M Asian Journal of Information Technology 7 (7): 296-299, 2008
We]l

EAL . AT ¥ [SSN: 1682-3915
Online © Medwell Journals, 2008

Performance Enhancement in Wide Range of Applications Through

Multi Threading Technology

M. Shanthi
Velammal Engineering College, Chennai, Tamilnadu, India

Abstract: This study exploits the implementation of applications using threading in different platforms.
Experimentation is done by writing programs using object oriented technology. Various types of data, like
image, text and web data is considered for study. This study also discusses about thread operation models like
the master/worker model, the peer model and a thread pipeline model. Sample implementations are also provided

to highlight some of the recommended paradigms.

Key words: Image, master/worker, multithreaded, peer model, threading

INTRODUCTION

Threads are essentially sub-processes that share the
majority of the resources of their parent process and thus
require a lesser amount of system resources. Building
programs around threads of execution-that is, around
specific sequences of instructions-delivers significant
performance benefits. Consider, for example, a program
that reads large amounts of data from disk and processes
that data before writing it to the screen.

On a traditional, single-threaded program where only
one task executes at a tume, each of these activities
happens as a part of a sequence of distinct phases. No
data is processed until a chunk of a defined size has been
read. So, the program logic that could be processing the
data 1s not executed until disk reads are complete. This
leads to inferior performance. On a threaded program, one
thread can be assigned to read data, another thread to
process it and a third to write it out to the graphics card.
These 3 threads can operate in parallel so that data is
being processed while disk reads are going on and overall
performance umproves.

Multithreading can enable us to keep the responsive
by ensuring that the program never goes to sleep. Most
programs have moments where they pay no attention to
the user: they are too busy doing some work. The general
principle is that the thread that's responsible for
responding to the user and keeping the user interface up
to date (usually referred to as the thread) should never be
used to perform any lengthy operation. We might thread
our application for different reasons: doing the same work
faster, doing more work and offsetting the time taken by
slow operations.

Performance: Performance 1s the perceived measure of
how fast or efficient the software is and it is critical
to the success of all software. The Pentium 4
processor shows immediate performance improvements
across most existing software available today, with
performance levels varying depending on the application
category type.

The basic performance equation is (John and
Pattersor, 2003):

CPU time = Instruction_count * CPI * clock cycle

This equation separates the 3 key factors that can
measure the CPU execution time. The clock rate usually
given can measure overall instruction count by using
profilers/simulators without knowing all of the
implementation details. CPI varies by instruction type. We
measure performance mn a parallel program m terms of
speedup. This is the ratio of the programs runtime in
parallel to the runtime of the best available sequential
algorithms. Assuming that an application is multithreaded
{(programs written to execute in a parallel manner, rather
than a serial or purely equential one), there are inherent
difficulties in making a program run faster proportional to
the number of processors: the program needs to be
written in a parallel fashion and the program itself must be
resource friendly.

Tn the following example:

fori=1to 10
a)=b () +c()
x(M=y@+z()

end for

Asian J. Inform. Technol., 7 (7): 296-299, 2008

L |

6

l—

|

!

A

B C
Fig. 1: Block diagram of unique tasks

Table 1: Execution of 7 tasks

Time slot Pl P2 P3

1 Taks 1 Taks 6

2 Taks 2 Taks 4 Taks 7
3 Taks 3 Taks 5

this loop can be unrolled and a thread created for each
value of i. There are 10 threads which can potentially be
executed in parallel, provided sufficient resources are
available.

Consider Fig. 1 in which each block represents a task
and each task has a unique number. As required by the
application taks 2 can be executed only after task 1 is
completed and taks 3 can be executed only after taks 1
and taks 2 are both completed. Thus, the line through
task 1, 2, 3 forms a thread A of execution. Two other
threads B and C are also shown. The thread limits the
execution of task to a specific serial manner. Although,
the taks 2 has to follow taks 1 and taks 3 has to follow
taks 2, taks 4 can be executed in parallel with taks 2 or 3.
Similarly, taks 6 can be executed simultaneously with task
1 and so on Suppose the Multiple Instruction and
Multiple Data Stream processor has 3 processors and if
task takes the same amount of time to execute, the 7 tasks
shown in the Fig. 1 can be executed n the followmg
manner (Table 1).

