Asian Journal of Information Technology 15 (18): 3487-3500, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Hybrid Optimization Techniques for Fuzzy Logic Controller Design in
Parallel .Job Scheduling Problems

5.V. Sudha
Department of Computer Science and Engineering ,
N.G.P Institute of Technology, 641004 Coimbatore, Tamil Nadu, India

Abstract: In this study attempt is taken to improve the performance of the fuzzy logic controller employed in
finding solutions for the parallel job scheduling problems. The performance of the fuzzy logic controller
depends on its knowledge base which consists of data base and the rule base. This paper proposes novel
hybrid optimization techniques for performance improvement of the fuzzy logic controller by optimizing its
knowledge base and a comparative analysis of the proposed optimization techniques are presented based on
the computed simulation results. Scheduling of parallel jobs 1s one of the most challenging aspects with respect
to analyzing the performance of the parallel system process. In a parallel system, if the application containg
processes which are not co-scheduled together, then the performance of the parallel system starts degrading.
Agile Scheduling algorithm classifies the grain sizes in a detailed manner for the real workloads and schedules
them 1 an effective mammer. Using the results obtained from the agile scheduling algorithm, a rule based system
is generated which classifies all the scheduling states and assigns the appropriate scheduling class for the
parallel jobs. The rule system is coded with the Mamdani Fuzzy model and to improve the modeled Fuzzy Logic
Controller (FLC), the proposed optimization techniques are applied over the knowledge base of the fuzzy logic
controller which mvolves optimization of both the database and rule base simultaneously. This paper employs
optimization algorithms like Genetic Algorithm (GA), Particle Swarm Optimization (PSQ), Ant Colony
Optimization (ACO) and River Formation Dynamics (RFD) for fuzzy logic controller design of parallel systems
and as well hybrid techmque along with the tabu search algorithm. Simulation results prove the effectiveness
of the developed algorithms for fuzzy logic controller design of parallel job shop scheduling problems.

Key words:Job shop scheduling, parallel jobs, parallel systems, genetic algorithm, agile algorithm, particle

swarm optimization, Tabu search, ant colony optimization, river formation dynamics, fuzzy logic

controller

INTRODUCTION

Scheduling parallel jobs for execution in real time
processing 1s similar to that of bin packmg. Each job
needs a certain number of processors for a certain time
and the scheduler has to pack these jobs together so that
most of the processors will be utilized most of the tune. In
job scheduling, synchronization overhead turns to be a
key issue for utilization of the processors. If scheduling
does not carefully address the synchronization overhead,
the utilization of each processor in a parallel system can
end up its usage comparatively lower than a single
processor system.

The domain, considered is the scheduling of parallel
jobs for execution in a parallel system and this type of
scheduling 1s typically done by partitioning the machine’s
processors and running a job on each partition. This is
similar to packing itinto two dimensions. One dimension
represents processors and the other represents time. A

Parallel job 1s a rectangle, representing the use of a certain
number of processors for certain duration of time. The
scheduler has to pack these rectangles as tightly as
possible within the space provided by the available
resources. The sizes of the rectangles are known as and
when each submitted job comes with a specification of
how many processors to be used and an estimate of how
long it will run. Due to the synchronization between
processes in a job, the jobs do not pack perfectly;
therefore holes are left in the schedule. If the processes
are not co-scheduled properly, 1t will harm the
performance of the parallel algorithm.

The earlier available co-scheduling algorithms
include first come first serve, gang scheduling and flexible
co-scheduling. The main drawback of first come first serve
1s the central queue which occupies a region of memory
that must be accessed in a manner that enforces
mutual exclusion. Thus, this becomes a bottle neck
when several processors look for work at the

3487

Asian J. Inform. Technol., 15 (18): 3487-3500, 2016

Table 1: Scheduling strategy results for fuzzy -GA, fuzzy -PS0, fuzzy-ACO and fuzzy-RFD for medium grain workload

Metrics/Scheduling Fuzzy- Fuzzy- Fuzzy- Fuzzy- FuzzyGA FuzzyPSO Fuzzy ACO Fuzzy RFD
strategy GA PSO ACO RFD with Tabu with Tabu with Tabu with Tabu
Average waiting

