ISSN: 1682-3915
B © Medwell Journals, 2008

Asian Journal of Information Teclnology 7 (11): 463-471, 2008

Security Framework for Software Process Models: Measures for Establishing a Choice

Annie O. Egwali and Veronica V.N. Akwukwuma
Department of Computer Science, University of Benin, P.M.B. 1154, Benin City, Nigeria

Abstract: The importance of incorporating Software Process Model (SPM) to system building set in motion the
quest for the best criteria for selecting a suitable SPM for building software engineering projects. There has
been good progress m identifying criteria for the selection of SPM however less have been said about
incorporating security into the life cycle of a system. With the different forms of cyber and identity attacks
moving up the stack and into the application layer, it 1s becoming more critical that software developers protect
their customers by embedding security and privacy into their software. Security should be a factor throughout
the whole life cycle of a system in order for development managers and mformation technology policy-makers
to appraise the state of the security in development and create a vision and road map for reducing customer
risk. This study therefore, proposed a framework for the selection of a suitable SPM that integrates security

measures throughout a system's life cycle.

Key words: Software Process Model (SPM), criteria, security, life cycle model, measures, choice

INTRODUCTION

According to Curtis ef al. (1988), a software life
cycle model is either a descriptive or prescriptive
characterization of how software
developed. While descriptive models describes the
history of how a particular software system was
developed and models that may be used as the basis for
understanding and improving software development
processes, or for buldng empirically grounded
prescriptive models, a prescriptive model prescribes how
a new software system should be developed and are used
as guidelines or frameworks to organize and structure how
software development activities should be performed and
in what order.

In contrast to software life cycle models, SPM often
represent a networked sequence of activities, objects,
transformations and events that embody strategies for
accomplishing software evolution. Such models can be
used to develop more precise and formalized descriptions
of software life cycle activities. Their power emerges from
their utilization of a sufficiently rich notation, syntax, or
semantics, often suitable for computational processing
(Scacchi, 2001).

The importance of incorporating Software Process
Model (SPM) to system building set in motion the search
for the best criteria for selecting a suitable SPM for
building software engineering projects. There has been
good progress in identifying criteria for the selection of

is or should be

SPM as discussed in the section that deals with related
work, however less have been said about incorporating
security into the life cycle of a system. Software i1s
secured only if it can function properly despite malicious
attacks (Alwukwuma and Hgwali, 2008). With these
attacks moving up the stack and mto the application layer,
it 18 becoming more critical that software developers
protect their customers by embedding security and
privacy into their software.

Security cannot be scrammed on the software at the
later phases of software development life cycle, instead
like other aspects of information processing systems; a
security process 18 a continuous process that must be
incorporated at each phase of the software development
life cycle. Managing computer security at multiple levels
brings many benefits. Each level contributes to the overall
computer security program with different types of
expertise, authority and resources. We therefore,
proposed a framework for the selection of a suitable SPM
similar to that proposed by Smith (2003) and Onibere and
Eluobase (2006) but which integrate security measures
throughout a system’s life cycle.

RELATED WORK

Davis et al. (1988), asserted that it 1s difficult to
compare and contrast models of software development
because their proponents often use different terminology
and the models often have little in common except their

Corresponding Author:
Benin City, Nigeria

V.N. Veronica Akwukwuma, Department of Computer Science, University of Benin, P.M.B. 1154,

Asian J. Inform. Technol., 7 (11): 463-471, 2008

beginnings (marked by a recognition that a problem
exists) and ends (marked by the existence of a software
solution). A framework was provided that serves as a
basis for analyzing the similarities and differences among
alternate life-cycle models; as a tool for software
engineering researchers to help describe the probable
mnpacts of a life-cycle model and as a means to help
software practitioners decide on an appropriate life-cycle
model to utilize on a particular project. A cost-benefit
method of selecting among conventional (waterfall),
evolutionary and incremental delivery life cycles was
proposed. It essentially tried to trade off fimetionality and
delay.

Boehm (1991) posited that the best way to decide on
a life cyele model 1s to use a risk driven approach based
on 3 factors: objectives, constramts and alternatives. This
was later realized in an MBASE plan and a decision
(Table 1) for deciding on life cycle models was proposed.

