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Abstract: The demand for solving large and complex problems in a relative short time has motivated scientists
to improve computational performance. The performance of a parallel system can be evaluated through the
scalability analysis under different constraints, such as speedup and efficiency. Although, there is no common
definition for scalability in general scalability describes the ability of a parallel system to utilize an increasing
nmumber of processors. In this study, we analyze the scalability of a parallel matrix multiplication on a cluster
based environment using Dimensionless Universal Scaling Diagram (DUSD) proposed by Hockney in terms
of speedup and compare it with Gustafson’s scaled speedup model. We conclude that Hockney’s concept
provides us with a sophisticated way m analyzing the scalability of parallel system that extends Gustafson’s
speedup concept, nevertheless Hockney’s model does not consider the overlapping between computation and
communication and thus does not provide the actual speedup value. Furthermore, Hockney’s concept concerns
only with speedup on optimum number of processors, while in reality we utilize whatever number of processors
available. Gustafson’s speedup model, which 1s merely a function of program parameters 1s easy to implement
and provide the actual value of speedup but it does not take into account hardware parameters that actually

affect the parallel performance.
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INTRODUCTION

The demend for solving large and complex problems
1n a relative short time has motivated scientists to unprove
computational performance. The performance of a parallel
system can be evaluated through the scalability analysis
under different constraits, such as speedup (Gustafson,
1988) and efficiency as mentioned by Alonso ef al.
(2008). Several metrics have been used to describe
scalability. Wu and L1 (1997) define scalability based on
a fixed computation to communication ratio, whilst
Jogalekar and Woodside (2000) express scalability
based on the throughput of the parallel system as
mentioned by Yero and Henriques (2007). Although, there
15 no common definition for scalability in general
scalability describes the ability of a parallel system to
utilize an increasing number of processors. A system that
provides an improved performance proportionally with the
mncreasing workload when more resources are available 1s
said to be a scalable system.

Scalability analysis of a parallel system can be used
to predict the performance of a parallel algorithm on a
parallel architecture for a large number of processors from
the known performance on that system using fewer
processors. If the size of the problem is fixed this analysis
can be applied to determine the optimum number of
processors i order to achieve a maximum speedup. In
addition, the scalability analysis can also estumate the
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impact of changing hardware parameters on the system
performance (Kumar and Gupta, 1994). The objective of
this study 1s to analyze the scalability of a parallel code on
a parallel architecture using Dimensionless Universal
Scaling Diagram (DUSD) proposed by Hockney (1996)
and compare this method to the scaled speedup model of
Gustafson.

MATERIALS AND METHODS

A parallel system can be wviewed as multiple
processing elements that communicate and cooperate to
solve large problems in a more efficient fashion than using
a single processing element. In essence, a parallel system
15 projected to offer a better performance than that
provided by a sequential system.

Speedup of parallel systems: As in single processor, most
performance 1ssues in multiprocessor can be addressed
by programming techniques, architectural techmques or
both. Numerous techniques have been proposed to
evaluate performance of a parallel system such as
execution time, speedup, efficiency and price/
performance. According to Wu (1999), the most general
performance metric is speedup. Approximately similar idea
was revealed by Karp and Flatt (1990), who stated that the
useful metrics to evaluate machine performance are
speedup and efficiency. Amdahl (1967), Gustafson (1988)
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and Sun and Ni (1993) used speedup to quantify the
performance of a parallel system, whereas Kumar and
Gupta (1994) chose processor efficiency mstead. In the
discussion we use speedup to measure the performance
of a parallel system.

Generally, speedup is defined as the execution time
of the best sequential algorithm over the parallel algorithm
and 1s expressed as:

Sp=—+ (1)

This speedup referred to as absolute speedup. If T,
denotes the execution time of the parallel code on a single
processor, the resulting speedup is called relative
speedup (Sahni and Thanvantri, 2003). Tn the discussion,
we use relative speedup as the performance metric
because the aim 1s to evaluate the performance gain by
using multiprocessors.

Gustafson’s speedup model: It is often the case that one
would like to solve a larger problem or to gain a better
accuracy when more processors are available instead of
reducing the execution time. Based on this thought
Gustafson mntroduced a speedup model that scale up the
workload with the increasing number of processors in
such a way as to preserve the execution time. According
to Gustafson (1988), the parallel fraction of the program
(1-c) 15 problem dependent. Therefore, the normalized
execution time on a single processor is expressed as
(Gustafson, 1988):

T, =o+(l-a)p (2)

and on p processors:

SR Gl B (3)

Accordingly, the speedup 1s;
S, =p-a(p-1) 4

In this model, the scalability analysis can be used to
determine how far the problem size can be scaled up with
the increasing number of processors in order to preserve
the execution time. In this context we assume that infinite
memory 1s available.