Time (h) 2:10:09 2:05:01 1:50:49 1:48:56 1:47:58 1:47:48 1:47:32 1:47:32
Mean

response

Time (h) 2:15:20 2:02:10 1:51:12 1:50:34 1:50:05 1:49:57 1:49:30 1:49:30
Turn

Around

Time (h) 0:05:32 0:04:21 0:03:12 0:02:45 0:02 0:01:54 0:01:33 0:01:33
Mean

Reaction

Time (h) 2:08:30 1:50:14 1:49:12 1:48:56 1:48:3 1:47:57 1:47:32 1:47:32
Mean

Utilization 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.70
Mean

Slowdown 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

same time. When all threads are treated as a common pool
of threads, it is unlikely that all the threads of a program
gains access to processors at the same time.

On requiring high degree of coordination between the
threads of a program, the process switches involve
several serious compromise performances. In Gang
scheduling, the schedule of communicating processes
should be precomputed and this require an assumption
about which processes gets commumicated with each
other. Flexible co-scheduling saturates at ligher loads.
Agile scheduling classifies a detailed granularity of
processes and gives better than the
above-mentioned ones with the help of the scheduling
metrics like average waiting time, twrnaround time, mean
response time, mean reaction time, mean slowdown and
mean utilization. The agile algorithm is implemented over
the processes and using the obtained results of
scheduling of the parallel jobs, a rule based scheduling
system 13 framed for a learming environment. The learming

results

environment 18 designed employing the Mamdam model
and the performance of the fuzzy logic controller is
mnproved by optimizing the knowledge base. The
optimization of the knowledge base module is carried out
by the genetic algorithm, particle swarm optimization, ant
colony optimization and river formation dynamics along
with the tabu search algorithm (Dutot et al., 2011,
Frachtenberg et al., 2005).

Genetic algorithm tuning for fle design in parallel
processors: Genetic algorithm is a heuristic search
algorithm based on the evolutionary ideas of natural
selection and genetics. Genetic algorithms are mspired by
Darwin’s theory about evolution survival of fittest.
Genetic algorithm represents an intelligent exploitation of
a random employed to
optimization problems. In finding solutions to problems,
there exists numerous solutions called as feasible

search solve numerous

solutions n search space and each pomnt in the search
space is a possible solution. Each possible solution is
evaluated by the fitness function.

Binary coded population is used in this paper for the
optimization of the database and the rule base of the fuzzy
logic controller employed using parallel job scheduling.
The binary coded chromosome contains 51 bits. First 15
bits represent the membership function of the input and
the output variables of the FLC module. The wvalues
represent the base values of the isosceles triangle of the
triangular membership function in F1.C design. Employing
genetic algorithm, the membership function values are
modified and the same is applied to the fuzzy logic
controller and the defuzzified values are noted.

The process is repeated until the difference between
the absolute and the predicted values reaches a minimum
value. Table 1 shows the sample chromosome (binary
coded value) of the fine grain workload (Moratori et al.,
2010, Sunetal, 2011). Figure 1 shows the process flow of
the genetic algorithm. All the genetic fuzzy systems either
encode single rules using Michigan approach (Bonarini,
1996) or complete rule bases using Pittshurg approach
(Smith, 1980). In this research, each individual represents
a whole rule base and thus it follows the Pittsburg
approach. Figure 2-9 shows the computed optimization
results for the fine grain workloads with respect to the
metrics-average waiting time, turnaround time, mean
response time, mean reaction time, mean slowdown and
mean utilization.

Proposed GA based tuning algorithm for FL.C design of
parallel processors: The various steps involved in the
genetic algorithm based fuzzy logic controller design of
parallel processors are as follows:

Step 1: Generate the initial population P based on the
binary coded value chromosomes of 51 bits. The
population is used to represent the database and the rule
base of the fuzzy logic controller employed for the parallel

3488

Asian J. Inform. Technol., 15 (18): 3487-3500, 2016

Initialize population with binary coded value which represents the database and the
rule base of the fuzzy logic controller used for the parallel job scheduling

v

First 15 bits are used for the database optimization and the remaining bits are used
for the rule base ontimization

v

For each chromosome, evaluate fitness function fit_base and fit_weigh

v

Perform Selection Operation from selecting the best individuals and
eliminating the worst individuals

v

Perform Two point cross over and find the new population

No
Whether minimum error
criteria has attended

Fig. 1: Process flow of genetic algorithm process

job scheduling. Tnitialize the weight matrix (weigh rule)
which represents the values that specifies the increased
weight factor component allocated to the rule used for
FLC module in parallel job scheduling.

