International Tournal of Soft Computing 5 (2): 42-51, 2010
ISSN: 1816-9503
© Medwell Journals, 2010

Modified Genetic Algorithm for Task Scheduling in Homogeneous
Parallel System Using Heuristics

'Kamaljit Kaur, 2Amit Chhabra and *Gurvinder Singh
Department of Computer Science and Engineering,
Guru Nanak Dev University, Amritsar-143001, Punjab, India

Abstract: Multiprocessor task scheduling 1s an important and computationally difficult problem.
Multiprocessors have emerged as a powerful computing means for runmng real-time applications especially
due to limitation of uni-processor system for not having sufficient enough capability to execute all the tasks.
Multiprocessor computing environment requires an efficient algorithm to determine when and on which
processor a given task should execute. A task can be partitioned into a group of subtasks and represented as
a DAG (Directed Acyclic Graph) that problem can be stated as finding a schedule for a DAG to be
executed in a parallel multiprocessor system. The problem of mapping meta-tasks to a machine is shown to
be NP-complete. The NP-complete problem can be solved only using heuristic approach. The execution time
requirements of the applications tasks are assumed to be stochastic. In multiprocessor scheduling problem, a
given program 1s to be scheduled n a given multiprocessor system such that the program’s execution time
should be minimized The last job must be completed as early as possible. Genetic Algorithm (GA) is one of the
widely used techniques for constrained optimization. Performance of genetic algorithm can be improved with
the mntroduction of some knowledge about the scheduling problem represented by the use of heuristics. In this
study the problem of same execution time or completion time and same precedence in the homogeneous parallel
system is resolved by using concept of Bottom-level (b-level) or Top-level (t-level). This combined approach
named as Modified Genetic Algorithm (MGA) based on MET (Minimum execution time)/Min-Min heuristics
and b-level or t-level precedence resolution 1s finally compared with a pure genetic algorithm, min-min heuristic,
MET heuristic and First Come First Serve (FCFS) approach. Results of the experiments show that the modified
genetic algorithm produces much better results in terms of quality of solutions.

Key words: DAG, multiprocessor scheduling, genetic algorithm, heuristics, NP-complete, bottom-level, top-level

INTRODUCTION

The problem of scheduling parallel tasks onto
multiprocessors 1s to simply apportion a set of tasks to
processors such that the optimal usage of processors
and accepted computation tme for scheduling
algorithm are obtained (Ahmad et al, 1996, Kwok and
Ahmad, 1999). The assumption of this study is based on
the deterministic model that is the number of processors,
the execution time of tasks, the relationship among tasks
and precedence constraints are known n advance. The
precedence constraints between tasks are represented by
a Directed Acyclic Graph (DAG). In addition, the
communication cost between two tasks is considered to
be non-negligible and the multiprocessor system is not
diverse and non-preemptive that 1s the processors are
homogeneous and each processor completes the current
task before the new one starts its execution. The
complexity of the scheduling problem is very depended to

the DAG, the number of processors, the execution time of
tasks and also the performance criteria which would to be
optimized. To date, many heuristic methods have been
presented to schedule tasks on multiprocessor systems
(Braunt et al., 2001; Grajcar, 1999, 2001, [zakian et al.,
2009; Sutar et al, 2006, Femer and Babb, 1999,
McCreary et al., 2002). Also, there are many studies
have been used for task scheduling based on GA
(Hou et al., 1994; Rehmani and Vahedi, 2008; Lee and
Chen, 1999; Rahmani and Rezvani, 2009; Rinehart et al.,
2003; Wang and Korfhage, 2005; Page and Naughton,
2004, Carretero et al., 2007, Wu et al., 2004; Bohler et al.,
1999, Golub and Kasapovic, 2002; Nikravan and Kasham,
2007, Zhou et al., 2006). GA is a problem solving strategy
based on Darwinian evolution which has been
successfully used for optimization problems (Goldberg,
1990; Mitchell, 1998). The ain of this study 1s to present
a GA to decrease the computation time for finding a
suboptimal schedule.

