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The Analysis of Frequency Response for Pyramidal Directional Filter Banks
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Abstract: Aiming at the frequency aliasing 1ssue existing m Contourlet Transform, through analyzing Laplacian
Pyramidal transform, making sure that neither of lowpass filter banks in Laplace pyramid transform satisfies
Nyquist sampling theorem and cutoff frequency of stopband was over /2 was obviously the basic reason to
the frequency aliasing in Contourlet Transform. Based on this, a lowpass filter which satisfies Nyquist sampling
theorem was designed and an Non-aliasing Contourlet Transform was proposed, namely N-Contourlet
Transform. Experimental Results of hard thresholding denosmg indicated that N-Contourlet Transform
denoising not only give a 2 dB (0 = 30) higher PSNR than that of Contourlet Transform, but also effectively
suppressed scratch after the latter denoised, providing a better visual effect.
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INTRODUCTION

Recently, wavelet theory has had a significant
development in the application of signal processing and
its position has been also increasingly important, which
benefits from the fact that wavelet can analyze 1-D piece-
wise continuous signal effectively, meanwhile it is the
optimal basis to represent these functions with 1-D point
singularity. Nevertheless, 2-D wavelet on commonly used
is the tensor product of 1-D wavelet and it only has
limited directions (strictly speaking, only horzontal,
vertical and diagonal 3 directions), but the singularity of
2-D image mamly reflects as edge and contour, 2-D tensor
wavelet could not make full use of direction mformation
in image, so 1t would not represent image optimally or
sparsely. Based on thus, scholars presented a series of
multi-scale geometrical analysis approaches including
Ridgelet transform (Candés, 1998), Curvelet transform
(Candés, 1999) and Contourlet transform (Do and Vetterl,
2005) ete. to solve the representation issue of high
dimensional singularity. Ridglet transform was proposed
by Candes (1998), whose kernel idea was to transform
line singularity mto point singularity by using Radon
transform, then point singularity was captured by wavelet
transform. Therefore, Ridgelet transform was the optimal
basis to represent image with line singularity, but it wasn’t
suitable to curve singularity. However, emergence of
Curvelet transform solved this problem preferably.
Cwrvelet transform was the generalization of ridgelet
transformation and it realized the multiscale and

multidirection decomposition on image by block ridgelet
transform and subband decomposition algorithm, was the
optimal basis to represent smoothing curve edge umage
with bi-differential and having the good time-frequency
localization and nonlinear approximation. But its
disadvantage was that it had a lot of redundancy (16J+1,
I denotes decomposition scale), which was difficult to
cope with in practical processing. In order to overcome
this defect of Curvelet transform, do presented a new
image decomposition method with low redundancy,
namely Contourlet transform. Definitely, it implemented
multiscale and multidirection decomposition on image
by the mtegration of Laplacian Pyramidal transform
(Burt and Adelson, 1983) and Directional Filter Banks
(Bamberger et al., 1992) and its basis function accorded
with every amstropy scale relation, was undoubtedly
able to  represent high-dimensional singularity in
image including contour and edge by extraordinarily
approaching to optimal way, so it 18 an excellent repre-
sentation for 2-D image in a real sense (Eslami and Radha,
2006; Cunha et al., 2006).

However, regularity of Contourlet basis function was
not lugh enough and the localization of its spatial domain
and frequent domam was not 1deal either (Lu and Do,
2003; Po and Do, 2006), obviously frequency aliasing
existed, which greatly affected the application of
Contourlet transform 1n the practical image processing.
Accordingly, this study starts with the basic concept of
2D multirate decimation system (Vaidyanathan, 1993),
analyzing aliasing source and influence from Directional
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filter banks and Laplacian Pyramidal transform 2 aspects.
On this basis, it proposes corresponding solution,
studying and realizing an Non-aliasing Contourlet
transform.

CONTOURLET TRANSFORM ANDITS
POLYPHASE REPRESENTATION

Contourlet transform consists of Laplacian Pyramidal
decomposition and Directional filter banks, Laplacian
Pyramidal transform performs multiscale decomposition
on image to acquire point smgularity and produce
approximation subband and detail subband, where
approximation subband is gained by 2-D lowpass filtering
and downsampling on original image. By upsampling and
lowpass filtering, approximation subband produces low
frequency component whose scale is the same as original
image and finally to subtract low frequency component
from original image so as to obtam detail subband.
Afterwards, perform the application of Directional Filter
Banks in detail subband to capture direction information
and integrate singular points distributing in the same
direction into a coefficient. This procedure can be
performed by iteration in approximation subband,
normally, it can realize multiscale and multidirection
decomposition of image, so this is the filter banks which
have dual-iterative structure. Figure la denotes the
principle diagram of Contourlet transform.