Step 2: When the current population P does not get
converged do the following,

Step 2.1: Starting from the most significant bits of the
binary coded value, every five bits are assigned to each
of the base value of the two inputs and one output of the
fuzzy controller. Totally 15 bits are used out of 51 bits of
the population for optimization of the database of the FL.C
design.

Step 2.2: The remaining 36 bits are used to represent the
rule base of the fuzzy controller.

Step 2.3: The base ranges for the input and the output of
the fuzzy logic controller are defined.

Step 2.4: Linear mapping rule is used to determine the real
values of the variables. The real values of base
components are determined using:

b, =b, 8 4 (b= b, "2 /(21) * dv 1

where ‘dv’ is the decoded value of the binary string, b, ™,
b,"* are the minimum and the maximum base values, | is
the number of bits used to code by, b, and b, and in this
case it is 5 bits. ‘bl’ is the base of the interior isosceles
triangle of the membership function distribution of the
one of the input variable, ‘b2’ is the base of the interior
1sosceles triangle of the membership function distribution
of one of the input variable and ‘b3’ specifies the base of
the interior isosceles triangle of the membership function
distribution of the output variable.

Step 2.5: Calculate the fitness value, fit base =| absolute
— predicted| for each of the chromosomes.

Step 2.6: For every last 36 bits of the chromosome,
calculate fit weight with the help of the weigh rule matrix
as follows:

51
fit —weigh = 2 weightage (bit,) (2)

i=36

3489

Fig. 2: Database optimization results of fine grain workload (average waiting time and turn around time)

Fig. 3: Database optimization results of error calculations of fine grain workload (average waiting time and umaround

time)

Fig. 4 Database optimization results of fine grain workload (Mean response time and mean reaction time)

Errorin %

Error in %

20000
19800
19600
19400
19200
19000
18800
18600
18400
18200
18000

Defuzzified Output

Asian J. Inform. Technol., 15 (18): 3487-3500, 2016

20 40 60 80
Generations

————r

7120

20 40 60 80

Generations

100

120

7100 +

—+—GA
—=—PSO

ACO

RFD
—%— PSO+TABU
—e— ACO+TABU

—+— RFD+TABU

—e—GA
—=—PSO

ACO

RFD
—%— PSO+TABU
—e— ACO+TABU

—+— RFD+TABU

~ 7080 4 *—GA

2 —=—PSO

3 7060 \\ \ ACO

B 7040 \\' \ RFD

]

£ 7020 2 —%— PSO+TABU

5 —e— ACO+TABU
7000 - . —+— RFD+TABU
6980 -

6960

20 40 60 80

Generations

100

120

20 40 60 80

Generations

100

120

——GA
—a—PSO

ACO

RFD
—x—PSO+TABU
—e—ACO+TABU

—+—RFD+TABU

Fig. 5. Database optimization results of the error calculations of the fine grain workload (mean response time and mean
reaction time)

Step 2.7: Keep the best of the individuals and terminate
the worst of the individuals.

Step 3: Optimal solution is available and this 1s achieved
with that of the best individuals.

Step 2.8: Using the two points cross over operation,
reproduce the offspring from the current population.

Proposed hybrid PSO Tabu Search approach to tune
FL.C module in parallel processors: Particle swarm

3490

Asian J. Inform. Technol., 15 (18): 3487-3500, 2016

—e—GA
—=—PSO

ACO
>~ RFD
—x— PSO+TABU
—e— ACO+TABU
—+— RFD+TABU

Defuzzified Output

0 20 40 60 80 100
Generations

Fig. 6: Database optimization results of fine grain workload (mean slowdown)

[
o

—e—GA
—=—PSO

ACO
~—»—RFD
—x— PSO+TABU
—e— ACO+TABU
—+— RFD+TABU

Errorin %

O R N WHMOGO O N ®® O

Genrations

Fig. 7. database optimization results of the error calculations of the fine grain workload (mean slowdown)