Corresponding Author: Kamaljit Kaur, Department of Computer Science and Engineering, Guru Nanak Dev University,

Amritsar-143001, Punjab, India

42

Int. J. Soft Comput., 5 (2): 42-51, 2010

MATERIALS AND METHODS

Task scheduling problem: Parallel Multiprocessor system
scheduling can be classified mto many different classes
based on the characteristics of the tasks to be scheduled,
the multiprocessor system and the availability of
information. This study focus on a deterministic
scheduling problem. A deterministic scheduling problem
(Ahmad et al., 1996; Kwok and Ahmad, 1999) is one in
which all mformation about the tasks and the relation to
each other such as execution time and precedence
relation are known to the scheduling algorithm in
advance. The tasks should be non-preemptive ie., task
execution must be completely done before another task
takes control of the processor and the processor
environment 15 homogeneous. Homogeneous of
processor means that the processors have same speeds or
processing capabilities.

The main objective is to minimize the total task
completion time (execution time + waiting tume or idle
time). The multiprocessor computing consists of a set of
m homogeneous processor:

P=4p:1=1,2,3..m}

They are fully connected with each other via identical
links. Figure 1 shows a fully connected three parallel
system with 1dentical link.

Consider a directed acyclic task graph G = {V,E} of n
nodes. Each node V = {T1, T2,....,Tn} in the graph
represents a task. Aim is to map every task to a set
P={P1,P2,...,Pm} of m processors. Each task T1has a
welght W1 associated with it which is the amount of time
the task takes to execute on any one of the m
homogeneous processors. Each directed edge ey
indicates dependence between the two tasks Tiand Tj
that it connects. If there 1s a path from node Ti to node T;
in the graph G then Ti is the predecessor of Tj and Tj is
the successor of Ti. The successor task cannot be
executed before all its predecessors have been executed
and their results are available at the processor at which

—

Fig. 1: A fully connected parallel processor

the successor is scheduled to execute. A task is ready to
execute on a processor if all of its predecessors have
completed execution and their results are available at the
processor on which the task 1s scheduled to execute. If
the next task to be executed on a processor is not yet
ready, the processor remains idle until the task 1s ready.
The elements set C are the weights of the edges as:

C={Cl1,C2,C3...Cr}

The value cij € C is the communication cost incurred
along the edge e1). It represents the data commurncation
between the two tasks, if they are scheduled to different
processors. But if both tasks are scheduled to the same
processor then the weight associated to the edge
becomes null (Hou et ai., 1994; Lee and Chen, 1999). A
DAG which has eleven tasks according to their height and
their execution time (the time needed for a task to execute)
is shown in Fig. 2.

T-level (T1) 13 defined to be the length of the longest
path in the task graph from an entry task to Ti excluding
the execution cost of Ti. Symmetrically, b-level (T1) 1s the
length of the longest path from T1 to an exit task including
the execution cost of Ti. Equation 1 and 2 are equation
defimtions of t-level (T1) and b-level (T1). Notice that
we comsider communication costs while calculating
values t-level and b-level (Rahmani and Vahedi, 2008).

T level(Ti) = max {tlevel(T+wjtci] (1)

Tye pred(T1)

B level (Ti) = wi+_max_{ciji=blevel (T)} ()

Tie succ(Ti,

Minimum Execution Time (MET): Assigns each task in
arbitrary order to the machine with the best expected

0.3) 0.2) 3.0 2.0)

4.2) 3.2) 22 (5.2)

(Execution time, height)

Fig. 2: An example of a DAG

Int. J. Soft Comput., 5 (2): 42-51, 2010

execution time for that task regardless of that machine's
availability. The motivation behind MET 1s to give each
task to its best machine (Brunt et al., 2001; Tzakian et al.,
2009).

Min-min heuristic: Uses Mimimum Completion Time
(MCT) as a metric, meaning that the task which can be
completed the earliest 1s given priority. This heuristic
begins with the set T of all unmapped tasks. Then the set
of mimmum completion times, M = {min (completion-time
(Ti,Mj) for (1<i<n, 1<j<m)} is found. M consists of one
entry for each unmapped task. Next, the task with the
overall minimum completion time from M is selected and
assigned to the corresponding machine and the workload
of the selected machine will be updated. And finally the
newly mapped task is removed from U and the process
repeats wntil all tasks are mapped (1e., U is empty)
(Braunt et al., 2001; Izakian et al., 2009).