Hockney’s speedup model: A parallel system is defined as
a combination of a parallel algorithm and parallel
architecture on which the algorithm 1s implemented.
Therefore, performance of the parallel system should
consider the parallel architecture as well as the algorithm.

This is the underlying concept of DUSD model. The
execution time in DUSD model is based on three hardware
and three software parameters, named as 3-parameter
timing model (Hockney, 1996).

The hardware parameters describe computation
rate 1°, for floating-point operations, the asymptotic
commumication bandwidth 1°, and message latency t°,
respectively. The corresponding program parameters are
S* (N;p), 5° (N;p) and q° (N;p) that particularly denote the
number of floating point operations, the number of words
being communicated and the number of communication
start-ups.

The three aforementioned hardware parameters
depend also on the program as mentioned by Wolton but
for sumplicity we assume that those parameters depend
entirely on the computers being used. The execution time
of a parallel program on N problem size using p
processors is Hockney (1996):

5’ (N;p) N 55 (N;p)

g [

TN;p)= +15q°(N;p) (5)

Assuming that the number of operations and
commurications can be factorized as s* ° (N;p) = s,*° (N)
s,"° (p) and the number of communication as q° (N;p) = g,
(N) q,° (p), we substitute these factorizations into Eq. 5
and divide by t,"qy" (N). The resulting equation is termed
as dimensionless execution time expressed as:

TIN;p) = 8,85 (p) + 8,5; (p) + (D) (6)

with 8, represents the dimensionless message length and
8, as the dimensionless work, expressed respectively as:

8, (N, t5.10) = %

qp (NIt L %
83(N;t;>r:) = .:SN(NB s

qn (Nt

Hockney defined a parameter that represents the
ratio of &, and & ,as dimensionless computational
intensity 8, that is formulated as:

al(N;t;,r;)—?f(l\;)(ﬂ (8)

Substituting 8, into Eq. 6 yields the following
expression:

I3 H 83 C c
TON:P) =855, (p)+ 50D+ 4, (P) @)
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The optimum number of processors P in order to
achieve a minimum execution time is computed by
differentiating the dimensionless execution time in Eq. ¢
with regards to the optimum number of processors.
Speedup of the parallel program is quantified by
comparing execution time on a single processor to
execution time on optimum number of processors. Hence,
in terms of dimensionless time the speedup is defined as:

T'(N:1)
T(N;p)

8, (Nip)= (10)

with T'(N;1) and T'(N:;p) denote the execution time on
one and on P processors, respectively written as:

(1) =85 (1)
5 an
T(N.p) =85, (P)+ 8—33;(13) +4q;(p)

Substituting Eq. 11 mto Eq. 10 results in the
following speedup formula for optimum number of
processors in terms of 8, and &, as follows (Hockney,

1996):
ki)
S, (P)
[Hi
81

$(5) . 147
S(p) 88 (P)

The numerator of Eq. 12 represents a perfect speedup
and the denominator represents the associated overhead
that degrades the performance for values >1s. Using
Eq. 12 enables us to draw lines of constant speedup on
the optimum number of processors in the &,-8; plane. The
resulting graph is called Dimensionless Universal Scaling
Diagram (DUSD).

(12)

ép (81’83) =

DUSD model on parallel matrix multiplication: One of the
common operations n numerical computing that requires
intensive computational power is matrix multiplication, an
operation that is classified as Level-3 Basic Linear
Algebra Subprograms (BLAS). This operation has a time
complexity of O(n’), where n denctes the dimension of the
matrices assuming the matrices have a square structure.
Such time-consuming process 1s a proper candidate for
parallelization and therefore we use it as the test problem.

Suppose that the product of two square matrices A
and B 18 defined as; C = A x B. We adopt a simple
parallelization strategy where matrix A is decomposed into
p blocks of approximately equal sizes and these blocks are
distributed among processors. The matrix B 1s sent to
every processor as a whole. The execution of the parallel
matrix multiplication in three-parameter timing model is:
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2 J—
Hmm:}5953+%mmrn

: +3t(p-1) 13
The program parameters are:

n’(2n-1} 2n’

S (N;p) = = (14a)

P
s“(N;p) =3n°(p—1) (14b)
a°(N:;p)=3(p-1) (1e)

and the related factorizations are:

s°(N)=2n’, ss(p):l (15a)

P
s°(N)=3n°, s'(p)=p-—-1 (15b)
q°(N) =3, q°(p)=p-1 (15¢)

Hence the resulting dimensionless execution time is:

T’(N;p):83l+5(p—1)+p—1 (16)
P 9§
with the value of 8, and 8, expressed as:
c 3
8, :2_1”1: 8, _In” | (17
3 3t

oo L]

The optimum number of processors is derived by
differentiating Eq. 16 with respect to p:

B = (18)

The speedup on optimum number of processors 1s
derived from Eq. 12 as:

(19)

RESULTS AND DISCUSSION

The experiment was implemented on a group of
personal computers, consisted of six processors with
similar characteristics connected through a 1000 Mbps



Asian J. Inform. Technol.,, 9(2): 78-84, 2010

switch. Each computer has a CPTJ of 1.3 GHz and 256 KB
RAM and the test code was written in C language. The
parallel code of matrix multiplication was executed on
square matrices of dimension ranging from 300-800. The
workload in this research used data parallelism, where
all processors execute the same code on different set of
data. The execution time on various numbers of
processors 1s shown in Table 1.