Here a program is divided into many independent
threads. Each thread has an independent stack space but
shares a common global address space.

MATERIALS AND METHODS

The analysis stage involves profiling a serial
application to determine regions of the application that
can most benefit from threading. During the design phase,
the critical regions are examined, that are identified during
the analysis phase to determine the design changes

297

Performance
analysis

h 4

Programs with out

Fig. 2: Steps in threading methodology

required to accommodate a threading paradigm. During
implementation and testing, the execution performance
and the cormrectness of the threaded application are
verified n Fig. 2 (Intel Corporation, 2003).

Literature survey: Balakrishnan and Nandy (2000)
showed that multithreaded architectures coupled with
SIMD parallelism provide performance improvement in
excess of 2% over conventional super scalar architec-
tures. In Pop and Kumar (2006), the results indicate that
processors can substantially benefit from multithreading,
even 1n systems with small caches, provided sufficient
network bandwidth exists. Increased network contention
due to multithreading has a major effect on performance.
Their experimental results show that by taking advantage
of SMT technology we achieve a 30-70% improvement in
throughput over single threaded implementations on
In Guitart (2005),
multithreading system provides speedup factors between

in-memory database operations.

1.27 and 1.65. Simulations were performed in 3 steps. The
first step is a sequential execution of tasks, like in the
uniprocessor system. The second step is a parallel
multithreaded simulation with one thread for each task.
Threads are then scheduled by operating system and
synchronized by locks and the conditions variables. Third
step is also a multithreaded parallel simulation but with
the same number of threads and processors. These
threads execute tasks according to their structure with a
simple scheduling. Watheq et al. (1998) explained the
concept by maintaining multiple process contexts in
hardware and switching among them m few cycles,
multithreaded processors can overlap computation with

Asian J. Inform. Technol., 7 (7): 296-299, 2008

memory accesses and reduce processor idle time.
Pamit and Moore (2002) presents an architectural study of
IMA, a highperformance multithreaded architecture which
supports Java-multithreading and real time scheduling
whilst remaining low-power.

Multimedia applications are fast becoming one
of the dominating workloads for modemn computer
systems. Since, these applications normally have large
data sets and little data-reuse, many researchers believe
that they have poor memory behavior compared to
traditional programs and that current cache architectures
cannot handle them well. It is therefore, important to
quantitatively characterize the memory behavior of
these applications in order to provide insights for future
design and research of memory systems. Since, typical
media processing applications, especially 3D ammation
graphics, have very large data sets and little data-reuse,
many researchers believe that existing cache schemes
cannot handle these applications efficiently when
compared to traditional.

RESULTS AND DISCUSSION

Threading in banking applications: Program is written in
Tava with and without threads for banking application.
Program with thread takes less time than the program with
out thread. In this application, we consider only 2
operations deposit and withdrawal with 20 records. Study
shows that searching time varies based on the position of
the record and the value of the amount deposited or
withdrawn (size of the figure 1000, 100000). Since, the
process invoelves user interaction with the system, timing
difference plays a major role in the analysis. Thus, the
analysis is repeated 10 times with the same input value
and the average is considered as the fnal value. The
following Fig. 3 shows the analysis for the deposited
value of Rs. 1000. The program is run in Pentium
processor with HT supported machine and database used
MBS ACCESS AND TAVA SWING.

The average 15 found to be 296 ms without threads
and 140 ms with threads. The Fig. 3 shows that threads
are applicable for all applications to efficient functioning.

Threading in client-server applications: The evolution of
the multi-threaded processor design is the trend for the
next generation desktop processors. To add a record from
the client side, a program is written and executed in Java
with and without thread. The results are tabulated.