Genetic algorithms: A genetic algorithm starts with an
initial population that evolves through generations and to
reproduce depends on its fitness (Goldberg, 1990
Mitchell, 199%). In this case, the fitness of an individual is
defined as the difference between its makespan and the
one of the mdividuals having the largest makespan n the
population. The best individual corresponds to the one
having the smallest makespan and the largest fitness.

Next, the operators that compose a genetic algorithm
are reviewed. The selection operator allows the algorithm
to take biased decisions favour good mdividuals when
changing generations. For this, some of the good
individuals are replicated while some of the bad
mdividuals are removed. As a consequence, after the
selection, the population 15 likely to be dominated by
good individuals. Starting from a population P1, this
transformation is implemented iteratively by generating a
new population P2 of the same size as P1.

Genetic algorithms are based on the principles that
crossing two mdividuals can result an off springs that are
better than both parents and slight mutation of an
mndividual can also generate a better mdividual. The
crossover takes two individuals of a population as input
and generates two new individuals by crossing the
parents characteristics.

The offsprings keep some of the characteristics of the
parents. The mutation randomly transforms an individual
that was also randomly chosen. Tt is important to notice
that the size of the different populations is same. The
structure of the algorithm 15 a loop composed of a
selection followed by a sequence of crossovers and a

44

sequence of mutations. After the crossovers, each
individual of the new population 13 mutated with some
(low) probability. This probabulity 1s fixed at the begimming
of the execution and remains constant. The termination
condition may be the number of iterations, execution time,
results stability, ete. (Goldberg, 1990, Hou et al., 1994);
(Rahmam and Vahedi, 2008, Correa et al., 1999).

MGA: The suggested algorithm: GAs operates through
a simple cycle of stages creation of population strings,
evaluation of each string, selection of the best strings and
reproduction to create a new population. The number of
genes and their values in each chromosome depend on
the problem specification.

In this study, the number of genes of each
chromosome 18 equal to the number of the nodes (tasks)
in the DAG and the gene values demonstrate the
scheduling priority of the related task to the node (each
chromosome shows a scheduling) where the higher
priority means that task must be executed early. In the
basic genetic algorithm the initial population is generated
randomly which can cause to generate more bad results.

To avoid the generation of non-optimal results,
heuristic approach can be applied to generate the mitial
population that gives better results in terms of quality of
solutions.

Coding of solutions: For multiprocessor scheduling
problem, a schedule is one that satisfies following
conditions:

» The precedence relations among the tasks are
satisfied

» EBEvery task is present and appears only once in
the schedule (Hou et al, 1994, Rahmani and
Vahedi, 2008)

A schedule can be represented as several lists of
computational tasks (Fig. 3). Each list corresponds to
computational tasks executed on a processor and order of
tasks in the list indicates the order of execution.

Population initialization: The next step in the GAs 1s the
creation of the imtial population. Number of processors,
mumber of tasks and population size are needed to
generate initial population. Each individual of the initial
population 15 generated through a mmimum execution
time or min-mmn heuristic along with b-level or t-level
(Fig. 4 and 5) precedence resolution to avoid the problem
of same execution time or completion time and same
precedence Table 1. The problem of same execution

Int. J. Soft Comput., 5 (2): 42-51, 2010

time/completion time and precedence can occur in the
homogeneous parallel system as all the processors take
same execution time to execute one task. The task to be
scheduled for each iteration is determined by the

following rules:

Fig. 3: List representation of a schedule

-]
—_

|

3

:

o
-

|

o
[]

?

Fig. 4: Tnitial population of Fig. 2 using b-level resolution

?

?

P2

Fig. 5: Initial population of Fig. 2 using t-level resolution

|

P3

s+ Sort the tasks according to their execution
time/completion time in ascending order according to
the Minimum Execution Time (METYMin-Min
heuristic

s Calculate the bottom-level of each task

¢+ Sort the tasks with the same execution time/
completion time and same precedence according
to their bottom-level in descending order

s Assign the tasks to the processors in the order of
their bottom-level

Or the task to be scheduled for each iteration is
determined by the following rules:

s+ Sort the tasks according to their execution
time/completion time in ascending order according to
the Minimum Execution Time (METYMin-Min

heuristic.
s Calculate the top-level of each task
» Sort the tasks with the same execution

time/completion time and same precedence according
to their top-level in ascending order

s Assign the tasks to the processors in the order of
their top-level

The length of all individuals in an initial population is
equal to the number of tasks in the DAG. For example: the
initial population of Fig. 2 is generated.