0.592
0.59
_ 0588 ——GA
.§ 0.586 —=—PSO
O o584 ACO
3 5 RFD
§ 0%82 —%—PSO+TABU
2 oss e ACO+TABU
S os78 4 RFD+TABU
0.576
0.574
Geneartions
Fig. 8: Database optimization results of fine grain workload (mean utilization)
4.5
4
35 —e—GA
3 —a—PSO
i 25 ACO
5, .. RFD
0 —x— PSO+TABU
15 —e—ACO+TABU
1 —+— RFD+TABU
0.5

0
0 20 40 60 80 100 120
Generations

Fig. 9: Database optimization results of the error calculations of fine grain workload (mean utilization)

3491

Asian J. Inform. Technol., 15 (18): 3487-3500, 2016

optimization is a population based stochastic optimization
techmque, inspired by social behavior of bird flocking or
fish schooling. The particle swarm optimization (PSO)
belongs to the class of direct search methods employed
to find an optimal solution of any objective function. In
PSSO, each single solution is a bird in the search space and
it is called as particle. All the particles have fitness values
that are evaluated by the defined fitness function.

In this study, PSO takes the particles mn the form of
binary coded values with 51 bits. The first 15 bits are used
to optimize the database of the fuzzy controller and the
remaining bits are used for the rule base optimization of
the fuzzy controller employed in the scheduling process.
Tabu search 1s the meta-heuristic local search algorithm
that is employed for solving combinatorial optimization
problem. Tabu search uses a local or neighboring search
procedure to iteratively move from one potential solution
to an improved solution in the neighborhood search
space, until the set stopping criteria 1s met. The tabu
search employs a tabu list which is a memory structure
used to filter the solutions that get admitted into the
neighborhood search space.

This study hybridizes PSO and Tabu
approach. Particle swarm optimization results mn a
premature convergence and produces poor quality of the

search

solution by considering the local optimum. Tabu search
employ adaptive memory processes for guiding search
mechanism and hence the hybrid method tends to
produce better results. Figure 10 show the flow of hybrid
Particle Swarm Optimization and the Tabu Search

algorithm.

Proposed hybrid PSO Tabu Search Algorithm for FL.C
tuning: The various steps mvelved in the proposed
hybrid PSO Tabu Search algorithm 1s as follows as:
Step 1: Imitialize the particles of binary coded value of 51
bits. The particle is used to represents the database and
the rule base of the fuzzy logic controller used for the
parallel job scheduling. Tnitialize the weight matrix
welgh rule, which represents the weight component of
the rules used for the fuzzy logic controller for the parallel
job scheduling.

Imtialize the particle with position vector and velocity
vector Initialize the size of the swarm, swarm size Initialize
particle list to null. The base ranges for the inputs and the
output of the fuzzy logic controller are defined.

Invoke PSO: Step 2: For each particle generated
randomly, Step 2.1: Check the particle with the particle list
Step 2.2: If the particle 1s present in the particle list then

Step 2.3 The position is already visited and malkes
the particle to move to its neighboring position that
visited. Else starting from the
significant bits of the binary coded walue,

15 not most
each
five bits are assigned to each of the base value
of the two inputs and one output of the fuzzy
controller. Totally 15 bits are used out of 51 bits
of the population for the database of the fuzzy
logic controller. Step 2.4: The remaining 36 bits are used
to represent the rule base of the fuzzy controller. Linear
mapping rule is used to determine the real values of the

variables. The real values of base part are determined by:
b, =b ™+ (b== b, =) /(2 -1) * dv (3

where ‘dv’ is the decoded value of the binary string, b, =,
b are the minimum and the maximum base values, 1 1s
the number of bits used to code the base values and in
this case 1t 1s 5 bits. Step 2.5: Calculate the fitness
fit base =| absolute — predicted] for each of the
chromosomes. Step 2.6. For every last 36 bits of the
chromosome, calculate fit weight with the help of the
weigh rule matrix as follows:

51
fit — weight = E weightage(bit) (4)