If we compare the average value of 2, program with
threading takes the advantage (117 ms) over without
threading (157 ms). So, it is evident that threading in
client-server application 1s faster always respective of
number of records (Fig. 4).

298

7007 O Without fhread
B With thread _
6001
500+ —
400
3001
2001
100
r 1 2 3 4 5 6 7 8 9 10
Fig. 3: Threading in banking application
2007 0O Without thread
O With thread
1801
1601
1401
1204
1001
B0
a)_
40_
201
0__
1 2 3 4 5

Fig. 4: Threading in client-server applications

Threading in scientific applications
Random number generation: The following are sample
data which shows the results for random number
generation upto 3000 numbers. The program 1s written in
Tava with and without threads. The program is executed
in Pentium HT machine and the time taken by the CPU in
milliseconds is listed Fig. 5.

The average values are 787 ms (with out thread) and
164 ms (with thread). Tt is evident that threading is
advantage.

Threading in producer consumer applications: Two
application program for producer consumer is written in
Java. In the first program, Main itself a thread and main
forles another thread. This thread deviates in to producer
and consumer. The other program, Main 1s a thread which
interleaves into 2 threads into producer and consumer.
The first program takes 4125 ms and the second takes
4890 ms (Fig. 6).

Asian J. Inform. Technol., 7 (7): 296-299, 2008

9001 O Without fhread

@ With thread

800+

700+

600+

500+

400

300+

2001

100

=

1 2 3 4
Fig. 5: Threading n scientific applications

1200007 O Without thread

0 With thread
100000
80000
600001

400001

20000

LI

1

l M [

2 3 4

Fig. 6: Threading in producer consumer applications

Table 2: Threading in multimedia applications

S. No No. of threads Time (ms) CPI
1 Without thread 203 4.7
2 Two 188 34

Threading in multimedia applications: Threading 1s really
advantages because it increases the processor time
urespective of the mmage format. This 1s observed by

299

writing a multimedia program in Java for loading the
images. The program is written with and with out
threading concept and executed in Pentium IV Processor
with HT enabled systems. Based on the tabulated values,
it was evident that threading gives better performance
(Table 2).

CONCLUSION

Multithreading has emerged as one of the most
promising and exciting techniques used to increase the
performance of applications. Many software applications
deliver appreciable performance gains on the Pentium 4
processor by directly benefiting from higher clock rates
and micro architectural enhancements. This 1s only an
introduction on how to get an easy performance gain
using thread to take advantage of Multithreading
Technology on an Intel Pentium processors. In future,
this may be extended to thread operation models.

REFERENCES

Balakrishnan, S. and S.K. Nandy, 2000. Performance
evaluation of multithreaded architectures for media
processing applications. In: Proc. TEEE. Int. Symp.
Cire. Syst. ISCAS, 1: 531-534.

Guitart, F.J., 2005 Performance Improvement of
Multithreaded Java Applications Execution on
Multiprocessor Systems Performance.

Intel Corporation Threading Methodology,
Principles and Practices version 2.0.

John, LH and D.A. Patterson, 2003. Computer
Architecture: A Quantitative Approach. 3rd Edn.
[SBN: 1-55860-596-7 A,

Panit, W. and 3. Moore, 2002. The Java-Multithreading
Architecture (IMA) for embedded processors.
Computer Laboratory, University of Cambridge,
UK. IEEE. Int. Conf. Comput. Design, pp: 527.

Pop, R.and 5. Kumar, 2006. On performance improvemernt
of concurrent applications wusing siumultaneous
multithreaded processors as NoC
Engineermng Jonkopmg Umversity. In: Norchip
Conference, pp: 191-196.

Watheq, M. El-Kharashi, F. ElGuibaly and K.F. Li,
1998. Multithreaded processors: The upcoming
generation for multimediachips. Advances
Digital Filtering and Signal Processing. TEEE. Symp.,
5(6): 111-115.

2003.

TesOUrces.

in