Scalability analysis on parallel matrix multiplication:
Using an analysis package we performed the fitting of the
mathematical model in Eq. 13 to the execution time as a
function of problem size n and number of processors
p. This fitting determined the values of computation
rate, asymptotic commumcation bandwidth and message
latency as .= 71,661985 Mflops,1°. = 14,243797 Mwords
sec”, £, = 0.028013 sec, respectively. Substituting these
hardware parameters into Eq. 17 gives the values of
dimensionless parameters &, and 9, that lie in the range of
39.75<8,<106.01 and 8.97<d <170.03, respectively.
Afterwards, the optimum numbers of processors as well
as the speedup on that optimum numbers of processors
can be calculated using Eq. 18 and 19 and the result is
shown in Table 2. Apparently, the of
dimensionless parameters vary with the dimension of the

values

matrix and so do the optimum numbers of processors and
the related speedup.

The next step 1s drawing the contour plot as
shown in Fig. 1 using the hardware parameters shown in
Table 2. From Fig. 1, one can immedately find the
optimal number of processors P required to reach the
maximum performance for a specific problem size n. For

Table 1: Execution time of parallel matrix multiplication
Execution time (sec)

Matrix
dimension (n) T, T, Ts T, T; Ts
300 1.60 1.20 0.85 0.73 0.63 0.59
400 2.10 1.38 0.98 0.84 0.76 0.70
500 3.50 2.04 1.48 1.23 1.12 1.05
600 5.90 3.23 2.34 1.90 1.74 1.63
700 9.60 5.04 3.64 2.92 271 2.49
800 14.18 7.33 5.28 4.21 3.92 3.58
Table 2: Optimum number of processors and corresponding speedup

Dimensionless Optimum

parameters number of Speedup
Matriz =~ e processors on p
dimension () & [ (p) (Sp)
300 39.75 8.97 3 1.66
400 53.00 21.25 4 2.23
500 66.25 41.51 5 2.80
600 79.51 71.73 [ 3.34
700 92.76 113.91 7 3.84
800 106.01 170.03 8 4.31
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example, a problem size of 400 requires roughly four
processors to reach the maximum performance with
speedup equals to 2.3. If seven processors are available,
we need to increase the problem size up to 700 m favor of
achieving maximum performance, denoted by a speedup
of 3.85.

Furthermore from Fig. 1, we could increase the value
of &, and/or decrease the value of 8, to improve the
performance of the parallel system. Since the value of &,
is an inverse function of computation rate t.° and message
latency t," as shown in Eq. 17, an mcrease in performance
can be achieved by decreasing the value of those
before mentioned parameters. However, increasing
value of §; by decreasing the value of r.° will raise the
number of processors needed to achieve the maximum
performance.

Decreasing the computation rate: If we reduce the value
of computation rate by 50% from the previous rate such
that t.° = 35,830993 MFlops, the values of &, and 8, will
both increase. The DUSD of this hypothetical machine is
shown in Fig. 2.

We observe that for a problem size of 400, the
speedup 1s mcreased from 2.3 to approximately 3 but in
the expense of using more processors, siX processors in
this case. A similar phenomenon is also observed for
matrix size of 700, where the speedup increases from 3.85
to approximately 5.3 but the optimal number of processors
becomes ten instead of seven.

Decreasing the message latency: If we reduce the value
of message latency by 50% from the previous latency
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Fig. 1: DUSD for the parallel matrix multiplication
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Fig. 22 DUSD on a hypothetical machine with

computation rate t_° = 35,830993 MFlops

250+

2004

1504

100+

504

(=]

Fig. 31 DUSD on hypothetical machine with message
latency t,° = 0.0140065 sec

such that t," = 0.0140065 sec, the value of &, will increase
but the value of 8, will not be affected. The DUSD of this
particular machine is shown in Fig. 3.