Alexander and Davis (1991) posited that software
development life cycle models can be fitted mto a
hierarchy at different levels of abstraction. The
conventional, incremental and evolutionary process
models were classified at the lughest level of abstraction
i the hierarchy. At the next level is the waterfall,
hybrid prototyping, operational specification and
transformational process models. This hierarchy divided
the selection of a process model mto 2 steps. To support
the selection of a process model for a project, 20 set of
criteria and 3 functional point values are defined to
support the selection of a process model for a project.
Each criteria for selecting an appropriate model was then
subdivided mto 5 categories: product, persennel, problem,
organizational and resource. Under each criterion, the
most appropriate process model 13 determined. These
selections are partially verified by looking at a set of
project case studies. Onibere and Ekuobase (2006)
observed that the criteria and function point values are

Table 1: Process model decision table (MBASE Table 32)

not sufficient to select processes for software
development projects and that consideration should be
giving to technological advancement, mncreased user
requirements and new application domain like the Web.

Smith (2003) proposed a Table 2 that listed 21 project
constraints that supports the selection of a process
model. Its applicability was implemented on 4 life cycle
models: the waterfall, incremental, evolutionary and spiral
models. The applicability is listed for the standard
defimtions of the models and may not apply equally to
modified models.

Boehm and Turner (2004) postulated that there are 5
critical factors involved in determining the relative
suttability of agile or plain-driven methods in a particular
project situation. These factors, which are: culture, size,
criticality, personnel and dynamism (Table 3). Using their
framework one can tailor life cycles that range from agile
to heavily plan-driven.

Little (2005) extended and simplified Boehm and
Turner’s idea by using more attributes in his evaluation
but then simplify, it by grouping them into 2 primary
attributes-complexity and uncertainty. From an
enumeration carried out on critical attributes that had
influenced the success of past projects, it was discovered
that the 2 primary attributes influenced the type of
processes used. To better quantify these attributes, a
scoring model was devised and plotted against each
project’s results on a 4-quadrant graph. They used names
to represent the 4 quadrants:

» Dogs for sumple projects with low uncertainty
s Colts for simple projects with high uncertainty
+ Cows for complex projects with low uncertainty
* Bulls for complex projects with high uncertainty

Figure 1 summarizes each quadrant’s properties.
Using a matrix format, they developed an approach to help
determine what process practices are barely sufficient for

Objectives, constraints Alternatives
Understanding Available Architecture
Growth envelop of requiements Robustness technology understanding Model Example
Limited COTS Buy COTS Simple inventory control
Limited 4GL transform Transform or evolutionary ~ Small business DP application
development.
Limited Low Low Low Evolutionary prototype Advanced pattemn recognition
Limited to large High High High Waterfall Rebuild of old system
Low High Risk reduction followed Complex situation assessment
by watertall
High Low High performance avionics
Limited to medium Low Low-medium High Evolutionary development Data exploitation
Large reusable
Limited to large components Medium to high Capabilities to requirements Electronic publishing
Very large High Risk reduction and watertall Air traftic control
Medium to large Low Medium Partial COTS Low to medium Spiral Software support environment

464

Asian J. Inform. Technol., 7 (11): 463-471, 2008

Table 2: Life cycle selection matrix (Smith, 2003)

Standard definitions

Waterfall Incremental Evolutionary Spiral

Requirements are known and stable

User need are unclear/not well define

An early initial operational capability is needed
Early functionality is needed to refine requirments for subsequent deliveries
Sigificant risks need to be addressed

Must interface with other systems

Need to integrate new or future technology
Sattware is large or complex

Software is small or limited in functionality
Satbware is highly interactive with user
Software involves client/server function

Initial cost and schedule estimates must be followed
Detailed documentation necessary

Minimize impact on current operations

Full system must be implemented

Reduce the number of people required

Project management must be simp ler

System rmust be responsive to user needs
Progress must be demonstarted early

User feedback is needed

Reduce the costs of fixes and corrections

* #*

® % % B

 ox o® ¥ !
*

® % % B

Method is not recommended for this constraint; *Method is recommended for this constraint; - Method is satisfactory for this constraint

Table 3: Factors for determining the relative suitability of agile or plain-driven methods (Boehm and Turner, 2004)