Fitness value: Several optimization criteria can be
considered for this problem, certainly the problem
13 multiobjecive mm 1ts general formulation
(Carretero et al, 2007). The elementary criterion is that of
minimizing the makespan that is the time when finishes the
latest job. A secondary criterion i1s to minimize the
flowtime that is, minimizing the sum of finalization times of
all the jobs. These two criteria are defined as follows:

in {maxFJ}

makespan:
5; € 5ched j& Jobs

Table 1: Priority of execution of tasks based on their execution time, completion time, bottom-level and top-level

Order of execution

Order of execution Order of execution Order of execution

Task Execution Complection Bottom Top according to according to according to according to
number time tirne level level execution time complection time bottom level top level
1 3 3 16 0 7 2 2 1

2 2 2 17 0 1 1 1 2

3 3 3 14 0 8 3 3 3

4 2 4 13 0 2 4 4 4

5 2 5 11 5 3 5 5 5

6 2 7 8 6 4 7 7 6

7 2 7 10 7 5 6 6 7

8 4 9 4 12 10 8 9 10

9 3 12 3 11 9 9 10 9
10 2 14 2 10 6 11 11 8
11 5 12 5 12 11 10 8 11

45

Int. J. Soft Comput., 5 (2): 42-51, 2010

pl [«]|

Time 0 2 4 7 10 12 5

p| T 5 [# [« [[o]e] mo
Time g T 5 1 14 19 2 2
ps[m [+e]mr [ef+]m |

Time 0 3 8 9 11 13 18 22

Fig. 6 Assignment of tasks to processors using b-level

resolution
pr [Tt [ra [e ooz [Jus |
Time 0 3 5 10 11 13 18 22
p2[2 [& |«]as Je]e]e]s] mo| « | m
Time0 2 s 1013 14 16 19 24
P3| T3 | *|T6 | * T9 |
Time? 5 8 9 12

Fig. 7. Assignment of tasks to processors using t-level

resolution
> F
j€ Jobs

F, denctes the time when job j finalizes, Schd is the set
of all possible schedules and jobs is the set of all jobs to
be scheduled. For example fitness value of the mitial
population 1s as show in Fig. 6.

The fitness value is calculated in terms of Makespan
and Flowtime as discussed before as:

flowtime: min
SieSched

Makespan = 24 time units
Flowtime = 3+243+44+5+12+11422+1 5424410 =120
time units
Makespan = 24 time units
Flowtime = 3+243+5+7+8+13+22+12+16+24 =115 time
urnits (Fig. 7)
The * denotes the communication time and #

denotes the waiting time.

Selection operator: The design of the fitness function 1s
the basic of selection operation, the design of the fitness
function will directly affect the performance of genetic
algorithm. GAs uses selection operator to select the
superior and eliminate the inferior. The individuals are
selected according to their fitness value. Once fitness
values have been evaluated for all chromosomes, good
chromosomes can be selected through rotating roulette
wheel strategy. This operator generate next generation by
selecting best chromosomes from parents and offspring.

46

Crossover operator: Crossover operator randomly selects
two parent chromosomes (chromosomes with lhigher
values have more chance to be selected) and randomly
chooses their crossover points and mates them to
produce two cluld (offspring) chromosomes. In this study
one and two point crossover operators are examined. Tn
one point crossover, the segments to the right of the
crossover points are exchanged to form two offspring as
shown in Fig. 8a and in two point crossover (Goldberg,
1990; Rahmani and Vahedi, 2008), the middle portions of
the crossover poimts are exchanged to form two offspring
as shown in Fig. 8b.

Mutation: Ensures that the probability of finding the
optimal solution is never zero. Tt also acts as a safety net
to recover good genetic material that may be lost through
selection and crossover. Implementation of two mutation
operators is there in MGA. The first one selects two tasks
randomly and swaps their allocation parts. The second
one selects a task and alters its allocation part at random.
These operators can always generate feasible off spring,
too. Figure 9a-d demonstrate the mutation operation.

