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Abstract: Tn this study, we evaluate the effect of Inter-Core Time Aggregation Scheduler (ITAS) on a database
server workload. ITAS 15 a kemel-level thread scheduler to utilize the locality of references between threads on
Chip Multi-Processor (CMP) platforms. To detect the locality of reference between threads without the
overhead of sampling the behavior of thread information, we focus on sibling threads, which are kernel-level
threads sharing the same memory address space. We consider that we can utilize computing resources such
as cache by dynamically aggregating sibling threads. We have investigated the effect of Time Aggregation
Scheduler (TAS) on a single processing Core. TAS utilizes the locality of references and reduces the overhead
due to context switching by executing sibling threads collectively in a group. We extend TAS into ITAS, which
aggregates sibling threads on different Cores at the same time so that we can expect the effect of aggregation
on CMPs. As the number of Cores increases, it is likely to run multiple multithreaded programs simultaneously
to utilize all Cores on a chip. Thus, we consider that [ITAS will be applicable to many situations. In this study,
we show the effect of ITAS on a realistic workload of a multi-threaded database server running with a simple
application server on a commodity CMP platform in terms of throughput, the number of cache misses and
resource stalls and influence on the target program and other non-aggregated background programs. The
experimental result indicates that ITTAS enhances the performance of the database server without degrading
that of non-aggregated background programs.
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INTRODUCTION

In this study, we evaluate the effect of Inter-Core
Tine Aggregation Scheduler (ITAS) on a database server
workload. TTAS is a kernel-level thread scheduler for Chip
Multi-Processor (CMP) platforms. The basic idea of ITAS
is to utilize locality of reference between threads. To
utilize locality of reference between threads, we focus on
Thread-Level Concurrency (TLC) and Parallelism (TLP)
mside programs. To enhance the performance of
programs with TLC and TLP, we previously proposed
Time Aggregation Scheduler (TAS), a kemel-level
thread scheduler implemented on the Linux kernel
(Yamada and Kusakabe, 2008a). TAS tries to collectively
execute sibling threads, which are kernel-level threads
sharing the same memory address space, in sequence on
a single processing Core. We expect two effects from TAS
as:

¢+ Reduction of the overhead switching memory
address spaces

*  Utilization of the locality of references between
sibling threads and reduction of the capacity
pressure on caches

We can always expect the first effect by aggregating
sibling threads even though the overhead of switching
memory address spaces is smaller compared to the time
slice of common threads. We can expect the larger
effect of utilizing cache from the second point if sibling
threads share a certain amount of data to be accessed
{(working set).

Nowadays, multi-core processors like CMPs are
widely spread as commodity platforms. CMPs have
multiple Cores on a single chip and are able to execute
multiple threads simultaneously. Thus, it 13 likely to run
multiple multi-threaded programs simultaneously on a
single node to utilize the Cores. It 15 common for Cores on
a CMP to share computing resources such as L2 cache
(Kundu et al, 2004) and it is well known that
combinations of threads running simultaneously on
different Cores affect the utilization of caches
(Fedorova et al, 2005, Ogawa and Hiraki, 2005;
Snavely et al, 2002). Therefore, we consider that it is
not enough to run an independent TAS per Core in
executing multiple multi-threaded programs
simultaneously for the utilization of the locality of
references between sibling threads. We extend TAS to
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implement ITAS on the Linux kernel (Yamada and
Kusakabe, 2008b), which executes sibling threads
simultaneously on different Cores to utilize computing
resources. The basic scheduling idea of ITAS is similar
to that of gang scheduling (Feitelson and Rudelph, 1992).
In gang scheduling, a single scheduler chooses related
threads and executes them simultaneously on each
Core.

The overhead of context switch can be heavy in gang
scheduling because the scheduler has to synchronize all
executed threads from different Cores. In ITAS,
aggregations of sibling threads are accomplished by
neon-blocking communications between schedulers on
different Cores. Thus, ITAS is able to schedule threads
without the overhead due to synchronization of Cores.