Factor Agility discriminators Plan-driven discriminators
Size Well-matched to small products and teams Methods evolved to handle large products and teams
Raliance on tacit knowledge limits scalability Hard to tailor down to small projects
Criticality Untested on safety-critical products Methods evolved to handle highly critical
Potential difficulties with simple design
and lack of documentation
Dynarnism Simple design and continuous refactoring are excellent Detailed plans and big design up front excellent for highly stable
for highly dynamic environments, but a source of potentially environment, but a source of expensive rework for highly dynamic environments
expensive rework for highly stable environments
Personnel Requires continuous presence of a critical mass of Needs a critical mass of scarce Cockburn level 2 and 3 experts during project
scarce Cockbum level 2 or 3 experts. Risky to use non-agile definition, but can work with fewer later in the project-unless the environments
level 1B peaple is highly dynamic. Can usually accommodate some level 1B people
Culture Thrives in a culture where people feel comfortable and Thrives in a culture where people feel comfortable and empowered by
empowered by having many degree of feedom having their roles defined by clear policies and procedures (Thriving on order)
(Thriving on chaos)
12 m of project uncertainty are: market uncertainty, technical
Colis Simple, young Agility to handle
0 » ects ey uncertamty., project c@ratlon and othe.r. projects
Need agility Process defination dependencies on that project and scope flexibility.
to ith .
8- Tight teams ct:u Coulouris et al. (2001) observed that factors such as
. security, technology, product mobility and technology are
5 N Skunks Cotuplex, mature market becoming more popular with the dawn and heavy reliance
? 4 Need defined interfaces on extranet, intranet and mternet systems. This was
2 Lalssez fairo affirmed by Onibere and Ekuobase (2006), who proposed
Dogs & a software process selection criteria that was an
0 ' r - - x T T enhancement of what Alexander and Davis (1991)
Project complexity recommended. Due to the advent and heavy reliance on

Fig. 1: Houston Matrix quadrant assessment (Little, 2005)

any given project. In his assessment, a project’s structure
determines its complexity and a project complexity was
scored on the basis of: team size, mission criticality, team
location, team maturity, domain knowledge gaps and
dependencies. A project’s uncertamnty depends on market
conditions and project constraints. The primary indicators

networked and distributed systems, they introduced
seven additional factors based on security, usability,
technology and product mobility. The 3 point values of
Alexander’s framework for quantifying and measuring the
selection criteria was expanded to incorporate three
additional function point values (as we shall see in the
section captioned Ameliorated Criteria for Selecting a
Software Process Model), in order to obtain a more robust
scaling of individual process model for a given software

465

Asian J. Inform. Technol., 7 (11): 463-471, 2008

development project. A deficiency in this frameworlk is
that security was addressed only in the final product and
not throughout a system's life cycle.

SECURITY FRAMEWORK FOR SOFTWARE
LIFE CYCLE MODELS

In the development of a secured system, the best
approach is to draw up a security plan at the beginning of
the computer system life cycle. Implementing security
during a system's development 15 less cumbersome and
cost effective than implementing 1t later during the final
product for it can interrupt continuing software
operations thereby rendering all previous software
production efforts futile.

Basically, software life cycles include classic phases,
which are often divided into additional phases to allow
better definition and control of the development process.
As can be observed in the study that deals with related
work done on this subject, none of the proposed criteria
for selecting an appropriate life cycle model evaluated
security in relation to the entire system life cycle stages.
We therefore, appraise these security activities as it
relates to each phase of the life cycle model.

Requirements phase: This phase consists of analyzing
the problem for which the software 1s being developed.
Security requirements should also be developed at the
same time. These requirements can be expressed as
technical features and assurances. Security requirements
can be derived from applicable standards, law, policy and
guidelines, cost-benefit trade-offs and fimetional needs of
the system.

Functional requirement of the system: This identifies and
potentially formalizes the objects of computation, their
attributes and relationships, the operations that transform
these objects and the constraints that restrict system
behavior. Security will support these function of the
systermn for many aspects of the function of the system will
produce related security requirements.

Specification phase: As specifications are developed,
it 1s necessary to undertake risk assessments. This
information needs to be validated, updated and organized
into the detailed security protection requirements and
specifications used by the systems designers. A
safeguard recommended by the risk assessment could be
incompatible with other requirements, or a control may be
difficult to implement. Developing testing specifications
early can be critical to being able to cost-effectively test
security features.