Makespan = 24 time units

Flowtime = 342+3+4+5+12+11+22+15+24419=120
time units

Makespan = 20 time units

Flowtime = 3+2+3+45+8+7+19+144+20+15=100time

units

The mutation operation swaps task t6 on processor
pl to task t7 on processor p3

20 time units
3H24H3+H454H8+HT+H1 8+ 2420415 = 97 time
units

Makespan =
Flowtime

The mutation operation swaps task t9 on processor
pl to task t8 on processor p3.

14 time units
34243+ 4+H54+8+THO+H1 241 4+1 2 = 79 time
unit

Makespan =
Flowtime

The mutation operation swaps task t8 on processor
pl to task tllon processor p2 that takes 14 time units to
complete. The procedure of the Suggested Modified
Genetic Algorithm is:

Step 1: Setting the parameter: Read DAG (number of
tasks n, number of processors m and comm. cost),
population size pop-size, crossover probability pe,
mutation probability pm and maximum generation mexgen.
Let generation gen = 0.

Int. J. Soft Comput., 5 (2): 42-51, 2010

(a) Randemly selects parent 1 and 2, crossover point 2

n @ —@E->®—@) P
»@—@@ "@- @@
Parent 2 P1 Ch“d”l

One point crossover

{b) Randomly selects parent 1 and 2, crossover points] and 3

Parent1 Pl

P2

Parent2 P1

OO00O
¢
(®)
.
%

»@—@—®
~.

Two point crossover

Fig. 8: (a) One point crossover and (b) two point crossover

(a) ©
|l o] [m] ™ Pm o fefm [efs] m |
Time 0 2 4 7 10 12 5 Time 0 2 4 5 7 12 14 18
p| T s [# | o [[¢]+] mo r[m [[#]« [mu [e]<] 0
Time g 35 11 14 15 2 22 24 Time 0 3 s 71 15 1718 20

P3
n[B o [[-]n] i
8§ 9

Time 0 3 1 13 18 22
® @

P2 | ma|+] mo[e]«] ™ | Pl 2| 4 |+]| ™ | Tl

Time0 2 4 5 8 11 14 Time © F 4 5 7 12

Pz| T s | #] « | T[] «] T10 | | s | T8 of o 10
Time 0 3 5 7 10 15 17 18 20 Time0 3 3 o 11 12 14
p3[13 [+[r6 [+]+]ms |
Time @ 3 6 8 10 15 19 P3 T3 | * T6 v | ™ |

Time 3 6 9 12

Fig. 9: (a) A Gantt chart before mutation operation, (b) A Gantt chart after swap mutation operation, (c) A Gantt chart
after swap mutation and (d) A Gantt chart after swap mutation operation

47

Int. J. Soft Comput., 5 (2): 42-51, 2010

Step 2: Initialization: Generate pop size chromosomes
using Mnimum Execution Time (MET ¥YMin-Min heuristic
and b-level/t-level precedence resolutions.

Step 3: Evaluate: Calculate the fitness value of each
chromosome.

Step 4: Crossover: Perform the crossover operation on
the chromosomes selected with probability pe.

Step 5: Mutation: Perform the swap/move mutation on
chromosomes selected with probability pm.

Step 6: Selection: Select pop-size chromosomes from the
parents and offspring for the next generation.

Step 7: Stop testing: If gen = maxgen, then output best
solution and stop.

Else gen = gen + 1 and return to step 3

RESULTS AND DISCUSSION

Performance analysis: The final best schedule obtained
by applymng the suggested algorithm to the DAG of
Fig. 2 onto the parallel multiprocessor system in Fig. 1 is
shown in Fig. 10 and 11.

The completion time obtamned by modified method
using b-level resolution 1s 14 time units and with t-level
resolution is 16 time units. We also compare the results
with FCFS scheduling method, min-min scheduling
method, MET scheduling method and also with the
Basic Genetic Algorithm (BGA) (Hou et al, 1994) on
parallel systems and execution of the schedule are shown
in Fig. 12-15.