In order to analyze frequency aliasing characteristics
of Contourlet transform further, we define Contourlet
transform as the form of equivalent filter banks. For L level
decomposition, every level has d Contourlet transforms
of directional subband. The definition is as follow: for
DFB in the ith level decomposition, we defme its
directional filter as , cutput directional subband as y; (n):
{1<icl, 1< 7 <d}, 1 denotes this DFB i1s mn the ith level
decomposition, j shows the directional filter banks
(directional subband) correspond to the jth direction.
Similarly, when x (n) and y; (n): {1<j<d;} are regarded as
nput and output of a directional filter banks, A, is the
definition of its equivalent directional filter. 1-level
decomposition, 4-channel Contourlet transform is taken as

an example, such as given in Fig. 1 (b), dashed block
diagram  denotes Lapalcian  pyramidal
decomposition, x (n) is its nput, y,, (n) and d, (n) are
output, which represent approximation subband and
detail subband, respectively, G (z) and F (z) are 2 half-
band lowpass filter. Lowpass filter G (z) and F (z) are,
respectively proposed as type-I polyphase representation
and type-ll polyphase representation (Vaidyanathan,
1993):

1-level

G(z)= G®@ (z")+ zl'le(zD2 I+ Z;Gm (z™2)
+2,'2; GV () = g" (27 e(2)

F(z) = F9(27 )+ 2, FV (27 )+ 2,F¥ (™)
+z,z,FP (") =17 (2" e(z )

(1

Where,

g@m = [GY(@.G"(@.G% (2,6,
fz) = [F9@,FY@.F?,F° @I
e(z) = 1z 2z 'z

€ (Z-l) - (1, 2z, z, lez]T

If LP transform between x (1) and y,; (n): {1<j<4} and
DFB are together equivalently an filter bank, its
corresponding polyphase matrix 1s:

B(z) = E@)| -z (2)] (3)

and there 1s a relation as:
~ ~ ~ IS ~ T
E(ZD2 Je(z) = [Hl (z)Hy, (2), H s (z), Hy, (Z)} “)

According to the relation mentioned Fig. 1a shows
Contourlet transform 13 also equivalently Fig. 1b
represents a 5-channel filter banks, in Fig. 1b G is a
lowpass filter and 1, is an equivalent directional filter
banks. In the ideal condition, frequency support region
of I, should be 2 trapezoids that are symmetric along
diagonal direction as shown in Fig. 1b, other region
frequency responses are
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Fig. 1: Contourlet transform
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Fig. 2: The frequency spectnum of egquivalent directional
filter

approxitmately 0. Figure 2(2) provides fregquency response
of Contourlet transform equivalent direction filter I:III
which is showm in Fig 2. We can see that owtside
trapezoid region there is an obvious salient, whichis alse
freguency aliasing component. Figure 2b shows regquency
response of B-channel Contourlet transfonm, Similady,
fregquency aliasing also essts Existence of fregquency
gliasing results in low frequency domain localization of
Contowrlet transfonn, which directly affects  the
application of Contourlet transform in fields incuding
itnage denoise and compress. Then we will analyze the
canse of frequency aliasing from Laplacian pyramidal
transfonm and give out the corresponding solution.

FREQUENCY ALIASING OF
CONTOURLET TRANSFORM

The direction filter H,, () is described in Fig. 1,
which sheows ity eguivalent structure in the following
Fig 3. Weassume FH | (=) =F (=)H,, (=) and express FH |
(=) i the form of polynemial representation:
whete,

FHi(z™)

iy gotten through suybsampling in advance and then upper
gampling with D, toward FH,, (=), whoze fregquency
response 15 given by as follows:

FH, () = FHO (%) + 23 FHI %)

+z FHE 5 + 22 FH (™)
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Fig. 3: The equivalent structure of directional filter B (o0
inFig. 2
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O the right of the egual mark in Fonmula (£), the
gecond, the third and the forth items are the aliasing
heawvesin Fig. 2. Dueto the half-band lowpasses G (W) and
F (w), heaves are cawsed by the superpostion of
todulation direction filter H,, (0-027 s pass-band and G
(6, F (w-w)’s. Therefore, to eliminate those heaves, one
way i to ty to redoce the band superposition among
these filters, especially the transition-band superposition.
InLP transfonm, G (0) and F (02) are 2-dimension separable
lowpasses filter (Fig. 30 If they both satisfy the MNyguist
sampling law, that means the ranges of pass-band and
stop-band are both in [-0/2, T2, O (W) and F (L-03)
won't superpose and their product is zero constantly
through the whele range [T, T]* With thiz method, the
dliasing items could be eliminated.