ITAS may mcrease the overhead caused by the data
contention or the data coherence problem by having
threads executed on different Cores to access the same
working set sunultaneously. However, according to the
previous researches on the analysis of the throughput
on CMP platforms, the most influential factor is the
lack of the capacity of cache (Chen et al, 2007
Chuishti et al, 2005). Therefore, we expect that the effect
of ITAS on the enhancement of the throughput 1s ligher
than the overhead.

We assume the use of ITAS, when we run multiple
multithreaded and non-multi-threaded  background
programs concurrently. We expect the enhancement of
the throughput of multi-threaded programs by
aggregating their sibling threads. We also expect the
enhancement of the throughput of the background
programs by ITAS. As we mentioned, ITAS 1s
implemented by modifying the Linux kernel. Limux has
employed Completely Fair Scheduler (CFS) as its thread
scheduler from the version 2.6.23. The scheduling policy
of CFS 1s to let threads starting simultaneously with the
same static priority (nice value) spend the same amount of
CPU time. We do not modify this characteristic of CFS in
umplementing ITAS. Therefore, the quantum time of the
background programs get longer as ITAS aggregates
more sibling threads and keeps the background programs
wait longer. Thus, the number of context switches of the
background programs decreases and we can expect the
enhancement of their throughput.

In this study, we evaluate the effect of ITAS on the
throughput of a multi-threaded database server and other
non-aggregated background programs. We use OLTP
program of SysBench (2009) benchmark swuites, which
worls as a simple application server and simulates various
connections from database clients. We simultaneously
run background programs, which are not aggregated by
ITAS and investigate its throughput.
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MATERIALS AND METHODS
Related research: Many kemnel-level schedulers
have been proposed to enhance the performance

of thread execution on CMP platforms. Advantageous
co-scheduling methods are achievable if a kernel can
grasp the state of processor resources and how each
thread uses the processor resources before scheduling
the next thread. However, it requires a heavy load for the
kernel to track all the states of processor resources and
resource usage pattern of thread executions.

A major solution against this problem is to guess the
preferable sequence of a thread execution from the
previous behavior of the thread. Many researchers
proposed to sample the mformation of the behavior of
each thread during its execution and choose the desirable
sequence of thread executions based on the sampled
statistics (Fedorova et al., 2005, Ogawa and Hiraki, 2005,
Snavely ef al., 2002).

For example, Fedorova et al. (2005) calculates the size
of the working set of each thread by sampling the
behavior of the thread. They schedule the combinations
of threads to let the sum of the working set of the
combinations of threads fit within the capacity of the 1.2
cache. Ogawa and Hiraki (2005) sampled the number of the
L2 cache misses during the execution of threads to obtain
the affinity of each combination of threads.

They enhance the priority of the combmations of
threads with higher affimty. These scheduling methods
are advantageous n that they can handle any kind
of programs. However, the overhead of dynamically
sampling large enough
degrade the performance. Especially, the overhead of
sampling mcreases, when running many threads
(Chandra et al., 2005) and optimal scheduling is difficult
in many-core processors.

The basic scheduling idea of TTAS is similar to that
of Chen et al (2007). Their scheduling methed 15 to run
a group of threads sharing the working set simultaneously
on different Cores of CMPs. To recognize the locality of
references, they analyze the programs beforehand and
statically schedule threads. In case of ITAS, the scheduler
assumes the locality of references between sibling threads
and dynamically aggregates them.

ITAS works only, when we execute multi-threaded
programs. The rationale of the approach is that many
modern programs are getting multi-threaded as CMP
platforms widely spread. For example, Parsec benchmark
(Bienia et al, 2008) is a multi-threaded benchmark to
simulate emerging workloads and 15 mtended to run on
CMP platforms. Besides, many languages such as Java,

information can be to



Asian J. Inform. Technol., 8 (4-12): 94-103, 2009

Perl, Ruby, Python, Erlang and compilers such as Open
MP, MPIL, Open 64 now support the development of
programs using multiple kernel-level threads. We can also
apply ITAS to running multiple hosted virtual machines
like VM ware Server. In ViMware Server, multiple sibling
threads are created per one guest O3 so that a guest OS
can utilize multiple physical Cores. Thus, we expect that
we will have more multi-threaded programs and more
chances to apply ITAS.