After applymng the suggested modified GA, the best
schedule found using b-level resolution is:

Pl: T2-»T4-T7-T11
P2: T1»T5-T8—T10
P3: T3-T6—T9

14 time units
3H2H3HAHSHEFTHH1 241 4412 = 79 time
units

Makespan
Flowtime

After applying the suggested modified GA, the best
schedule found using t-level precedence resolution is:

Pl: T2=»T4-T7—T11
P2: T1-T5-T10-T8

48

P3: T3-Te—~T9
Makespan = 16 time units
Flowtime = 3+2+43+44+5+8+7+16+12+12+12 = 84 time
units
Min-min scheduling policy assigns the tasks to
processors pl, p2 and p3 as:

Pl | | T4 |+ 17 Til |
Time g 2 4 5 7 12
2| T T5 TS -r| o| T10 |
Time g 3 5 9 11 12 14
P3 | T3 | * T6 | * T9|
Time © 3 6 3 9 12

Fig. 10: A gantt chart of suggested modified genetic
algorithm using b-level resolution

P1|T2|T4|

N
5 7

Time 0 4 12
p2|T1 |T5|# . |- T10|Ts|
Time O 3 5 7 3 10 Z 16
JIEIREIREN

3 6 12

Fig. 11: A gantt chart of suggested modified genetic
algorithm using t-level resolution

P1|T2 |T4 |“'|"|T6 |‘|T11 |

Time 0 2 4 7 10 12 15 20
P2|T1 |T5| T8 |#|*|*|T10|
Time 0 3 5 9 11 12 14 16
M EA N B EARRER
Time ¢ 3 8 11 12 15 18
Fig. 12: A gantt chart of Min-min scheduler

1| T T4 [s[s]T7 [¢] T0 |
Time ¢ 3 5 10 11 13 15 17
e [#]«[m [«] ® [«[m
Time . 3 y 13 16 .
B33 [e]me [« [1o |

36 12

Fig. 13: A gantt chart of FCFS scheduler

Int. J. Soft Comput., 5 (2): 42-51, 2010

| wl#le]rs [ofe]m [ef m |
Time 0 2 3 5 7 8 9 11 13 17

pa| m| T | # [«]¢] mo [¢]TD |
Timeo 2 5 1 13 14 16 19 24

mlm fe#]+]w [+]D |

'Iimgo 3 5 8 10 11 14
Fig. 14: A gantt chart of MET scheduler

P1|T1 |T4 *[*]T7 | *] TIO |
Time 0 3 5 10 1 13 15 17
e |#| {1 [«] 1 [«]m |

0 2 3 5 7 9 13 16 21
Time

HIENEERERER

.0 3 6 L] 9 12
Time

Fig. 15: A gantt chart of BGA scheduler

Pl: T2-»T4-Te—T11
P2: T1-T5—-T8—T10
P3: T3-T7—T9

20 time units
342434445+ 241 1+9+1 8+1 6+20 = 103 time
units

Makespan
Flowtime

FCFS scheduling Policy assign the tasks to processors
pl, p2 and p3 as:

P1: T1»T4-T7—T10
P2: T2-T5-T8—T11
P3: T3-T6—T9

Makespan = 21 time units
Flowtime = 34+243+5+7+8+13+13+12+17+21 =104 time
units

Mimmum Execution Time (MET) Scheduling Policy
assigns the tasks to processors pl, p2 and p3 as:

Pl: T2=>T5->T7-T8
P2: T4A-T3—-T10—-T11
P3: T1-T6—T9

Makespan
Flowtime

24 time units
3H2H52+H7H1 01 14+ T+ 4416424 =
111 time urts

49

Time analysis
357 a0 @
301 24
§ ig 20 21 21
& 201 16
g 15 14
101
5
0“'.E'm'H'é""g'%"
R i
£ %ﬁ 51
=] = b
180+ 166 Flowtime analysis
1607 [7] ()
g i;g 103 104 11 104
Eloo: 8
= 80l
60
40
20 = ¥ T [72) T [T _’: T 'G T = 1
o B
0 £ ; 5 5 B Ly .Eg
£ 1
= ZL 3¢

Fig. 16: Experimental results for (a) Makespan (b) Flowtime

After applying the Basic GA, the best schedule
found 1s:

Pl: T1=T4-T7—T10
P2: T2-T5-T8—T11
P3: T3-»T6—~19

Makespan = 21 tume units
Flowtime =3+2+3+5+7+8+13+13+12+17+21
=104 time urmts.