Hence, G (W) and F () should satisfy the following
conditions

&Am=Hnm{r Gmﬁmﬂ

Glo)Flo-o,)H, (0 -0,)

Gy =0, Flo) =10
Gfwy = 0, Fla) = 0

m, < <p/l

o, Zlo|2x
|oo] < oy, (%)

Where,
DJP =
m:

Denotes the pass-band cutoff frequency.
Denotes the stop-band cuteff frequency.
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Formula (9) indicates that in order to ensure the anti-
aliazing, the range of lowpass’s pass-band and transition-
band hawve to be in [-K/2, T/2]* and the frequency
responge shouwld approximate zero within the stop-band
region.

THE DESIGN OF THE NON-ALIASING
CONTOURLET TRANSFORM

In LP transform, if lowpaszes filter G (2) and F ()
don’t satisfy Mygquist sampling law, the filter’s response
will still eorist beyond [-1/2, T/2]%. According to the former
gection, we could affinm that is the primary reason
leadiniz to the frequency aliasing of Contourlet transforim.
Thus, to dezign the MNon-aliazsing Contowrlet transform
(I]-Contourlet), we must ensure that G (w) and F (o)
gatisfy Forrmmala (90,1, G000 and F (020's stop-band cutoff
frequencies should be less than T/2 and their frequency
response should approximate zero in stop-band region.
We design the MN-Contourlet transform with the similar
method of designing the Contourlet transform. Dulti-scale
decompozition and direction decomposition are canying
out separately. In the multi-scale decomposition, e
define lowpass H, (00) and highpass G, (W) directly to
implement the acquisition of appoximation sub-band and
detail sub-band, azmuning the H, () pass-band cuteff
frequency is T/4, its stop-band cwtoff fregquency is T/2
and the transtion region ix [T/, T/2]. Supposing the
frequency aliasing cauvsed by lower-sampling could be
elitminated abzolutely, to guarantee the entire re-
congtruction, Hy (000 and Gy (00) must satisfy the equation:
[Hy o + |G (o)t =1. Direction decomposition is
implemented through DFE | whose conformation method
is consstent with the one in Contourlet transform.
Concretely speaking, it uvses the exaltation-stracture
based PEKVA fan filter banks as the basic modules and
cascade therm in a appropriate way. Defining highpass
directly could avoid the sampling operation in the process
of generating detail sub-band in LP transform. Image
directly cascades DFE  after passing through the
highpass. So far as the highpass zatisfies the sampling
law, the frequency aliasing cavsed by mwlti-scale
decomposition won't be taken into thoze direction swh-
bands, so that the aliasing could be restrained in a finther
step.

Figure 4 is the frequency support of a T-Contourlet
transform direction filter. Compared with Fig. 2, we can
find that M-Contourlet transform won't cavse obwious
frequency aliasing. Furthenmore, the stop-band region is
quite flat and the heawves in Contowrlet transform are
observably restrained. That indicates the localization of
MN-Contourlet transform’s  fegquency region iz also
superior to the Comtowrlet transform’s, with better
direction wel ectivity,
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Fig 4. The frequency spectnun of equivalent directional
filter for M-contowrl et trans fonm
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Fig. 5 The zoomed dencised lena with different transform

(o =4
EXPERIMENTS

For simulation, we choose image Lena as the testing
image. Gavssian white noise at different lewvels iz added
into the image previovdy. Weuse 907 wavelet, Contourlet
transform and I-Contourlet transfornm to act on the image,
respectively for the hard threshold deneising experiment.
A1l these 4 transforms contain 4-layer decompositions.
For the later 2 transforme, the murber of the direction sub-
bands in every layet’ s decomposition iz [16, 146, 8, £].
When the niose’s variance i beyond 40, compared to 9/7
wavelet and Contourlet transfonm, the re-construction
image’s PEIE value could be enhance 3.32d6 and 2.446 dB
by wsing M-Contourlet transform deneising. We can also
conclude from the figure that with the method of TJ-
Contourlet transform denoising, the detail and testure of
the image are well kept and the nisks capsed by
Contourlet transform denoising are well restrained. Its
vizion impression is obwious superior to the ones of
Contoutl et trans form and 97 wavelet (Fig. 5.

CONCLUSION

Aiming at the frequency aliasing issue exsting in
Contourlet Transform, this study starts from mltivate



Asian J. Inform. Technol., 7 (6): 249-253, 2008

filter banks, through analysis of frequency aliasing in
Laplacian pyramidal transform, mdicates the basic reason
to frequency aliasing in Contourlet Transform is neither of
lowpass filters in LP transform satisfies Nyquist sampling
theorem and on this basis it defines an Non-aliasing
Contourlet transform which 13 suitable to Nyquist
sampling theorem, namely N-Contourlet transform. N-
Contourlet transform can effectively suppress the
frequency aliasing in Contourlet transform, absolutely its
basis function has a ligher regulanty and a better
directional selectivity. The hard thresholding denoise
experiment on standard image shows that N-Contourlet
transform has a better performance than Contourlet
transform, especially, for images have rich texture and
detail, the effect of N-Contourlet transform is greatly
better.
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