1=36

Step 2.7: If the fitness value 1s better than the best fitness
value for both database and rule base optimization in
history then set the current value as the new best value
Step 2.8: Choose the particle with the best fitness value of
the entire particle as the gBest] and gBest2. Step 2.9: Set
ghestl, gbest2 to particle fitl, particle fit2. Step 2.10:
Input gbestl to tabusearchl and ghest2 to tabusearch2

Invoke tabu search 1 process: Step 3: Tnitialize Tabu list,
candidate list to null, sbest =gbest]. Step 3.1: Generate the
neighboring candidates. Step 3.2: For each candidate.
Step 3.3: If candidate not present in the tabulist then add
to the candidate list}. Step 4: Find the best candidate.
Step 5: Update to the tabu list. Step 6 Update to the
particle List till the candidates exist.

Invoke tabu search 2 process: Step 7: Imitialize
Tabu list, candidate list to null, sbest =gbest2. Step 7.1:
Generate the neighboring candidates. Step 7.2: For each
candidate. Step 7.3: If candidate not present in the tabu
list then add to the candidate list. Step 8 Find the best
candidate.

3492

Asian J. Inform. Technol., 15 (18): 3487-3500, 2016

Initialize particles with binary coded value which represents the database and the rule
base of the fuzzv loaic controller used for the parallel iob schedulina

v

For each particle, check the particle with the particle list |

No

©

Particle
Ye
| The particle will move to the neighboring position |

present?
A 4

| Find the fitness function fit best and fit weigh |

No

Check the current fitness with
the previous best, if current is
good ?

Set pbest1 and pbest2 to current fitness value and input the pbest1 and pbest2 to the tabu search

v

Initialize tabu search 1 and 2

v

Generate the neighboring candidates

|
\ 4

For each candidate, if candidate not present in the tabu list, add to the
candidate list

\ 4

Find the best candidate; Update the tabu list and the particle list

y

Whether
candidates exist

Yes

Fig. 10: Process flow of proposed hybrid PSO Tabu search

Step 9: Update to the tabu list

Step 10: Update to the particle list till the candidates exist
Step 11: Update swarm size until the particles exist

Step 12: Choose best of all particles and set as ghest 1
and ghest? and Update the particle position and velocity,

vi[] =
Dt+e2*rand()*(gbestl[- presentl[])
present][| =presentl[Hv1[]

v2[1=v2[+cl *rand(Y*(pbest2[J-present?[J+c2*
rand(y*(gbest2 [|- present2[])

vIi[] + cl* rand()*(pbestl[J-presentl|

3493

Asian J. Inform. Technol., 15 (18): 3487-3500, 2016

)

v

| Update the swarm size

Whether particles exist

| Choose best of al particles and set as gbest

v

| Update particle velocity and position

All particles Converge

Fig. 11: Database optimization results of medium grain worklead (average waiting time and turnaround time)

25000

——CGA

20000 '(i&n

15000

—=—PSO
ACO

RFD

10000

Defuuzified Value

5000

—%—PSO+TABU
—e—ACO+TABU

—+—RFD+TABU

0 20 40 60

Generations

80 100 120

Fig. 12: Database optimization results of medium grain workload (mean response time and mean reaction time)

presentZ [| =present2 [] +v2 [] where v1[] 1s the particle
velocity, present] [] is the current solution are the values
considered for the database optimization and v2[] 1s the
particle velocity, present 2[] is the current solution are the
values considered for the rule base optimization of the
fuzzy logic controller considered for the parallel job
scheduling, rand() 1s a random number between (0,1), cl
and ¢2 are the learning factors usually takes the value.

Step 13: Perform the generations until all particles
converge or maximum number of iterations are reached.

On implementing the proposed hybrid PSO Tabu
search algorithm, Fig 11-18 are obtained that shows the
optimization results for the medium grain workloads for
the metrics-average waiting time, turnaround time, mean
response time, mean reaction time, mean slowdown and
mean utilization.