Inter-core time aggregation scheduler: In this study, the
outline of ITAS. We implement TTAS by modifying CFS
mn Lmux 2.6.24. The implementation of ITAS 1s the
extension of TAS (Yamada and Kusakabe, 2008a, b).

Completely fair scheduler: CFS is designed to
accomplish fair usage of CPU between threads, which
start at the same time with the same static priority. CFS
CPU time consumed by each thread
nanoseconds to calculate the priority as vruntime. When
a thread yields CPU, the additive vruntime 1s calculated
from the CPU time and added to the vruntime of the
thread. When, the thread gets ready, the thread 1s
enqueued again with new vruntime. CFS sets higher
priority for threads with less vruntime to equalize the

counts n

amount of CPU consumption. The runqueue exists per
Core and an independent scheduler works on each Core.
CFS does not recognize the memory address space of
each thread in scheduling.

Overview of time aggregation scheduler: TAS aggregates
sibling threads and tries to execute them in sequence on
a single Core. The basic idea of the implementation of
TAS is to dynamically give a priority bonus to the sibling
thread of the currently executed thread. As we mentioned,
the priority of a thread is higher, when the viuntime of the
thread is smaller. Therefore, the priority bonus for TAS
works to reduce the vruntime of the sibling thread. The
problem of faimess between threads or starvation is likely
to happen by aggregating multi-threaded programs.
Although, we can restrict the level of aggregation by
tuning the priority bonus, it 1s hard for a user to specify
the value because vruntime 1s too fine-grained. Therefore,
we add a counter, agg count, in each memory address
space and each Core, which is used to count the number
of the aggregation of the sibling threads per Core. TAS
uses agg count to control the aggregation. We show an
example case of TAS (Fig. 1). Figure 1 shows the
rungueue of CFS1. The circles (Fig. 1) represent threads.
The mnumber m a thread shows the vruntime of each

96

A
Current thread @

B C

Rungueue of CFS o @ @ @

Fig. 1. Example case of TAS. A circle represents a thread
and the pattern inside the circle expresses its
memory address space. If there exists a sibling
thread (thread C), TAS considers the thread as the
candidate for the next thread

thread. Threads are queued in the ascending order of
vruntime m the runqueue. The links forming the queue are
solid lines (Fig. 1). The pattern mnside a thread represents
the memory address space.

The currently executed thread A has been dequeued
from the runqueue. After executing thread A, CFS selects
thread B as the next thread. On the other hand, TAS
another candidate. We set
agg bonus, the priority bonus for aggregation and

considers thread C as

agg limit, the limit number of aggregation, mn advance.
TAS follows the processes below to schedule the next
thread (Vrun_B means the vruntime of thread B).

TP1: The scheduler refers to agg count of the memory
address space of the current thread (thread A). If Eq. 1 1s
true, the scheduler goes to TP2. Otherwise, the scheduler
chooses the thread with lughest priority (thread B) as the
next thread, sets agg count of the memory address space
of thread A as 0 and goes to TP4.
agg count<agg limit (1)
TP2: If Hq. 2 is true, the scheduler chooses the sibling
thread (thread C) of thread A as the next thread and goes
to TP3. Otherwise, the scheduler chooses thread B as the
next thread, sets agg count of the memory address space
of thread A as 0 and goes to TP4.
Vrun B>Viun C - agg bonus (2)

TP3: The scheduler increments agg_count in the memory
address space of thread A and goes to TP4.

TP4: The scheduler finishes scheduling.