466

Design phase: This phase involves the acquire
construction of the system. This capability area covers
practices at the requirements, architecture and design
phases, including understanding and reducing product
attack surfaces, threat modeling and security design
review. During this phase, the system is either built from
foundation or bought and modified. If the system is being
built, security activities may mclude developing the
system's security aspects, monitoring the development
process itself for security problems, responding to
changes and momtoring threat. If the system 1s beng
bought, security activities may include monitoring to
ensure security is a part of market surveys. In a situation,
where some modules of the software are built and some
other modules are bought, a security analysis mvolving
all modules will be necessary.

Implementation phase: This phase, which involves the
programming or coding of the software design 1s often
iterative, with umit and mtegration testing being performed
after software is build. Security in this phase focuses on
preventing security weaknesses from being introduced.
Purchased system often comes with security features
disabled. These need to be enabled and configured.

Testing phase: In this phase, the software is tested for
functionality and requirements compliance. Testing
includes both the testing of the particular parts of the
system that have been developed or acquired and the
testing of the entire system.

Deployment phase: During this phase the software 1s
installed in the intended system and users are trained in
its operation. At this point the software development
effort is considered complete. However, many security
activities take place during the operational phase of a
system's life. By means of operational assurance the
system can be reviewed to see that security controls, both
automated and manual, are functiomng correctly and
effectively.

Maintenance phase: This phase costs far more in time and
effort than the original development when fixing errors
and modifying or upgrading the software security to
provide additional secured functionality. Tt is definitely
much easier to change requirements earlier than it is to
change software code later. This also means that software
should be developed with security maintenance in mind.

Disposal phase: The disposal phase of the computer
system life cycle involves the disposition of information,
hardware and software. Since electronic mformation 1s

Asian J. Inform. Technol., 7 (11): 463-471, 2008

easy to copy and transmit, information that is sensitive to
disclosure often needs to be controlled throughout the
computer system life cycle so that managers can ensure
1ts proper disposition else these disposables will be liable
to dumpster diving attacks. These information should
either be entirely cleared making them unrecoverable by
keyboard attack or completely purged by (degaussing as
15 the case for magnetic materials) overwriting and
destruction.

AMELIORATED CRITERIA FOR SELECTING
A SOFTWARE PROCESS MODEL

To address, the problem of finding the most
appropriate model for a given software project when there
are so many available with ther umque merits and
demerits in diverse domain areas, an enhanced software
process selection criteria was proposed by Onibere and
Ekuobase (2006). They categorized these criteria into 5
classes: problem, product, personnel, orgamzational and
resource. With each class having a 6 function point
values each for measuring the selection criteria. The
different categories and their correspondmng function
point values are summarized i Table 4.

PROPOSED FRAMEWORK FOR
SELECTING A SECURED SOFTWARE
LIFE CYCLE MODEL

We need criteria for selecting the right software
process model irrespective of the problem domain of the
system mtended. Currently there is no single bullet to
solving the problems and issues involved m a software
development project for as time evolve, every new project
brings 4th new challenges that must be addressed
consecutively for past mistakes not to be repeated and for
superior systemmns to be built.

With the increase and trend of identity and malicious
attacks on computer systems, security is not an issue that
should be address at the end of a production process but
at the very begimning even before production commences.
Adding new security controls to a system after a security
breach can lead to chaotic security that is definitely more
expensive and less effective than an already mtegrated
secured systernL.

For all systems, security should be incorporated to all
the phases of the system life cycle in order to ensure that
security keeps up with current changes due to system

upgrades, changes in the system's environment and

Table 4: Set of criteria for selection of a process model for a project (Onibere and Ekuobase, 2006)

