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Abstract: Geological information prediction and Earth monitoring by the satellite images are the recent research
area to preserve the vegetation, weather forecast, and the disaster management. The employment of Hyper
Spectral Image (HSI) by capturing the electromechanical energy variations from the Earth’s surface m the
various spectral bands offers the significant contribution to the remote sensing applications. The clear image
analysis depends on the spectral response. The capture of response in HSI in narrow bandwidth causes the
less performance. Hence, the mumber of bands over the various time periods are the important requirement in
clear image analysis. The multi-temporal images contamn more information than RGB image since more bands
are available in 1t. The absence of frames update leads to accuracy degradation. This study focuses on
multi-temporal images for better isolation of normal and noise region and provides the clear image analysis
compared to HST. This study proposes the cellular automata-based noise filtering technique with the changes
n noise prediction structure to eradicate the noise components, thereby better 1solation 1s achueved. This study
overcomes the update and accuracy limitations by an employment of image fusion to each band to elimmate
the cloud and provide the necessary updated frames. The classification of normalized images from the fused
images by using Tree Bagger algorithm with Neural Network (NN) formation (TBANN) predicts the cluster label
for the color features of specific band results in the reduction of the atmospheric and signal dependent noise.
The compearative analysis between the proposed TBANN with the existing methods regarding the accuracy,
Kappa coefficient and the number of pixels count assures the effectiveness of TBANN in remote sensing
applications.
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INTRODUCTION

Remote imaging spectrometry plays the significant
role i geological and ecological research studies that
include the spectral features and the object classification.
The fundamental process for the remote sensing
applications 1s the extraction of electromagnetic energy
from the Earth’s surface, spatial, spectral and temporal
variations in the field. The understandable feature space
creation is the key component for theclassification
process. An optical imaging technique operated under
mfrared and visible range 1s referred as Hyperspectral
Imaging (HSI). The absolute and precise information
analysis depends on the clear and detailed spectral
response with the narrow bandwidth. Prior to HSI

analysis, the radiometric calibration is the fundamental

task. The classification techniques applied on HSI
involves the discriminative spectral bands and a large
number of features. The integration of spatial and spectral
features 1s the challenging task in HSI analysis.

The high dimensionality of HSI data may increase the
size of computational operations. Therefore, 1t influences
the classification performance. The data widely used to
monitor the Harth activities 1s referred as Landsat data. For
the same locations, a large number of available HSI in
different time periods offer the clear analysis. The
presence of cloud, cloud shadow and snow in Landsat
mages makes the optical sensor utilization in abetter
way. The brightness effect of cloud/snow and the
darkness of the cloud shadow have the great impact on
spectral bands handling. The execution of remote sensing
activities depends on the performance of change
detection, cloud/cloud shadow removal. The accurate
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decision is the necessary. The information collection from
the pixel variations offers the better performance for wide
variations. The dependency existence between the pixel
contents 1dentification and the spectral mformation
depends on the proper geometric relationship. The
reduction m a number of pixels for the linear munber of
spectral bands reduces the data volume.

Spectral information identification and the optimal
wavelength 1dentification are the important techniques to
reduce the dimensionality in HSI. In HSI, the
hyperspectral sensors capture the Electromagnetic energy
from the earth’s surface, spectral and spatial variations.
The spatial resolution variations depend on the high
altitude and wide area coverage degrades the image
quality adversely. The relevancy prediction of small
objects is the necessary task of an accurate classification
due to the spatial resolution existence. The rich
information identification in HSI depends on the
estimation of thedistinguishingrelationship between the
spectral similar materials. The prior assumption of class
labels for each spectral signature in supervised
classification approach is not suitable due to the
unfavorable ratio between the large spectral bands and
the small training samples.

The exploration of ground truth mformation is not
common for diverse training samples due to the expensive
collection of reliable samples. Kernel methods and the
machine learning techniques require an enhancement to
reduce the data dimensionality. The bounding of convex
combinations in the composite kernels and the
optimization of parameters are the difficult tasks. The
presence of nonlinearities due to the atmospheric and
geological conditions and the fewer traming samples
availabilities causes the classification task as the
challenging problem.