In case of (Fig. 1), if we set the agg_bonus equal to or
=7, TAS will select thread C as the next thread. Otherwise,
TAS selects thread B. We can change the value of
agg bonus and agg limit manually using a system call we
have implemented.
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Overview of inter-core time aggregation scheduler: We
extend TAS to implement ITAS. First, we run independent
TAS per Core and assigns the role of master or slave to
each Core. When, the scheduler on a master Core finds a
chance of Time Aggregation, it sets a pointer, 1a_mm, to
the memory address space of the currently executed
thread. Otherwise, 1a_mm 1s NULL. Only a master Core can
manipulate 12 mm and slave Cores can only refer to
ia_mm. When ia_mm is set to an actual memory address
space by a master Core, the schedulers on slave Cores
look for the sibling threads sharing the memory address
space, which 1a_mm points to, from their own runqueue.
If there exist sibling threads, the schedulers on slave
Cores consider the threads as the candidates for the next
threads with the prionity borus. We show an example case
of TTAS on a dual-core processor (Fig. 2) and describe the
scheduling processes in detail.

IP1: The scheduler on each Core looks for the candidate
thread of Tine Aggregation (thread C and G). If running
on the master Core, the scheduler goes to TP2. Tf running
on slave Core, the scheduler looks for the candidate
thread of Inter-Core Aggregation (thread H) and goes to
1p6.

TP2: Tf thread C exists, the scheduler refers to agg count
from the memory address space of currently runming
thread (thread A) and goes to TP3. Otherwise, the
scheduler goes to IP5.

IP3: If both Eq. 1 and 2 are true, the scheduler chooses
thread C as the next thread, increments agg count of the
memory address space of thread E and goes to IP4.
Otherwise, the scheduler goes to IP5.

IP4: The scheduler sets the address of memory address
space of thread C to ia_mm and goes to TP7.

IPS: The scheduler chooses a thread with the ghest
priority (thread B) as the next thread, sets agg count of
the memory address space of thread E as 0, sets 1a_mm as
NULL and goes to TP7.

IP6: If both thread G and thread H exist, the scheduler
goes to TP6.1. If only thread G exists and thread H does
not, the scheduler goes to IP6.2. If only thread H exists
and thread G does not, the scheduler goes to TP6.3. If
either thread G or thread H does not exist, the scheduler
chooses the thread with the highest priority (thread F) as
the next thread and goes to TP7.
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Fig. 2: Example case of ITAS. When sibling threads
(circles with the same pattern) are aggregated in
the master Core by TAS, the memory address
space of the sibling thread 1s registered in1a_mm.
The scheduler on lave Cores looks for threads
sharing the same memory address space with

ia_mm and considers the thread as the candidate
for the next thread

TP6.1: If Eq. 3 and 4 are both true, the scheduler chooses
thread H as the next thread, sets agg count of the
memory address space of thread E as 0 and goes to IP7.
Otherwise, the scheduler goes to IP6.2.

Viun F > Viun H - agg bonus (3

Vrun G > Vrun H - agg_bonus (4
TP6.2: The scheduler refers to agg count of thread E. If
both Eq. 1 and 5 are true, the scheduler chooses thread G
as the next thread, increments agg_bonus of the memory
address space of thread E and goes to TP7. Otherwise, the
scheduler chooses thread F as the next thread, sets
agg countas 0 and goes to IP7.

Viun_F > Viun G - agg_bonus (3
IP6.3: If Eq. 4 13 true, the scheduler chooses thread H as
the next thread. Otherwise, the scheduler chooses thread
F as the next thread After choosing the next thread, the

scheduler sets agg count of the memory address space
of thread E as 0 and goes to IP7.

IP7: The scheduler finishes scheduling. We implement
ITAS to enable multiple master, slave Cores and ia_mm to
exist. In this study, we use quad-core processors for the
evaluation and assign the master to Core 0 and slave to
other Cores with single ia_mm.

When we use many-core platforms, it is possible
to change the allocation of master and slave by a
system call we have implemented. We have also
implemented ancther system call to change agg bonus
and agg limit.
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Preliminary evaluation of TTAS: In this study, we
conduct a preliminary evaluation to show the relationship
between the effect of ITAS and the locality of references
between sibling threads.