Function point values

Criteria (Ci) Vi Viz Vig vV Vis Vi,
User-Experience Novice Knowledgeable Experienced Well-Experienced Expert Experienced expert
User expression ability Daft Tndecisive Silent. Cormrmunicative Expressive Descriptive
Developer experience in

application domain Novice Knowledgeable Experienced Well-Experienced Expert Experienced expert
Developers software

engineering experience Novice Knowledgeable Experienced Well-Experienced Expert Experienced-expert
Maturity of application domain Strange New Farniliar Standard Well-Understood Master off
Problem complexity Trivial Simple Demanding Difficult Complex Intractable
Requirement of partial

functionality Not-desired Optional Desirable Critical Urgent Nimble
Requirement of change Reldom Slow Moderate Fast Rapid Flashy
Magnitude of change Tnsigniticant Minor Small Moderate Targe Extreme
Usability profile Trregular Low-stable Low-high High-Low High-stable High-increase
Usability requirement Tnsigniticant Minor Useful Tmportant Critical Exacting
Product size Very small Smmall Moderate Targe Very-large Extreme
Product complexity Trivial Simple Demanding Difficult Complex Intractable
Tnterface requirement Tnsigniticant Minor Useful Tmportant Critical Exacting
Product mobility requirement Tnsigniticant Minor Useful Tmportant Critical Exacting
Expected lifespan Throwaway Very-Short Short Long Very-Long Infinity
Security requirernent

performance requirement Tnsigniticant Minor Useful Tmportant Critical Exacting
Performance requirement Insignificant Minor Useful Important Critical Exacting
Funding profile Trregular Low-stable Low-high High-low High-stable High-increase
Funds availability Negligible Scarce Limited Adequate Ample Abundant
Staff profile Trregular Low-stable Low-high High-low High-stable High-increase
Staft availability Negligible Scarce Limited Adequate Ample Abundant
Access of users None Restrictive Limited Moderate Controlled Free
Technology requirement Negligible Scarce Limnited Adequate Apple Abundant
Technology profile Trregular Low-stable Low-high High-low High-stable High-increase
Management capability Tnditferent Guideline Flexible Substantial Enforced Exact

Quality assurance and

configuration management capability Trivial Basic Intermediate Substantial Advanced Exact

467

Asian J. Inform. Technol., 7 (11): 463-471, 2008

technological advancements. We need process selection
criteria for deciding on an appropriate process model that
will address security from the beginning to the end of the
final product. We therefore, propose a framewaork similar
to that developed by Omnibere and Ekuobase (2006) with
additional factors on security measures as it affects
usability, human resources, productivity, financial
resources and manageability. The framework consists of
33 criteria comprising of & function point values each as

shown in Table 5.

Problem criteria

Maturity of the application: This has to do with the
criteria for analyzing the general knowledge of the
problem domain to be solved. Software development in
established application area can be of great benefit to the
developing team and vice versa. Values are classified as
C, = (strange, new, familiar, standard, well-understood and
master-off).

Problem complexity: This criterion measures the
complexity of the problem to be solved and decompose
the problem complexity criterion into the following values:
C, = (trivial, sumple, demanding, difficult, complex and
intractable).

Requirement for partial functionality: This criterion
measures, the practicality and/or need to deliver
intermediate products that provide only a part of the
eventually full functionality of the target product. Values
are: C, = (not-desirable, optional, desirable, critical, urgent
and mmble.

Frequency of change: This criterion estimates the
frequency at which the given problem changes. Values are
classified into: C, = (seldom, slow, moderate, fast, rapid

and flashy).

Magnitude of change: This criterion assesses the relative
size of expected changes in the problem. Values are: C; =
(insignificant, minor, small, moderate, large and extreme).

Table 5: Framework for selecting a secured software life cycle models

Function point values

Criteria (Ci) Fyy Fp F Fly F Fis

Maturity of application domain Strange New Farniliar Standard Well-Understood — Master Off
Problem complexity Trivial Simple Demanding Difficult Cormplex Tntractable
Requirement of partial functionality =~ Not-desirable Optional Desirable Critical Urgent Nimble
Frequency of change Reldom Slow Moderate Fast Rapid Flashy
Magnitude of change Tnsigniticant Minor Small Moderate Targe Extreme
Security of problem definition Trivial Safe Safer Secure Securer Securest
User-experience Novice Knowledgeable Experienced Well-Experienced Fxpert Experienced expert
User expression ability Daft Tndecisive Silent. Cormrmunicative Fxpressive Descriptive
Developer experience in

application domain Novice Knowledgeable Experienced Well-Experienced Fxpert Experienced expert
Developers software