3494

Asian J. Inform. Technol., 15 (18): 3487-3500, 2016

25000

N,

20000

—e—GA

15000

\\m-—-—-

—=—PSO
ACO

10000

RFD

Defuzzified Value

5000

—x—PSO+TABU
—e—ACO+TABU

—+—RFD+TABU

0 T T T
0 20 40 60

80 100 120

Generations

Fig. 13: Database optimization results of medinm grain worklead (mean slowdown)

0.7

0.6 Ly *

——GA

£ :‘\r:sl.(\ o
[
g . ACO
2 04
= '\—xaquu;u’u—u RFD
§ 031 —%— PSO+TABU
=]
802 —e— ACO+TABU
Z 0.
—— RFD+TABU
0.1 —_
0 : : : : :
0 20 40 60 80 100 120

Generations

Fig. 14: Database optimization results of medium grain workload (mean utilization)

0.68
0.675 //7\/ /
= —e—GA
o 0671 ;
E —=—PSO
S 0.665 - ACO
=1
2 066 L RFD
N
5 0.655 —x—PSO+TABU
o} —e— ACO+TABU
8 0.65
—+— RFD+TABU
0.645 / /
0.64 : : . . .
0 20 40 60 80 100 120

Generations

Fig. 15: Database optimization results of error calculations of fine gramn workload (average waiting time and turnaround

time)

Ant colony optimization for fle tuning in parallel
processors: The mspiring source of the ant colony
optimization is the food behavior of the real ants. When
searching for food, ants imtally explore the area
surrounding their nest in a random manner. The ants
deposit a chemical pheromone trail during its return trip to
the nest. The other ants follow the pheromone laying on
trails. Ant colony optimization constitutes a new family of
global search bio inspired algorithm. ACO is applied in
this paper to tune the knowledge base of FLC module n
parallel job shop scheduling process. Figure 19-22 show

the optimization results for the coarse grain workloads for
the metrics-average waiting time, turmnaround time, mean
response time, mean reaction time, mean slowdown and
mean utilization.

River formation dynamics for flc tuning in parallel
processors: In River Formation Dynamics (RFD), ants
substituted by drops and pheromone trails are replaced
by altitude. Tnstead of associating the pheromone values
to edges, the altitude value is associated with the nodes.
Drops erode the ground or deposit the sediments as they

3495

Asian J. Inform. Technol., 15 (18): 3487-3500, 2016

120

100 ——GA

—8—PSO

ACO
—*—RFD
—x—PSO+TABU
—e—ACO+TABU
—+—RFD+TABU

Error in
%

8 & 8 8

o

Generations

Fig. 16: Database optimization results of the error calculations of the medium grain workload (mean response time and
mean reaction time)

——GA
—=—PSO
ACO
——RFD
—x—PSO+TABU
—e— ACO+TABU
—+—RFD+TABU

Defuzzified Value

0 20 40 60 80 100 120

Generations

Fig. 17: Database optumization results of the error calculations of the medium grain worklead (mean slowdown)

——GA
—=—PSO

ACO
——RFD
—%— PSO+TABU
—e— ACO+TABU
—+— RFD+TABU

Defuzzified Value

o) 20 40 60 80 100 120

Generations

Fig. 18: Database optimization results of the error calculations of medium grain workload (mean utilization)

—e—GA
—=—PSO

ACO
~—<—RFD
—x— PSO+TABU
—e— ACO+TABU
—+— RFD+TABU

Error in %
o B N W A~ OO O N 0 ©

0 20 40 60 80 100 120
Generations

Fig. 19: Database optimization results of coarse grain workload (average waiting time and turnaround time)

3496

Asian J. Inform. Technol., 15 (18): 3487-3500, 2016

9000
8000
7000 _+—GA
s PSO
$ 6000 \\
3 \ \ ACO
% 5000 N
} RFD
= 4000 \\'\ SRR
N \’ \ % PSO+TABU
g 3000
T _e— ACO+TABU
2 2000
—+ RFD+TABU
1000
0 . . .
0 20 40 60 80 100 120
Generations

Fig. 20: Database optimization results of coarse grain workload (mean response time and mean reaction time)

14000

12000 \ ——GCA
$ 10000 S —=—PSO
S N
> 8000 ACO
g \\ RFD
3 6000 —_ >§T‘\ —%—PSO+TABU
3 4000 —e— ACO+TABU
2000 —+ RFD+TABU
0 ' ' ' ' '
0 20 40 60 80 100 120
Generations
Fig. 21: Database optimization results of coarse grain workload (mean slowdown)
05
0.4 —+—GA
8 035 X~y —=PSO
S 03 \ ACO
el
g 025 \\ \2 ‘_\/\: X RFD
N 02 —%—PSO+TABU
“g 0.15 —e—ACO+TABU
01 —+— RFD+TABU
0.05
0 ‘ ‘ ‘ ' '
0 20 40 60 80 100 120
Generations

