1 2 1 23 4
211000 111 132 1 02 3 2 13 4
3120 00 111 132 1 0 3 42 31 4
4130 00 111 132 1 0142 341
5101 00 111 132 1 01 2 1 34 2
6111 00 1 11 1 32 1 0 2 3 3 421
7121 00 111 132 1 03 43 41 2
8131 00 111 13 2 1 0 1 43 421
9102 00 111 132 1 01 2 1 42 3
112 090 111 132 1 06 2 3 412 3
1m122 090 111 13 2 1 0 3 4 421 3
12132 00 111 100 1 0 2 3 423 1
13132 10 -1-11 1006 1 0 43 4321
14122 10 -1-11 100 1 0 3 2 431 2
15112 10 -1-11 100 1 0 2 1 413 2
161 02 1 0 -1 -1 1 1 00 1 0 1 4 1 43 2

Asian J. Inform. Tech., 6 (9): 956-957, 2007

Continue Table

Object
Counter digit posi-

Counter Counter mode modules tion Permutation
LkGG GG n o1, mpm o m o mx X G GC6 G
7131 10 -1-11 1 0 0 1 0 4 3 2 43 1
1121 1 0 -1 -1 1 1 0 0 1 0 3 2 2 41 3
111 10 -1 -1 1 1 0 0 1 0 2 1 2 14 3
2€0101 10 -1 -11 1 0 0 1 0 1 4 1 2 4 3
21130 1 0 -1-11 1 0 0 1 0 4 3 3 24 1
221290 10 -1-11 1 90 0 1 0 3 2 3 21 4
23110 10 -1-11 1 90 0 1 0 2 1 3 12 4
24100 1 0 1 1 1 13 2 0 0 - - 1 32 4

Sequence of all n! (n = 4) permutations 1s shown n
the Example 2:

The counter digits ¢(1) are independent and their digit
modules m (1) and forward or backward counting (1) (1 1s
mcrement, - 1 18 decrement) are changing during algorithm
umplementation execution. Theorem.

n! different permutations can be generated using
operation exchange of two elements that are located on
any i andj positions (i=1,2,...,nand j=1,2,...,n)i
#7.

Proof: It should be noted that exchange operation can be
applied to the permutation if n > 1.

Basis step: Let us show, that the theorem 1s true when n
= 2 . a,a,Pexchange=> a,a, 2! = 2, so aja,and a,a, are all
n! permutations of 2 elements

Induction step: Let us assume that theorem is true forn =
k. We will show now that theorem is true forn =k + 1. Let
us locate new element a,, , onthe positioni1(1=1,2, . ..
, k+1)toget anew permutation a,a, & _, @y, &
For each of the following permutations a,a, a, a.. ,,

e

a,d; s
k! permutations of k + 1 elements using operation
exchange of two elements. So, the total number of
different (k+1) — permutations 1s (kt+1)k! =(k+ 1)

Ay Byyy Ay, 8., 8,8, a we can generate

957

RESULTS

A new permutation generation algorithm is presented
in this study. Tt has been proved that #/ permutations can
be generated using operation exchange of two elements
that are located on any iand j positions i=1,2,...,n
and j=1,2,...,n)i#].

CONCLUSION

The algorithm has the fastest software
implementation because it uses one exchange of two
elements to generate each new permutation from previous
one, but certamn software overhead 1s present due to
analysis of generating numbers and m-module forward-
backward counter states. Application of suggested
algorithm allowed us to generate permutations with n
more than 10 that was practically impossible to generate
by algorithms that are known before.

REFERENCES

Ives, F.M., 1976, Permutation Enumeration: Four new
algorithms, J. Assoc. Compu. Machinery, 19: 68-72.

Tyer, M.G., 2001. Permutation Generation Using Matrices,
Dr. Dobb's Portal, 22: 26-38.

Knuth, D.E., 1998. The At of Programming, Fundamental
Algorithms, (3rd Edn.), Addison-Wesley Longman,
Vol. 1.

Knuth, D.E., 2005.The Art of Programming, Volume 4,
Fascicle 2, Generation All Tuples and Permutations
Addison-Wesley Professional.

Kreher, DL. and R. Stinson, 1998 Combinatorial
Algorithms: Generation, Enumeration and Search,
CRC.

Latif, U, 2004, Random Permutation Generation,
TechUser. Net, 13:123-127.

Roy, M K., 1978. Evaluation of Permutation Algorithms,
The Comput. T., 21, 4: 296-301.

Sedgewick. R., 1977. Permutation Generation Methods,
Computing Surveys, 9: 137-164.