engineering experience Novice Knowledgeable Experienced Well-Experienced Expert Experienced-expert
Systern security cognizance Negligible Scarce Limnited Adequate Apple Abundant
User involvement and security Negligible Scarce Limnited Adequate Apple Abundant
Funding profile Trregular Low-Stable Low-High High-Low High-Stable High-Increase
Funds availability Negligible Scarce Limited Adequate Ample Abundant
Staft profile Trregular Low-8table Low-High High-Low High-Stable High-Increase
Staff availability Negligible Scarce Limnited Adequate Ample Abundant
Access of users None Restrictive Limited Moderate Controlled Free
Technology profile Small Meager Tnadequate Adequate Abundant Copious
Technology availability Negligible Scarce Limnited Adequate Ample Abundant
Technology rate Opportune Seasonable Batch Timely Well-timed Online
Tndependent technology interaction Negligible Very-Low Low High Very-High Highest
Product usability requirement Insignificant Minor Useful Important Critical Exacting
Product size Very Small Smmall Moderate Targe Very-Large Extreme
Product complexity Trivial Simple Demanding Difficult Cormplex Tntractable
Human interface requirement Insignificant Minor Useful Important Critical Exacting
Product mobility requirement Tnsigniticant Minor Useful Tmportant Critical Exacting
Expected lifespan Throwaway Very-Shoit. Short Long Very-Long Tntinity
Security requirement Insignificant Minor Useful Important Critical Exacting
Performance requirement. Tnsigniticant Minor Useful Tmportant Critical Exacting
Usability profile Trregular Low-8table Low-High High-Low High-stable High-Increase
Management capability Indifferent Guideline Flexible Substantial Enforced Exact

Quality assurance and configuration

management capability Trivial BRasic Tntermediate Substantial Advanced Exact.
Management trust Negligible Very-low Low High Very-high Highest
Management risk Negligible Very-low Low High Very-high Highest
Management security control Negligible Very-low Low High Very-high Highest

Asian J. Inform. Technol., 7 (11): 463-471, 2008

We introduce a new criterion, ‘Problem Security” that
addresses security concerns at the problem defimtion
level. We define 1t thus;

Security of problem definition: This criterion measures
the level of securing the problem defmition. There should
be adequate selection and implementation of appropriate
technical controls and security procedures that takes
care of problem definition vulnerabilities. Values are:
F, = (trivial, safe, safer, secure, securer and securest).

Personnel criteria: These criteria deal with issues
relating to the software developers and the users. The
criteria and their values are:

Users experience in application domain: The users
knowledge of the domain of the problem 1s appraised
under this criterion. The postulated values are: C, =
(novice, knowledgeable, experienced, well experienced,
expert and experienced expert.

Users ability to express requirement: This criterion
evaluates how well the user can communicate their needs
to the developing team. Situated values are: C; = (daft,
indecisive, silent, communicative, expressive and

descriptive).

Developers experience in application domain: The
developers knowledge which could result from being a
user m the application domain 15 evaluated mn this criterion
assesses using values: C, = (novice, knowledgeable,
experienced, well experienced, expert and experienced
expert).

Developers software engineering experience: This
criterion evaluates the developers experience as it relates
to knowledge of the software tools, methods, techniques,
technology support and languages needed for a
development effort. The quantified values are: C; =
(novice, knowledgeable, experienced, well experienced,
expert and experienced expert).

We mtroduce 2 new criteria that that addressed
security concerns as it affects persomnel involved mn the

Software development process. We define them thus:

System security cognizance: This criterion measures the
level of awareness and developing skills at the disposals
of the system-level security personnel to develop and
implement security plans that is appropriate and cost-
effective. We propose the values: C), = (negligible, scarce,
limited, adequate, apple and abundant).

469

User involvement and security: This criterion measures
the level of involvement of the user to the software
development process. After a system's role has been
defined, the security requirements implicit in that role can
be defined. Security can then be explicitly stated in terms
of the organization's mission. Good security practices by
the user will benefit the software developing team. We
propose the values: C|, = (negligible, scarce, limited,
adequate, apple and abundant).

Resource criteria: Resource criteria pertain to resources
available for development. Resource criteria and their
evaluation are:

Funding profile: This criterion measures the amount and
availability of funds for the development effort. The
values used are: C; = (irregular, low-stable, low-high,
high-low, high-stable and high-increase).