In Fig. 16 a,b it is clear that MGA can considerably
decreases the scheduling time.

Performance analysis

Suggested modified GA using b-level resolution: Speed
up (S): speed up 1s defined as the completion time on a
uniprocessor divided by
multiprocessor system:

complettion time on a

S =30/14=2.142

Efficiency (E): (5 * 100)/m where m 1s the number of
processors.

E=(2142*100)/3="71.42%

Int. J. Soft Comput., 5 (2): 42-51, 2010

Performance analysis
807 7142
o 62.5
60 50
) a4 4761 4761 .
40
3 30
20
10
U zgl le . T W T < L] E(1
u- u.
i35 F FE £ &
o 8 =
™]
= b=

Fig. 17: Performance analysis of min-min, FCFS, BGA,
MET, MGA algorithms

Suggested Heuristics based GA using t-level resolution:
S=30/16=1875
E = (18.75 *100)/3 = 62.5%

Min-min scheduler:
S=30/20=1.5
E =(1.5*100)/3 = 50%

FCFS scheduler:
S=30/21=1.428
E=1(1.428 * 100)/3 = 47.61%

MET scheduler:
S=30/24=1.25
E=(1.25*100)/3 = 41.66%

BGA scheduler:
S=30/21=1.428
E =(1.428 * 100)/3= 47.61%

The performance analysis of various scheduling
schemes is shown in Fig. 17.

CONCLUSION

In this study, a Modified Genetic Algorithm for task
schedulmg in homogeneous parallel multiprocessor
system is suggested that tends to minimize the completion
time and increase the throughput of the system. The
heuristics based method found a best solution for
assigning the tasks parallel
multiprocessor system.

Experimental results and performance of the heuristics
based GA with different precedence resolution is
compared with Min-mm, MET, FCFS and BGA Scheduling
method and shows the efficiency of 71.42%. The
performance study 1s based on the best randomly
generated schedule of the proposed GA.

to the homogeneous

50

REFERENCES

Ahmad, T, YK. Kwok and MY. Wu, 1996. Analysis,
evaluation and comparison of algorithms for
scheduling task graphs on parallel processors.
Proceedings of the 1996 International Symposium on
Parallel Architectures, Algorithms and Networks,
June 12-14, IEEE Computer Society Washington, DC,
USA., pp: 207-207.

Bohler, M., F. Moore and Y. Pan, 1999. Improved
multiprocessor task scheduling using genetic
algorithms. Proceedings of the 12th International
Florida Artificial Intelligence Research Society
Conference, May 1-5, AAAT Press, OH., pp: 140-146.

Braunt, T.D., H.I. Siegel, N. Beck, B. Yao andR.F. Freund,
2001. A comparison study of eleven static heuristics
for mapping a class of independent tasks onto
heterogeneous distributed computing systems. 7.
Parallel Distrib. Comput., 61: 810-837.

Carretero, I, F. Xhafa and A. Abraham, 2007. Genetic
algorithm based schedulers for grid computing
systems. Int. J. Innovative Comput. Inform. Control,
3:1053-1071.

Correa, R.C., A Ferreira and P. Rebreyend, 1999.
Scheduling multiprocessor tasks with genetic
algorithms. IEEE Trans. Parallel Distrib. Syst,
10: 825-837.

Ferner, C.8. and R.G. Babb, 1999. Automatic choice of
scheduling heuristics for parallel/distributed
computing. Scientific Programm., 7: 47-65.

Goldberg, D.E.,, 1990. Genetic Algorithms in Search,
Optimization and Machine Leaming. Addison-
Wesley Publishing Co. Inc., Boston, MA.

Golub, M. and 8. Kasapovic, 2002. Scheduling
multiprocessor tasks with genetic algorithms.
Proceedings of the International Conference on
Applied Informatics, Feb. 18-21, OACTA Press,
Austria, pp: 273-278.

Grajcar, M., 1999. Genetic list scheduling algorithm for
scheduling and allocating on a loosely coupled
heterogeneous multiprocessor system. Proceedings
of the 36th annual ACM/EEE Design Automation
Conference, June 21-25, New Orleans, Louisiana,
USA., pp: 280-285.