We use a memory intensive workload because
the effect of ITAS 15 related to the memory usage
of each thread. The specification of the experimental
platform 1s shown in Table 1. We use memory program
of SysBench (2009). SysBench (2009) comprises several
programs and each program mvestigates the performance
of the specific factor in Online Transaction Processing
(OLTP) workloads. We show the outline of memory
program (Fig. 3). In memory program, a specified number
of threads are created and each thread repeats sequential
access to a specified amount (block _size) of memory area.
Threads from a single mvocation of memory program
share a single memory address space. One memory access
15 expressed as an amrow (Fig. 3). Sibling threads of
memory program repeat memory accesses until the total
access size of every tlwead exceeds a specified size
(total size). We can specify the types of memory access
to a specified amount (block size) of working set. The
type is read, reading a value from a specified address, or
write, writing a value to a specified address. We can
choose if each thread accesses to the same working set
(global) or independent working set (local). In case of
global mode, the size of working set of a single memory
program 1s block size. In case of local mode, the size of
working set of a memory program is the product of
block size and the number of threads.

To clarify the effect of relationship between TTAS
and block size, we modify memory program to let all
sibling threads yield CPU after accessing block size of
data. Default memory program lets sibling threads iterate
the memory access until it expires the quantum time.
Therefore, the memory access to the working set from the
second iteration is likely to hit the data on the cache
loaded by the first iteration. The modification stops the
iteration of memory access and clarifies the effect of ITTAS
to utilize the locality of references between sibling
threads. We investigate the effect of ITAS in both global
and local mode. We do not focus on read access because
hardware-prefetching of cache works efficiently with
memory program and the effect of ITAS 1s not so clear as
write access. We fix total size as 1000GB, the number of
threads as 100 and the number of memory program as 10.
On the other hand, we change block size from 16-16 MB
to mvestigate the relation of the effect of ITAS and the
size of the working set. We show the result, when we set
agg bonus as 50 millions, which 1s lugh enough to see
the maximum effect of ITAS based on the measurements.
We also set agg limit as 100 based on the number of
threads.
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Table 1: Specification of the experimental platform

Processor Intel Core 2 Quad 2.66 GHz
L2 caches size/Latency 4 MB/14 cycles
Memory size/Latency 1 GB/189 cycles
Operating system/Kemel Fedora 7/Linux 2.6.24

MA:memory access
MA MA

e (5 P,

et
H N s, |_MHA n.I_N:lA
| Execution time |

>
Time

Fig. 3: Outline of memory program in SysBench (2009).
FEach arrow expresses one memory access. The
memory access is repeated until the total access
size of every thread exceeds a specified size. We
evaluate the execution time to accomplish all the
IMEINOTY accesses

We show the result of the rmatio of the
execution time in both global and local mode (Fig. 4).
We also show the result of the ratio of the L2
cache misses ([local,global] 1.2) and the resource stalls
([local,global] RS) in each access mode (Fig. 5).

In global mode, we see the larger reduction of the
execution time, as well as L2 cache misses and resource
stalls, especially when the size of access data 1s
between 512 KB and 4 MB. We consider that the largest
effect of ITAS is related to the L2 cache size of the
platform. When block size 15 <512 KB, the possibility that
the previously loaded data is still left in the 1.2 cache
increases also in CFS, therefore, we do not see the clear
effect of ITAS. When block size is larger than 4 MB, the
memory access size 1s too large for a previously executed
thread to leave data on caches, which the next thread
accesses,

Tn local mode, we can expect the effect only from time
aggregation of ITAS because there i1s no locality of
references between sibling threads. In the experiment, if
sibling threads of a memory address space are equally
distributed among Cores, there are 25 sibling threads
enqueued on each Core. As we set agg limit as 100, a
single thread can be executed 4 tunes before switching to
threads of other memory address spaces if the assumption
above is correct. However, block size has to be small to
utilize the loaded data on caches because the data of one
thread can be purged by sibling threads during the
aggregation. Figure 4 can see the largest effect, when
block size is 32 KB on the execution time, where the total
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Fig. 4: The comparison of the execution time of ITAS
against CFS m global and local mode. The effect
of ITAS 1s related to the total size of the working
set and the size of 1.2 cache
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Fig. 5 The comparison of the L2 cache misses