The description of surface features via hyperspectral
umage 1s the less efficient due to the narrow bands that
lead to broad wavelength image category called
Multi-spectral imagery. This study focusses on the
multi-spectral image classification with the suitable ¢loud
removal and classification techmiques. The multi-spectral
aspect of image classification achieves the clear analysis
because of the simultaneous timely (year, day, month) and
spectral bands capturing. The technical contributions of
proposed work are listed as follows:

* The employment of cellular automata based noise
filtering technique with changes in noise prediction
strtucture reduces the atmospheric and signal-
dependent noises

* An image fusion technique based on the frame
difference level eradicates the cloud and cloud
shadow efficiently

¢ The integration of Tree-Bagger algorithm with Neural
Network (TBANN) m this study forms the cluster of
normalized images by using cluster label prediction of
the color features

»  Finallythe comparative analysis between proposed
method and existing algorithms assure the effective
cloud removal and  better classification
performance

Literature review: This section reviews the relevant
literature on the classification of Hyper Spectral Tmages
(HSI) based on various techniques.The classification in
remote sensing applications includes the rich and
meaningful feature space creation that leads to the
spectral-spatial classification scheme. Knauer and
colleagues  discussed the various classification
techniques for low dimensional datasets. They proposed
the real-world test case for the proposed approach. The
bias variations and the decomposition are the difficult
processes in HSI classification. Merentitis et al. (2014)
introduced the unified framework for the provision of
theoptimal trade-off between the bias variations and the
decomposition. They jointly optimized the classification
steps to achieve the trade-off. The large spectral
variability and the spatial variations existence in HSI
introduced the tiny regions and the labeling of these
regions is the difficult task. Bai et al. (2013) applied the
pixel-wise classification approach with the Support Vector
Machine (SVM) which results in the preservation of pixels
with high probabilities. They tested the small training sets
with the graph cut approach to assure the robustness.
The impact of magnetite minerals, cloud and cloud
shadow were high and they limited the useful information
prediction. The multiple queries scanning is the difficult
task over the large size images. Patterson ef al. (2016)
described the efficient framework to support multiple
scanning queries for the large size data. They described
the preliminary analysis for anomalies detection that
required the radial calibration. Ganesh et «l. (2013)
included the calibration with the atmospheric radiation,
thereflectance for satellite data preprocessing.

The automatic species mapping depends on the
atmospheric  variations affected the classification
performance adversely. Nia et al. (2015) applied the three
preprocessing techniques such as atmospheric correction,
Gaussian filter, and shade vegetation filters to unprove the
classification accuracy. Moreover, the accuracy depends
on the spectral responses from the utilized sensors in HST.
The narrow bands spectral response degrade the
classification accuracy and the less performance in image
analysis that initiate the multi-temporal images handling.
The trade-off between the high-accuracy and the cloud
masking was the significant task in themulti-temporal
image. Zhu and Woodcock (2014) discussed the
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Automated Tmask algorithm for cloud/cloud shadow
removal. The comparison of cloud models with the
landstate observations offered the better cloud removal
performance. The utilization of Land site satellite images
m the Land Use/Land Cover (LULC) contamed several
degree of cloud covers that contained locational and the
class labeling errors. JTohnson and Tizuka (2016) discussed
the noise tolerant algorithms such as Naive Bayesian
(NB), decision tree (C4.5) algorithm and the random forest
to eradicate the high noise levels and the degree of ¢loud
cover. Research studies extended the application of HSI
to the object determination of pork quality grades.
Barbin et al. (2012) carried out the Principal Component
Analysis (PCA) within the particular wavelength ranges
to produce the classification maps. The increase in
spectral resolution of HSI opened the new research
studies 1n HSI analysis. Valls et al (2014)
investigated the HSI classification problems due to
the noise effects.

and the spatial
dependence of the pixels increased the dimensionality of
training datasets. Forero et al. (2013) presented the
pixel-wise classification with the joint usage of spectral

The multi-variant scenarios

and spatial mformation. They proposed the Additive
Morphelogical Decomposition (AMD) based on the
morphological operators. Low spatial resolution caused
the problems in structured detection and the
unsupervised classification. Villa et al. (2013) exploited
the rich information prediction problem due to the
imperfect image optics and illumination effects. They
performed spectral unmixing and the unsupervised
classification for thematic maps construction. The
accurate thematic maps creation by the automated
procedures 1s the difficult task. Moreno er al (2014)
performed the classification m three stages as follows:
thetransformation of spectral data mnto the hyperspherical
representation, gradient computation, and the feature
selection. They obtained better classification results. The
generalization of composite kernels depends on the
combination of spectral and spatial mformation. L1 ef al.
(2013) discussed the multi-nominal logistics regression
and extended the multi-attribute profiles for
spatial/spectral information modeling. The analytical form
of multi-class classification introduced the problems.
Baz et al. (2014) proposed the efficient machine learning
algorithm which is the combination of Differential
Evolution and Extreme Learning Machine (ELM) to
address the feature selection issues.