We observe from Fig. 3 that the speedup for a
problem size of 400 becomes approximately 2.7 with the
optimal number of processors equal to five. For a problem
size equal to 700, the achieved speedup 1s approximately
4.35 on eight processors.
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Fig. 4. DUSD on a hypothetical machine with message
transfer rate t.° = 28,487594 Mwords sec™

Increasing the asymptotic communication bandwidth: As
previously mentioned, the performance of the system can
be improved by increasing the value of 8,. From Eq. 18, it
is noted that the value of &, can be increased by
decreasing the value of computation rate as m previous
example or by increasing the value of asymptotic
communication bandwidth. Suppose the value of the latter
case 1s mcreased two-fold as such that r.° = 28,487594
Mwords sec™, the resulting DUSD of this machine is
shown n Fig. 4. Using this particular machine, a problem
size of 400 requires four processors to achieve a speedup
of approximately 2.4 and problem size 700 requires eight
processors to achieve a speedup of 4.5.

To acquire an msight of the mpact of changing
hardware parameters to the performance of the parallel
system, we provide the speedup and the required number
of processors to achieve that speedup in Table 3 for
problem of size n = 400 and n = 700 that has previously
discussed. Downward arrow in Table 3 denotes halving
the associated hardware values, while upward arrow
denotes doubling the corresponding hardware value.

We may notice immediately From Table 3 that
reducing message latency and increasing the asymptotic
communication bandwidth will result in a better
performance than the performance of the working
platform, however the best performance will be achieved
by reducing the computation rate but in the expense of
using more processors. By considering the hardware
parameters, DUSD method provides us with a way to
analyze what will happen to the scalability of the parallel
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Table 3: Tmpact of changing hardware parameters on speedup and optirmum
number of processors

n =400 n =700
Parameter change Sp p 3p P
No change 2.3 4 3.85 7
.kl 3.0 [ 5.30 10
[ 2.7 5 4.35 8
'l 2.4 4 4.50 8
Table4: Speedup of parallel matrix multiplication based on Gustafson’s
model
Speedup

Matrix

dimension (n) Spy Spa Sp4 Sps Sps
300 1.33 1.88 2.19 2.54 271
400 1.52 214 2.50 2.76 3.00
500 1.72 236 2.85 3.13 3.33
600 1.83 2.52 311 3.39 3.62
700 1.90 2.64 3.29 3.54 3.86
800 1.93 2.69 3.37 3.62 3.96

matrix multiplication if changes are made to the parallel
hardware parameters. Gustafson’s speedup model is easy
to implement compared to Hockney’s model. The speedup
1s directly computed from the execution time in Table 1
and the result 1s shown in Table 4. From Table 1, we
observe that a problem size of 300 requires 1.2 sec to run
on two processors. If more processors are available, four
processors for instance, we could increase the problem
size up to 500 and the execution time will comparatively
the same, 1.23 sec to be exact. The speedup is 1.33 in the
former case and 2.85 in the latter case.

Therefore, the speedup is scaling up from 1.2-1.23 if
we scale up the workload from 300-500 when four instead
two processors are available. Gustafson’s model provide
us an insight of how much can the workload be mcreased
if more processors are available in order to preserve the
execution time and hence increase the performance of the
systerm.

If we evaluate the speedup using Hockney’s model
in Table 2 and the speedup using Gustafson’s model in
Table 4, we will notice that the speedup in Table 2 has
lower values compared to that in Table 4 for any problem
size on similar number of processors. For example, a
problem size of 400 on four processors provides a
speedup of 2.23 in Table 2 and a speedup of 2.50 in
Table 4. This 1s due to the fact that Hockney‘s execution
model in Eq. 5 does not take into account the overlapping
between computation and commumcation, whilst this
overlappmng does i parallel system. The
overlapping of computation and communication 1s central
to obtammg high performance in parallel computing.
From the previous discussion we may conclude that
DUSD technique of Hockney is a powerful concept
because a full scalability analysis is possible with only

occur
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two dimensionless parameters, 8, and 8, as in the case of
parallel matrix multiplication. However, Hockney’s
execution model does not consider the overlapping of
computation and commumnication and thus the achieved
speedup shows a lower value than the speedup computed
directly from actual measurement. Furthermore, the
speedup m DUSD concerns only with speedup on
optimum number of processors, while in reality we utilize
whatever number of processors available. Tn contrary,
Gustafson’s speedup model does not take into account
hardware parameters that actually affect the parallel
performance; nevertheless this method which is merely a
function of the number of processors as presented in
Eq. 1 18 a straightforward method that capture the actual
value of speedup.

CONCLUSION

From the test results and the analysis, we can draw
the following conclusions: Hockney’s DUSD concept
provides us with a more sophisticated way in analyzing
the scalability that extends Gustafson’s speedup concept,
unfortunately Hockney’s execution model is based on the
assumption that no overlapping between computation
and communication and thus does not reveal the actual
speedup value. In addition, Hockney’s speedup model
account only on optimum number of processors, while
generally we utilize any number of processors.

Gustafson’s speedup model, which 13 merely a
function of the nmumber of processors 1s a straightforward
method that provides the actual speedup value;
nevertheless this model does not consider any hardware
parameters that actually affect system performance.
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