([local,global] 1.2) and the resource stalls
([localglobal] RS) of ITAS against CFS in global
and local mode. The effect of ITAS is related to
the total size of the working set and the size
of 1.2 cache

size of the working set of one memory program is 3.2 MB.
When we increase block size >32 KB, the total size of the
working set 13 larger than the capacity of the L2 cache and
the effect of ITAS becomes smaller. We can also see the
reduction of 1.2 cache misses and resource stalls only
when block size 1s small.

Thus, we show that the effect of ITTAS depends on
the locality of reference between sibling threads and the
size of the working set. According to the previous
researches on the analysis of commercial programs such
as Web servers and database servers, sibling threads of
programs in the real world have high possibility to share
a certain amount of working set (Chishti et al., 2003:
Ziemba and Upadhyaya, 2008). Thus, we expect that TTAS
15 widely effective in the real world.
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Evaluation with multi-threaded database server: In this
study, show the evaluation of ITAS with a
multithreaded database server. We have two purposes of
the evaluation. The first purpose is to investigate how

we

widely ITAS can be effective in executing a more realistic
wortkload. We showed that the effect of ITAS is related to
the characteristic of memory access of each thread and
the capacity of caches in a memory mtensive benchmark.
In this study, we mvestigate the relationship between the
characteristic of the memory access of database server
and the effect of ITAS. The second puwpose is to
investigate the effect of ITAS on the non-aggregated
background programs, which are concurrently executed
with the multithreaded programs but are not aggregated
by ITAS. Thus, we assume an execution of a multi-
threaded database with background batch
programs and evaluate the influence on those programs
by measuring its throughput. We explain OLTP program,
a benchmark program to measure the throughput of a
database server.

server

OLTP program of SysBench: We use OLTP program of
SysBench (2009) as a client program for the evaluation of
ITAS. The program issues dynamic requests to a
database server and plays a role of a simple application
server. We consider OLTP program is a proper tool to
workloads and investigate the
performance of thread scheduler because it is known to
trigger the discussion of the relationship between the
performance and the thread scheduler on CMP platforms
(Linux-Kernel Archive, 2009). We change the database
sizes by specifying the number of lines and the size of a
line of the database is 190B. If we use a database with
50 thousands lines, the size of the database is about
9.5 MB. We have various options to control workloads of
OLTP program. For example, we can generate multiple
client threads so as to simulate simultaneous accesses
from multiple clients. Other than client threads, we can
specify the size of database, the database engines, the
instruction sets of each request and so on.

simulate realistic

The specification of the experimental platform is
shown in Table 1. Tn Table 2, we show the options
specified for OLTP program. We use InnoDB of MySQL
for the database engine. My SQL creates one server thread
per one client comection and each server thread shares
the same memory address space. Therefore, ITAS 1s
applicable m executing OLTP workloads of MySQL.
InnoDB supports transactional executions and 1s the
default database engine in OLTP program. We test 8
database sizes by changing the number of lines. We
select the database sizes around 10,000 lines, which are
the default value in the OLTP program. To simulate the
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Table 2: Options specified for OLTP program in SysBench (2009)

Database engine MySQL InnoDB
Database size (thousand lines) 1, 5, 10, 20, 30, 40, 50
Number of threads 100