Fig. 22: Database optimization results of coarse grain workload (error calculations)

move. First the drops are imtialized and continues
execution the algorithm until all the drops find the same
solution . The drops are made to move in a random way,
While movement they deposit sediments, erode the
ground and all the drops will follow the sediments and
reach the destination node. RFD is applied in this study

to tune the knowledge base of FLC module m parallel job
shop scheduling process. Figure 23-26 shows the
optimization results for the Independent grain workloads
for the metrics like average waiting time, turnaround time,
mean response time, mean reaction time, mean slowdown
and mean utilization.

3497

Asian J. Inform. Technol., 15 (18): 3487-3500, 2016

120
100 —
——GA
80 —=—PSO
ACO
60 - RFD
—x—PSO+TABU
40 e ACO+TABU
—+—RFD+TABU
20 - -
0
0 20 40 60 80 100 120

Generations

Errorin %

Fig. 23: Database optimization results of independent grain workload (average waiting time and turnaround time)

8000

7000 ————
——GA

6000 —=—PSO

5000 ACO

4000 ~—»—RFD

3000 —x—PSO+TABU

2000 —e—ACO+TABU
—+—RFD+TABU

1000 E—

0
0 20 40 60 80 100 120

Generations

Defuzzified Value

Fig. 24: Database optimization results of independent grain workload (mean response time and mean reaction time)

16

14
—+—GA

12 —a PSO

10 ACO
. RFD
—%— PSO+TABU
—e— ACO+TABU
—+— RFD+TABU

0 20 40 60 80 100 120

Generations

Defuzzified Value

o N A O

Fig. 25: Database optunization results of independent grain workload (mean slowdown)

0.12
0.1
—e—GA
0.08 —=—PSO
ACO
. —»—RFD
—*—PSO+TABU
0.04 —e— ACO+TABU
—+— RFD+TAB!
0.02 +]
0
0 20 40 60 80 100 120

Generations

Defuzzified Value
o
o
[}

Fig. 26: Database optimization results of independent grain workload (error calculations)

3498

Asian J. Inform. Technol., 15 (18): 3487-3500, 2016

RESULTS AND DISCUSSION

The problem considered here is to optimize the fuzzy
controller used for the parallel job scheduling using
genetic algorithm, particle swarm optimization, ant colony
optimization, and river formation dynamics. Hybrid
approaches of the above mentioned algorithms with the
tabu search are also implemented and analyzed. This
analysis i3 done to tune the fuzzy logic controller which
15 used as a leamning step for a parallel job scheduling.
Figure 2, 4, 6 and 8 represents the database optimization
of the fine grain workloads for the scheduling metrics
(average waiting time, turnaround time), (mean response
time ,mean reaction time), mean slowdown and mean
utilization. Figure 3, 5, 7, ¢ show the error
calculations of the database optimization of the fine grain
workloads.

Figures 11-14 represent the database optumization of
the medium grain worlkloads for the scheduling metrics
(average waiting time, tumnaround time), (mean response
time ,mean reaction time), mean slowdown and mean
utilization and Fig 15-18 shows the error calculations in
the database optimization of the medium grain worlkloads.
Figures 19, 20 and 21 represents the database optimization
of the coarse grain workloads for the scheduling metrics
(average waiting time, tumnaround time), (mean response
time, mean reaction time), mean slowdown. Figures 23, 24
and 25 represents the database optimization of the
independent grain workloads for the scheduling metrics
(average waiting time, tumnaround time), (mean response
time, mean reaction time), mean slowdown and Fig. 26
represent its error calculations.

The developed fuzzy scheduler results are compared
to the classical scheduling strategies used for the parallel
job scheduling. It 1s observed from Table 1 that the fuzzy
based river formation dynamics produces good results for
the medium grain workloads when compared to the other
optimization techmiques. Table 2 shows the actual
scheduling results of the medium grain workload.