The sparse representation based classification for the
large dimensional datasets is the inefficient process.
Wang et al. (2014) investigated the sparse representation
model under the probabilistic framework. The spatial class
dependence is captured and further refined by using the

probabilistic model. The increase in spectral combinations
introduced the difficulties
preserving probabilistic models. Tochon et al. (2015)
discussed the Binary Partition Tree (BPT) algorithm in
different strategies to reduce the dimensionality of large
datasets. They employed the principal component
analysis and comparison of the various components to
reduce the data dimensionality. The manual timuing of the
kemels affected the classification performance severely.
Ghamisi et al. (2014) discussed the Fractional-Order
Darwinian Particle Swarm Optimization (FODPSO) and the
mean shift segmentation. The mtegration of PSO with the
mean shift methods reduced the complexities in thekernel
that improved the classification accuracy. The lack of
labeling and the high-dimensionality are the major
problems in the HSI classification. Ji et al. (2014)
discussed the spectral/spatial constraints to formulate the
pixels relationship in hypergraph structure. The utilization
of distance among the pixels for the feature-based
hyperedge generation to achieve the jomt optimization
functionality. They also provided the comparative
analysis of various kernel-based methods such as
Semi-Supervised Graph-based method for Cross Stacked
kemel (SSG-CS), SPARSE, Conditional Random Field
(CRF), Local Manifold Learning (LML) combined
with  the k-Nearest Neighbor (LMLAKNN) and the
Hyperedge analysis based on features (HG Fea) spatial
(HGSpa), weighted (HG W) and spatial constraint (HG)
methods.
labeling is the difficult task in kernel approaches.
Gao et al (2014) discussed the bilayer graph-based
learming framework to address the problems m labeling
process. The neighboring pixel relationship identification
with the high data dimensionality was achieved and
conducted the unsupervised learmning. The Bi-Layer
Graph-based Learning (BLGL) provided the maximum
classification performance compared to the SSG+CS, CRF
and LMLAKNN. From the study, the cluster formation and
separation are challenging one with the pixel variations on
each color band. Also, thepresence of noise and cloud
degraded the detection of the earth outward for various
applications. An effective classification mechanism is
required to remove the noise and cloud to provide the
better accuracy.

in the rich information

HSI classification with a limited number of

MATERIALS AND METHODS

Hyperspectral image classification using a hierarchical
tree bagger algorithm with NN: This section describes
the detailed explanation of the proposed new way of
classification of hyperspectral images as in Fig.1. The
major components of this system are:
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Fig. 1: An overall flow diagram of HSI classification using a hierarchical Tree Baggar Algorithm with the Neural Network

(TBANN)

¢ Preprocessing

¢ TImage fusion

* Cloud elimmation
*  Classification

Preprocessing: A preprocessing or filtering step is
applied to mimimize the noise. Several research studies are
available for structuring efficient noise suppression filters.
The preprocessing stage plays a vital role in ultrasound
umage quality enhancement

Cellular automata filter: A group of cells, which assumes
p possible states (ie, pixel colors) that updated
instantaneously and iteratively refers cellular automaton
(CA). A cell state 13 disturbed by neighboring cell States,

and its global evolution 15 determined using these local

iterations. Once a pixel is detected as noisy one state, the
modification to the state of random neighbor. In CA
theory, two mutual neighborhoods are employed:

¢+ Moore: 8 pixels square neighborhood
¢+ Von-Neumann: 4-pixel neighborhood

Both neighborhoods defined with many edges and
the boundary conditions will explain how the CA iterates.
Tt may either iterate periodic or reflected. In this approach,
the reflected boundary condition such that the cell is
present at the rightmost edge of the grid. The assumption

Fig. 2: The mput HSI and the preprocessed unage

of CA implementation is the presence of neighbor on its
right to the cells, which 1s alike as on the left and similarity
for the other edges.