Funds availability: The adequacy of the funds available
for an effort is measured using this criterion with the
following classed values: C,, = (negligible, scarce, limited,
adequate, ample and abundant).

Staffing profile: This criterion measures the numbers of
people usable over a period of time for a software
development project exercise. Values are classified as:
C,; = (uregular, low-stable, low-high, lugh-low, high-stable
and high-increase).

Staff availability: This criterion estimates the sufficiency
of the available staff for a project. Applicable values are:
C,s = (negligible, scarce, limited, adequate, ample and
abundant).

Accessibility of users: This criterion measures the
amount of access developers have to users. Values are
classified as: C,; = (none, restrictive, limited, moderate,
controlled and free).

Technology profile: This criterion measures the amount of
technological tools usable and applicable for the
particular software development project to aid the
software team. We mtroduce the values as: C,; = (small,
meager, inadequate, adequate, abundant and copious).

Technology availability: This criterion measures the
availability of techmology for the development effort. It
answers the questionn What quality and quantity of
existing technology is at the disposal of the software
development team? The values used are: C, = (negligible,
scarce, limited, adequate, ample and abundant).

Asian J. Inform. Technol., 7 (11): 463-471, 2008

Technology rate: This criterion measures the rate at which
the software development team receives sound and timely
mformation to accomplish their tasks effectively. We
mtroduce the values as: C,; = (opportune, seasonable,
batch, timely, well-timed and online).

Independent technology interaction: Tlis criterion
measures the level of interaction between computer
security and operational elements received. In many
instances, operational components obtained tend to be far
larger and therefore, more influential. We introduce the
values: C,, = (negligible, very-low, low, high, very-high
and highest).

Product criteria: These criteria relates to the software
product to be developed. They mvolve:

Product usability requirement: The criticality of the
effortlessness with which the software can be used 1s
measured with this criterion. Tt also encompasses the
criticality of understanding the internal working of the
system. The proposed values are: C,, = (insignificant,
minor, useful, important, critical and exacting).

Product size: This criterion measures the expected size of
the fmal product. Since this measurement 1s being done at
the start of the development effort, 1t 1s only an estumate.
The following profile values suffice: C,; = (very-small,
small, moderate, large, very-large and extreme).

Product complexity: This criterion gauges the complexity
of the software to be developed. Conditioned values are:
C,, = (trivial, simple, demanding, difficult, complex and
mtractable).

Human interface requirement: This criterion measures
the criticality of the human computer interface. Values are:
C,s = (imsignificant, minor, useful, important, critical and
exacting).

Product mobility: This measures the criticality of
mstallation, portability or transportability of the final
product and its content. Values employed are: C,, =
(insignificant, minor, useful, important, critical and
exacting).

Expected life span: This criterion estimates the expected
life span of the final product for it is applied at beginning
of the development effort. Values used are: C, =
(throwaway, very-short, short, long, very-long and
nfinity).

470

Product requirement security: This criterion measures
the criticality of security in the final product. Values are:
C;; = (insigmificant, minor, useful, important, critical and
exacting).

Product performance requirement: This criterion
measures the criticality of efficiency, reliability and
accuracy m the final product using values: C, =
(insignificant, minor, useful, important, critical and
exacting).

Usability profile 1s a measure applicable to the final
product and so best classified as a product criterion.

Usability profile: This criterion measures the degree of
use the resultant product will be put into. The following
values suffice: C,;; = (lregular, Low-stable, Low-high,
High-low, High-stable and High-increase).

Organizational criteria: Orgamizational policy that
affects a development effort 1s analyzed in this study. The
organizational criteria are:

Management compatibility: The degree of compatibility
between an orgamzation development requirement and
the software process model is measured with this
criterion, utilizing the following values: C,, = (indifferent,
guideline, flexible, substantial, enforced and exact).

Quality assurance and configuration management
capability: This criterion measures the compatibility
between a particular process model and the organization’s
quality assurance and configuration management
procedures. Values employed are: C,, = (trivial, basic,
intermediate, substantial, advanced and exact).