From Table 1 and 2, it is determined that the particle
swarm optimization and ant colony optimization gives
almost similar results mn most of the cases with the
hybridization of the tabu search. The best fitness values
are obtained with the river formation dynamics with the
tabu search. Error calculations are high for coarse and
mndependent grain sizes since the defuzzified outputs are
very small in value and the fitness value for these gives
only a small correction from the predicted value. Thus a
complete comparative analysis of the developed
algorithms 1s done for the optimization of the fuzzy logic
controller used for the parallel job scheduling. The hybrid
approach produces effective mnprovements over the
traditional techniques.

Table 2: Scheduling Results of the Co scheduling algorithm for the medium
grain workload

Metrics/scheduling Algorithm FCFS Gang FCS Agile
Average waiting time ¢h) 12:32:43 3:08:11 2:30:33 1:47:32
Mean response time (h) 12:46:29¢ 3:11:37 2:3318 1:49:30
Turn around time (h) 7:11:34 1:42:18 1:00:00 0:01:33
Mean reaction time (h) 12:32:43 3:08:11 2:30:33 1:47:32
Mean utilization 0.5 0.5 0.60 0.70
Mean slowdown 1.83 0.46 0.37 0.26
CONCLUSION

In this study, an attempt is made to improve the
performance of the fuzzy logic controller as a learning step
for parallel job scheduling by optimizing the knowledge
base and the rule base using various optimization
techniques. The fuzzy logic controller was used due to its
robustness and can be easily modified, but the controller
fails to give the correct defuzzification results, thus tuning
the parameter of the fuzzy controller are carried out in this
paper. The proposed optimization techniques employ
binary coded chromosomes for the database and the rule
base optimization. The optimization of the data base and
the rule base is made with the optimization algorithms like
genetic algorithm, ant colony optimization, particle swarm
optimization, river formation dynamics and the hybrid
approaches of PSO, ACO and RFD with the tabu search.
The results show that the hybrid approach of the river
formation dynamics with the tabu search produces better
results with that of the other proposed methodologies.

REFERENCES

Bonarim, A., 1996. Evolutionary Learning of Fuzzy Rules
Competition and Cooperation. In: Fuzzy Modelling:
Paradigms and Practice, Pedrycz, W. (Ed.). Kluwer
Academic Press, Hebei, China, pp: 265-284.

Dutot, P.F., F. Pascual, K. Rzadca and D. Trystram, 2011.
Approximation algorithms for the multiorganization
scheduling problem. IEEE. Trans. Parallel Distrib.
Syst., 22: 1888-18095,

Frachtenberg, E., G. Feitelsor, F. Petrini and J. Fernandez,
2005. Adaptive parallel job scheduling with flexible
coscheduling. IEEE. Trans. Paral. Distrib. Syst., 16:
1066-1077.

Moratori, P., 8. Petrovic and R.J.A. Vazquez, 2010. Fuzzy
approaches for robust job shop rescheduling.

Proceedings of the 2010 TEEE International

Conference on Fuzzy Systems (FUZZ), July 18-23,

2010,TEEE, New York, USA., ISBN:978-1-4244-6919-2,

pp: 1-7.

3499

Asian J. Inform. Technol., 15 (18): 3487-3500, 2016

Smith, S.F., 1980. A learning system based on genetic Sun, H., QY. Caand W.J. Hsu, 2011. Effective adaptive

adaptive algorithms. Ph.D Thesis, Department of scheduling of multiprocessor with stable parallelism
Computer Science, Umversity of Pittsburgh, feedback. Parall Distrib. Syst. IEEE. Trans., 22:
Pennsylvania. 594-607.

3500

	3487-3500 - Copy_Page_01
	3487-3500 - Copy_Page_02
	3487-3500 - Copy_Page_03
	3487-3500 - Copy_Page_04
	3487-3500 - Copy_Page_05
	3487-3500 - Copy_Page_06
	3487-3500 - Copy_Page_07
	3487-3500 - Copy_Page_08
	3487-3500 - Copy_Page_09
	3487-3500 - Copy_Page_10
	3487-3500 - Copy_Page_11
	3487-3500 - Copy_Page_12
	3487-3500 - Copy_Page_13
	3487-3500 - Copy_Page_14