Histogram equalization: The equalization techniques
applicable to improve the quality of the ultrasound lung
image. It elimmates the background wmformation,
redundant and hidden details for fast implementation.
Also, dealt with contrast enhancement in suspicious areas
in the HST. The result of the preprocessed image is given
in the Fig. 2 as follows:

Image fusion Stationary Wavelet Transform (SWT):
The Stationary Wavelet Transform (SWT) in image
fusion process followed by the quality enhancement.
Imtially, SWT decomposes the given image to single
resolution level to detect the cloud. As a result, the flat
image and three detailed images such as horizontal,
vertical and diagonal images are obtained by in the
proposed scheme.
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Fig. 3: The process of cloud detection using SWT

The smoothed images obtamed from 3x3 low pass
filter have the similar resolution as the original image. An
application of athreshold to the smoothed mmages to
differentiate the clouds andobtain a new binary. Figure 3
illustrates the SWT-based cloud detection.

PSO based cloud elimination: The Particle Swarm
Optimization (PSO) performs the cloud elimmation
followed by an mmage fusion process. Imtially, the mitial
velocity and the position of the particle is initialized
as V= 0.1 and P =1,V where I, denotes the preprocessed
image. The length of the preprocessed image is assigned
to the vector. The coordinate of the particle 1s predicted
by using the following equation:

n

F iion = 24 = cos((i+ p+ vl)i_j Cos((j+ 1) 1)

1=1 1=1

The minimum and maximum value of the positional
value are updated with the combination of position and
vector. The maximum value of the fitness is formulated as
the membership function and then compute the fitness for
each particle and iteration. The particle position and
vector coordinates are computed for each fitness value.
Finally, the affine transform is applied to create the
concatenated matrix output.

Alogorithm 1: PSO based Cloud Elimination.

Input: Preprocessed Image, ‘I,

Output: Fused image T°

Step 1: Initial velocity, V' = 0.1, Initialize particle ‘P*, P=1*V.

Step 2: Position of Edges = *x* and *y* coordinate points of Edge pixel.
Step 3: Vector =random (length (I,))

Step 4: Coordinate Prediction,

Fposition = il = COS((i+]) P+ Vi)

i=1

ijCos((j+1)

i=1

Smooth Filter

Fig. 4: a) The image before cloud removal, b) Extracted
points; ¢) Collected points; d) The image after
cloud removal

/1 Check fitness forgiven Position by using theobjective function.
Step 5: Lyssison = Minimum (F_Position)

//Check minimum position as Lysggo

Step 6: Gposten = Maximum (F_Position)

/fCheck maximum position a3 Gpedon

Lissitin, = Last Position

Gipsition = Global Position

Step 7: Position = Position + Vector

Step 8: find maxirmum (fitness_value), mf = max (fitness)//Select index, “mf®
Step 9: for k = 1 to iteration

Step 10:If Present_fitness<Last_fitness

Step 11: Update Cpoupon™ Lication

Step 12: End if

Step 13: FP = {P(x.¥)}

Step 13: Update Vector and position

Step 14: End loop “k’.

Step 15: Apply Affine Transform

Q=FP((FP),..... FPy(FP.F))...)
Step 16: Matrix Concatenation

Lj=ay Qctby Qi

Figure 4a-d shows the variations of images with the
cloud and cloud removal. The periodical positional and
velocity update and the new way of membership function
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formulation and the affine transformation application
efficiently removes the cloud to proceed the clear image
analysis.

Feature extraction: The extraction of suitable features
from the fused image is the next important step in the
proposed TBANN framework. This process is split up into
two operational stages such as color feature extraction
and PSO based feature extraction. The algorithm to
compute the color features extraction is listed as follows:

Alogorithm 2: Color feature extraction.
Input: Fused image “I.”

Output: Feature set F

Stepl: [[=I(M, N, I,)

Step2: I =I(M, N,I)

Step 3L=IM, N, I;)

JM, W =Row and Column size of image

/11,12, 13 = Sample size of image

Step 4:Calculate the mean, covariance and standard deviation based on the
feature vectors

Mean

Crop = IRGE\[

N = MJ /i Covariance

S (Ty (i)~ M)’

// Standard deviation 1 W
ROB = JM "N 4

Step 5:F = {M,y, Cie Si}

Initially, the image coefficients (11, 12, and 13) are
initialized with the row/column and sample image sizes.
Then, mean (M), Covariance (Cpqp) and the Standard
deviation (Spgp) based on the feature vectors computed
by wing the respective formulas and arranged as the
feature set. The best feature selection from the matrix is
performed by using the PSO formulation in next section.
The algorithm to select the best feature is listed as
follows:

Alogorithm 3: Color feature extraction.
Tnput: Feature Matrix, “Tr*

Output: Best Selection of feature indesx, *Fs’
Stepl:Initialize Particles, p(x) = {p;(x), Py(x), ..., P,(X)}
Step 2: Pareto optirnal set

Puin = {p1(x), Po(x), ..., P.(X)}

Where,

P10, Po(x), ..., Po(X) are “n’ number of objective finctions
Step 3: Velocity and position update

V(i) = CoV(i-DHCrerand (e p()HCor

PO = POV

Step 3: Objective function formulation

TEER = R0 (K )
Where:
L
M
1
P(k)
5

Present Fitness value of ‘r’
Average fitness value of ‘)’
Tteration length.

Distance value at each position.
= Gradient constant.

Step4: Find anoptimized sohition.

If (L<M), then

Update, T.=M;

Q. = Cost(P,)

o, = Max(P,, R)

Where:

g = is the rate of section
Q, = Interruption cost

R = Permanent interruption

Step 5: F, = GUP.(b))/Extracting index of selected features with
probability result from fitness value

The particles represent the features are initialized as
(30 = Ipux), pAx), ..., pLX). The pareto optimal set is
created with the positton and velocity update. The
fitness function formation and the repetitive velocity and
positional update extracted the corresponding index of the
feature set. The PSO formulation reduces the cost of
features extraction.

Hierarchical tree bagger algorithm with neural network:
The following algorithm shows the hierarchical tree
bagger algorithm with the neural network. The tree bagger
algorithm contains following processes:

+  Data collection

s  Feature extraction

s Parameter selection

»  Resampling

¢ Decision tree training
. Classification

The data collection, fusion, and the feature extraction
are discussed in the previous study.

Hierarchical Tree Bagger Algorithm 4

Parameter selection criteria: Choose the parameters for
random forest algorithm including the T number of trees
and the value for features set variable V(Fs).

Resampling: Sample the training data to formulate the tree
T with the subsets.

Decision tree training:

* A node selects the subset of V(Fs) for a given tree T
that represents set of all the predictor measures.

¢ Tt provides the optimal split in accordance with the
objective function

. At the next node, choose the diverse set of ?at
random from all the other predictor measures and
repeat the steps

Label formation:

p=1m=1 i
Where:
V(FS) = Feature vector of input image with selected
attributes
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Tr(FS)= Represents Training Feature matrix of Dataset
with selected attributes
g = Labels corresponds to the segmented output

The benefits of NN-based approaches recognize the
HSI classification. NNs are the dominant classification
characteristics and the
circumstancethat makes no assumptions about the data
distribution. This feature is applicable in cases where no

method with noenlinear

modest  phenomenological  model  exists  to
defineaccurately the essential physical process that
estimates the data distribution. Still, the use of NN for HSI
classification has been primarily limited due to the
extremely long time requisite to train NN. The training of
network mcludes a small ROI pixel portionwithout
requiring a self-determination of ground truth for
validation of NN classification results. The testing of
clagsification performance governed by the remaining

pixels m ROL
RESULTS AND DISCUSSION

This analyzes the proposed methodologyand
compares with the existing methods such as SVM,
SVM+FODPSO (Gao et al., 2014). The input image used
for HSI classification in theimageas mentioned in
Fig. 5.

The provision of color notification output classifies
the satellite image. The classes mvolved in the proposed
TBANNare the mountain, empty land, water, vegetation,
and forest. Table 1 depicts the color notifications for
various classes such as dark blue denotes the mountain,
light blue 1s an empty land, green 1s the water, pink 1s
vegetarian, and the yellow denotes the forest.

Figure 6 shows the classification outputs for the
existing k-means based classification and proposed
TBANN for image 1. Table 2 describes the accuracy
analysis for various class labels of Pavia HSI with the
existing and proposed TBANN. The comparison shows
that the CMA filtering and the PSO-based feature
extraction improves the classification performance by
1.9% compared to SVM+FODPSO.

Table 3 presents the number of pixel count and
accuracy variations for the existing K-means with PSO[18]
and proposed TBANN. The hybrid K-means with PSO
efficiently reduces the actual number of pixels for each
class of Salians image. The comparative analysis of
proposed TBANN with the existing provides the
significant improvement in the pixel reduction and
accuracy.