We introduced three new criteria Management Trust,
Management Risk and Management Security Control that
address security concern at the management level from
the commencement to the finale of the software
development exercise. We define them thus:

Management trust: This criterion measures the degree of
trust among the management team of a given software
project. If the degree of trust is low then there is need to
reassess the whole management team even before the
project commences else damage can range from errors
harming database integrity to supposedly trusted
employees defrauding a system due to innate knowledge
of the systems’ architecture. Values employed are: C,; =
(negligible, very-low, low, high, very-high and highest).

Management risk: This criterion measures the degree of
risk the organization managers and software development

Asian J. Inform. Technol., 7 (11): 463-471, 2008

team are willing to accept, taking into account the cost of
security controls. Values employed are: C,, = (negligible,
very-low, low, high, very-high and highest).

Management security control: This criterion appraises
the degree of security provided by all participants of a
software development project throughout the life cycle of
a system, which includes accrediting official, data users,
systems users and system technical staff. This criterion is
necessary for it triggers the construction of a security
plan to ensure that security 1s not overlooked Values
used are: C;; = (negligible, very-low, low, high, very-high
and highest).

CONCLUSION

The importance and usefulness of implementing and
employing the right software selection criteria for a given
project cannot be overemphasized, the consequence of
choosing an mapplicable life cycle model for a given
software project can be very atrocious. There has been
good progress in identifying criteria for the selection of
SPM, however, in an era where cyber attacks and
malicious activiies from imsiders and outsiders of
software systems and users is moving up the stack, it is
becoming more critical that software developers protect
their customers by embedding security and privacy into
the entire software process life cycle. Security cannot be
scrammed on the software at the later phases of software
development life cycle, instead like other aspects of
mnformation processing systems; a security process 1s a
continuous process that must be mcorporated at each
phase of the software development life cycle. We
therefore, proposed a framework for the selection of a
suitable SPM that integrate security measures throughout
a system's life cycle.

ACKNOWLEDGEMENT

We are grateful to Professor E. Ombere and
0. Fajuyighe for their invaluable support and
encouragement.

471

REFERENCES

Akwukwuma, V.N. and A.O. Egwali, 2008. E-Commerce:
Online attacks and protective mechanisms. Asian J.
Inform. Technol., 7 (9): 394-402.

Alexander, L. and A. Davis, 1991. Criteria for selecting
software process models. In: Proceedings of
COMPSAC, 09/13/1991-09/13/1991 Tapan, pp: 521-528.
DOL 10.1109/CMPSAC.1991.170231.

Boehm, B., 1991. Software risk management. Principles
and practices. Software I[EEE., 8 (1): 32-41. DOIL: 10.
1109/52.62930.

Boehm, B. and R. Turmer, 2004. Balancing agility and
discipline: A guide for the perplexed. Addison-
Wesley Professional Edition, Boston. ISBN-10:
0321186125,

Coulouris, G., I. Dollimore and T. Kindberg, 2001.
Distributed Systems-Concepts and Design. 3rd Edn.
Addison-Wesley Pub. Co., Harlow, England.
ISBN-10: 0201619180,

Curtis, B., H. Krasner and N. Tscoe, 1988. A field study of
the software design process for large systems.
Commun. ACM, 31 (11): 1268-1287.

Davis, AM., EH. Bersoff and ER. Comer, 1988 A
strategy comparing
development life cycle models. Software Eng. IEEE.
Trans., 14 (10): 1453-1461. DOL 10.1109/32.6190.

Little, T., 2005. Context-adaptive agility: Managing
complexity and uncertainty. Software TEEE.,
22 (3) 28-35. DOL 10.1109/ms.2005.60.

Omibere, EA. and G.0. Ekuocbase, 2006. Enhanced
software process selection criteria. J. Inst. Mathe.,
Comput. Sci. Comput. Sci. Series, 17 (1): 17-32.

Scacchi, W., 2001. Process models in software
engineering, Walt Scacchi, Institute for Software
Research, Umversity of Califorma, Irvine. http: //www.
1cs.uct.edu/~wscacchi/Papers/SE-Encyc/Process-
Models-SE-Encyc.pdf.

Smith, LW, 2003, Software Life Cycle, Condensed GSAM
Handbook. www.stsc.hill.af.mil/resource/tech-docs/
gsam4/chap2.pdf.

for alternative software