Test mode Advanced

Access point distribution Uniform, gaussian

accesses from multiple clients, we specify 100 client
threads. Each client thread repeats a set of transactions
registered in the advanced mode, which is the default
test mode and contains 9 kinds of transactions to
simulate real workloads. We can specify the access
strides by controlling the access points of each thread to
follow a specific distribution. For example, if we select the
uniform distribution, each thread accesses uniformly
within the range of the specified database size. We test
both the uniform and the gaussian distribution. We let the
threads to repeat the transactions until the total counts of
the transactions exceed 10,000 times, which 1s the default
value in OLTP program. We measure the execution time
and the CPU time of oltp program. During the execution,
the database threads dominate »99% of the execution
time. We investigate the effect on the database server by
comparing the execution time. On the other hand, we
investigate the effect on the client threads of OLTP
program by measuring its CPU time. We also count the 1.2
cache misses and the resource stalls during the execution
by the performance monitoring counters of the processor.
To investigate the effect of ITAS on the throughput of
the non-aggregated background programs, we run single-
thread loop programs with OLTP program. The loop
programs only execute mfinite loop touching a certain
amount of memory and counts the number of the executed
loops. In this study, we run 4 loop programs, where each
program is bound to different Cores and touching 1 MB
of memory area to fully consume L2 cache. We run the
loop programs with GNTJ’s time command to measure the
CPU time of the loop programs during the execution of
OLTP program. We calculate the throughput of the loop
programs by dividing the number of the iterations by their
CPU time during the execution of OLTP program. We
show the result, when agg bonus
When agg bonus 15 50 millions, ITAS aggregates >99%
of chances of aggregation, therefore, we consider it is
large enough. We also set agg limit as 100, which is the
mumber of client connections. We show the comparison
of CFS to ITAS in executing multithreaded database
workloads (Fig. 6). Figure 6 shows the order of the threads
executed on the platform. Each circle expresses a thread
and the pattern inside one circle shows its memory
address space. As we mentioned, MySQL database server
and OLTP program creates multiple sibling threads. The
background threads include threads of the loop program.
As shown in Fig. 6, TTAS aggregates more sibling

is 50 millions.

100
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Fig. 6: Comparison of thread selection in CFS and TTAS
in executing multi-threaded database workloads.
ITAS tries to execute more sibling threads (circles
with the same pattern) simultaneously on each
Core

threads smmultaneously on different Cores. The

scheduling order of the background programs tends to be

postponed by ITAS.

RESULTS AND DISCUSSION

Influence on OLTP program: We compare the execution
time ([uniform,gaussian] DB) and CPU time of OLTP
program ([umform, gaussian] CLI) betweenITAS and CFS
(Fig. 7). We show the ratios of the execution time and CPU
time in ITAS against CFS in each access distribution.

As shown in Fig. 7, ITAS reduces the execution time
in most of the parameters and we consider that ITAS 1s
effective in executing database server threads. The effect
on the execution time on the uniform distribution becomes
small, when the database size 1s 30,000 lines or more. We
consider the effect on the execution time is related with
the increase of the number of the L2 cache misses and the
resource stalls shown in Fig. 8.

When we increase the database size >20,000 lines,
the number of the L2 cache misses and the resource stalls
start to increase. The database size of 30,000 lines 1s about
5.7 MB, which is 1.7 MB larger than the size of the 1.2
cache on our platform. Thus, it is reasonable to see the
increase of the 1.2 cache misses and resource stalls, when
we set the database size as 30,000 lines or more m the
umform distribution. As we can see, the effect on the
reduction of the L2 cache misses, the resource stalls
and the execution time by ITAS are relatively large,
when the database size 15 20,000 lines and less. On the
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Fig. 7. Comparison of execution time of OLTP program
([uniform,gaussian] DB) and CPU time ([uriform,
gaussian] CLI) of client programs between CFS
and ITAS in each database size and distribution
of access stride. We see the reduction of the
execution time of DB server threads. We also see
slight reduction of CPU time in ¢lient threads
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Fig. 8: Comparison of the L2 cache misses and the
resource stalls in each database size in uniform
distribution. We see the reduction of the L2 cache
misses and the resource stalls, whens the size of
the database server 1s 20,000 lines and below

other hand, the effect on the reduction of the L.2 cache
misses and the execution time 1s little, when the database
size 15 30,000 lines or more. In case that the database size
is 30,000 lines or more, the possibility that each thread
shares the working set is small. Therefore, we consider the
effect of ITAS gets small in larger database sizes in the
uniform distribution.