Fig. 5. Hyperspectral image

Fig. 6: TBANN output

Table 1: Color notification for five different clusters

Clusters Classes Color notification
1 Water Blue

2 Soil Light shade

3 Vegetation Dark Green

4 Forest Yellow

5 Empty Land Red

Table 2: Accuracy analysis for various classes of Pavia HSI

Class SVM SVMAFODPSO TBANN
Asphalt o4.4 96.1 98.2
Meadows 98.1 96.9 98.7
Gravel 778 98.2 98.5
Trees 93.0 98.6 99.2
Metal Sheets Q9.2 99.9 100.0
Bare soil 89.4 93.7 98.0
Bitumen 85.8 97.9 99.4
Bricks 92.0 874 92.8
Shadow Q9.4 99.9 100.0
Accuracy 94.3 96.2 98.1

Figure 7 shows the comparative analysis of proposed
TBANN with the existing methods such as HG (Spa, W,
Fea), CRF, SSGHCS, LMLAKNN and sparse regarding the
overall accuracy. The existing HG-W provides more
accuracy (93.2 %) for the number of labeled samples
compared to the other methods. But, the clear image
analysis by using TBANN improves the classification
accuracy (93.8 %) further.

Figure & shows the Kappa coefficient analysis
against the labeled samples for the proposed TBANN and
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Table 3: Pixel count and accuracy analysis

Number of Pixel Count

Accuracy (%)

Actual number of

Predicted number of pixels

Predicted mimber of pixels

Classes pixels (Ground Truth) by K-Means with PSO TBANN by K-Means with PSO TBANN
Brocoli_green weeds 1 391 271 331 69.31 81.65
Corn_senesced_green_weed 1343 1735 1539 81.57 88.70
Lethuce romaine 4wk 616 @22 769 75.08 83.40
Lettuce_romaine_Swk 1525 2396 1960 73.34 81.84
Lethice romaine 6wk 674 1306 290 67.39 75.80
Lettuce romaine 7wk 799 507 653 63.45 81.73
100 HG-W
90
HG-Spa
30
= 70 CRF
5 an / .
2 =0 — ——SSG+CS
£ 40 o T AL A+ENN
£ 30
e T -Fea
20
i — S parse
1] —— TBANN
3 5 10 15 25 30 S0 100
Labeled Samples Per Class
Fig. 7. Overall accuracy analysis
—e TR TE
e AL +ERNN
BLGL
S5G+CS
100
e T AN G
o0 = =
— 80
= 7
£ 60 —
= =
= S0
o’
=E 40
20
10
1]
3 s 10 20

Labeled Samples Per Class

Fig. 8: Kappa coefficient

existing methods CRF, LML+KNN, BLGL and
SSG+CS[20]. In existing methods, the SSG+CS provides
more Kappa coefficient (87 %) for the maximum number of
samples (10). The effective filtering and the NN-based
classification i proposed work utilized the PSO-based
color featire optimization that provided more Kappa
coefficient (95 %) than the existing SSG+CS.

CONCLUSION
This study discussed the limitations of geological

information prediction and Earth monitoring by the
satellite umages area to preserve the vegetation, weather

forecast and the disaster management. The employment
of Hyper Spectral Image (HSI) in the various spectral
bands offered the significant contribution to the remote
sensing applications. The capture of response in HSI in
narrow bandwidth caused the less performance. Hence,
the nmumber of bands over the various time periods are the
important requirement in clear image analysis. The
extension of HSI to the multi-temporal images covered
more information than RGB mmage since more bands are
available in it. The absence of frames update leads to
accuracy  degradation. This study focused on
multi-temporal images for better isolation of normal and
noise region and provided the clear image analysis
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compared to HSI. This study proposed the cellular
automata-based noise filtering technique with the
changes n noise prediction structure to eradicate the
noise components, thereby better 1solation 1s achieved.
This study overcomes the update and accuracy
limitations by an employment of image fusion to each
band to eliminate the cloud and provide the necessary
updated frames. The classification of normalized images
from the fused images by using Tree-Bagger Algorithm
with Neural Network (NN) formation (TBANN) predicts
the cluster label for the color features of specific band
results m the reduction of the atmospheric and signal
dependent noise. The comparative analysis between the
proposed TBANN with the existing methods regarding
the accuracy, Kappa coefficient and the number of pixels
count assured the effectiveness of TBANN in remote
sensing applications.
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