Grajecar, M., 2001. Strengths and weaknesses of genetic
list scheduling for heterogeneous systems.
Proceedings of the Second International Conference
on Application of Concurrency to System Design,
Tune 25-29, TEEE Computer Society, Washington, DC,
USA., pp: 123-123.

Hou, E.SH., N. Ansari and H. Ren, 1994, A genetic
algorithm for multiprocessor scheduling. IEEE Trans.
Parallel Distributed Syst., 5: 113-120.

Int. J. Soft Comput., 5 (2): 42-51, 2010

Tzalian, H., A. Abraham and V. Snasel, 2009. Comparison
of heuristics for scheduling independent tasks on
heterogeneous distributed environments. Proc. Int.
Jomt Conf. Computat. Sci. Optimizat., 1: 8-12.

Kwok, Y. K. and 1. Ahmad, 1999. Static scheduling
algorithms for allocating directed task graphs to
multiprocessors. ACM Comput. Surveys, 31: 406-471.

Lee, Y.H. and C. Chen, 1999. A modified genetic algorithm
for task scheduling in multiprocessor systems.
Proceedings of the 6th International Conference
Systemns and Applications, (ICSA'99), IEEE Computer
Society Washington, DC, USA., pp: 382-387.

MeCreary, C.L., AA Khan J. Thompson and
ME. McArdle, 2002. A comparison of heuristics
for scheduling DAGs on multiprocessors.
Proceedings of 8th Intemational Symposium on
Parallel Processing, (ISPP'02), Cancun, Qr, Mexico,
pp: 446-451.

Mitchell, M., 1998 An Introduction te Genetic
Algorithms. The MIT Press, USA., ISBN-10:
0262631857, pp: 221,

Nikravan, M. and M.H. Kashani, 2007. A genetic
algorithm for process scheduling m distributed
operating systems considering load balancing.
Proceedings 21st FEuropean Conference on Modelling
and Simulation Ivan Zelinka, (ECMS'07), 7Zuzana
Oplatkova, Alessandra Orsoni, pp: 1-6.

Page, AJ. and T.J. Naughton, 2004. Framework for Task
scheduling in heterogeneous distributed computing
using genetic algorithms. Proceedings of the 15th
Artificial Intelligence and Cognitive Science
Conference (AICS’04), Castlebar Co., Mayo, Ireland,
pp: 137-146.

51

Rahmani, A M. and M. Rezvani, 2009. A novel genetic
algorithm for static task scheduling in distributed
systems. Int. . Comput. Theor. Eng., 1: 1793-8201.

Rahmam, A M. and M.A. Vahedi, 2008. A Novel Task
Scheduling in Multiprocessor Systems with Genetic
Algorithm by Usmg Eliism Stepping Method.
Science and Research Branch, Tehran, Iran.

Rinehart, M., V. Kianzad and S.8. Bhattacharyya, 2003. A
Modular Genetic Algorithm for Scheduling Task
Graphs. Institute for Advanced Computer Studies,
University of Maryland at College Park, Maryland.

Sutar, P.S.R., J.P. Sawant and J.R. Jadhav, 2006. Task
scheduling for multiprocessor systems using

algorithms. Proceedings of the 4th
International Working Conference, May 7-10,
TEEE Computer Society Washington, DC, TUSA.,
PP 27/1-27/9.

Wang, P.C. and W. Korfhage, 2005. Process scheduling
with genetic algorithms. Proceedings of the 7th IEEE
Symposium on Parallel and Distributed Processing,
Oct. 25-28, TEEE Computer Society Washington, DC,
USA., pp: 638-638.

Wu, A.S, H Yu, S. Iin K.C. Lin and G. Schiavone, 2004.
An incremental genetic algorithm approach to
multiprocessor scheduling. TEEE Trans. Parallel
Distrib. Syst., 15: 824-834.

Zhou, SE., Y. Luand D. Jiang, 2006. A genetic-annealing
algorithm for task scheduling based on precedence
task duplication. Proceedings of the 6th TEEE
International Conference on Computer and
Information Teclnology, Sept. 20-22, IEEE Computer
Society Washington, DC, USA., pp: 117-117.

mermetic