In the gaussian distribution, we see the reduction of
the execution time in every parameter. As shown in
Fig. 9, ITAS also reduces the L2 cache misses and the
resource stalls. In the gaussian distribution, the access
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Fig. 9: Comparison of the L2 cache misses and the
resource stalls m each database size m gaussian
distribution. We see the reduction of the L.2 cache
misses and the resource stalls in every database
size

point is biased and locality of the reference is likely to
emerge. Thus, the number of the 1.2 cache misses and the
resource stalls are smaller compared to those m the
umiform distribution. The reduction of the CPU time of
OLTP program is at most 5% as shown in Fig. 7. In OLTP
program, each client thread just repeats issuing requests
to the database server. The working set of client thread
itself 1s small and each thread does not share the large
working set. Although, TTAS does not degrade the
performance of the client threads, its effect is small.

Influence on the background programs: This study
demonstrates the effect of ITAS on the loop program.
Figure 10 shows the ratio of the throughput of the loop
program in ITAS to the throughput in CFS. As shown in
Fig. 10, the enhancement of the throughput of the loop
program in most of the parameters. We consider that
the enhancement of the throughput comes from the
characteristics of CFS. CFS tries to equalize the
curnulative CPU time of threads, which start at the same
time with the same nice value. If one thread spends less
CPU time than other threads, CFS will give longer
quantum time to the thread. We did not modify this
characteristic of CFS m implementing ITAS. We consider
that the loop program obtains longer quantum time
instead of obtaining smaller quantum time frequently
because ITAS aggregates sibling threads and lets the
loop program wait longer than CFS. We consider
acquiring the longer quantum time results in the decrease
of context switches and the enhancement of the
throughput of the loop program. Thus, even if ITAS
aggregates multithreaded programs, ITAS does not
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Fig. 10: Effect on the throughput of the loop program.
Even though the loop program
multithreaded program, the throughput of the
loop program increases in most of the parameters

mn not

disturb the throughput of the background programs. In
this study, we show that the effect of TTAS on a database
server workload is influenced by the access distribution
of client threads and the size of the database. To actually
utilize TTAS in the real world, it is necessary to tune the
priority bonus and the limitation of the aggregation to
enhance the throughput of the system and keep the
faimess between threads in a preferable level. For
example, if sibling threads share working set as large as
the size of the L2 cache, we can expect the enhancement
of the total performance by setting agg bonus ligh. On
the other hand, if sibling threads have heavily L/O
mtensive workload, the ratio of CPU usage may fall and
ITAS may degrade the total performance. Manual tuning
of agg bonus 15 difficult. To settle this issue, we are
now developing APT and a helper thread mechanism to
automatically tune agg bonus according to the programs
to run.

CONCLUSION

In this study, we investigate the effect of ITAS ona
multithreaded database server workload. ITAS 1s a
kernel-level thread scheduler for commodity CMP
platforms. ITAS executes sibling threads, kemel-level
threads sharing the same memory address space,
simultaneously on different Cores to utilize locality of
reference between threads and reduce cache misses. We
investigate the effect of ITAS on a multithreaded
database server workload running with non-multithreaded
background batch programs on a commodity CMP
plattorm. We show the experimental result, which
indicates that ITAS enhances the performance of the
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database server without degrading that of non-
aggregated background programs. We consider that the
result 1s promising and applicable to wider situations
because nowadays it 1s common to run multiple-multi-
threaded programs concurrently. The future research
includes the measurement in using multiple wvirtual
machines. In some virtual machines like VMware Server,
each thread in guest OS 1s mapped to multiple kernel-level
threads m host OS. In case of Linux host OS, one virtual
machine 1s run by multiple sibling threads. Therefore, we
can expect the effect of ITAS in running multiple virtual
machines. We also investigate both static and automatic
ways of tuning the priority bonuses to enhance the effect
of ITAS. We now implement API for developers to
statically specify the strength of aggregation based on
the characteristic of programs. We also use helper threads
to monitor the aggregation of sibling threads inside the
kernel and dynamically tune the priority bonuses.
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