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Abstract: Aircraft system mainly relies on Global Positioning System (GPS) to provide accurate position values
consistently. However, GPS receivers may encounter frequent GPS absence due to ephemeric error, satellite
clock error, multipath error and signal jamming. To overcome these drawbacks generally GPS 1s integrated with
Inertial Navigation System (INS) mounted nside the vehicle to provide a reliable navigation solution. INS and
GPS are commonly integrated using a Kalman Filter (KF) to provide a robust navigation solution. In the KF
approach the error model of both INS and GPS are required, this leads to the complexity of the system. This
research work presents New Position Update Architecture (NPUA) which consists of various Artificial
Intelligent Neural Networks (AINN) that ntegrates both GPS and INS to overcome the drawbacks in Kalman
filter. The various artificial intelligent neural networks that includes both Static and dynamic networks described
for the system are Radial Basis Function Neural Network (RBFNN), Back Propagation Neural Network (BPN),
Forward only Counter Propagation Neural network (FCPN), Full Counter Propagation Neural network (Full
CPN), Adaptive Resonance Theory-Counter Propagation Neural network (ART-CPN), Constructive Neural
Networl (CNN), Higher Order Neural Networks (HONN) and Input Delayed Neural Networks (IDNN) to predict
the TNS position error during GPS absence, resulting in different performance. The performance of the different
ATNNs are analyzed in terms of Root Mean Square Error (RMSE), Performance Index (PI), Number of epochs
and Execution Time (ET).
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INTRODUCTION

Navigation using GPS: The last two decades have shown
an increasing trend in the use of positioning and
navigation technologies in land velucle applications.
Most of the current vehicular navigation systems rely on
the Global Positioning System that is capable of providing
accurate position and velocity information. To be able to
provide such accurate measurements, the GPS needs at
least four satellites with good geometry. In addition, there
must be a direct line of sight between the GPS antenna
and those satellites. Unfortunately, this is not always
possible since a GPS signal may be lost during jamming
when driving around obstacles like driving through tall
buildings, overpasses or tunnels on highways, tree-lined
streets, etc. or when operating in poor weather conditions.
The satellite signal blockage results in deterioration of the
overall position accuracy (Sharaf and Noureldin, 2007,
2005; Noureldin et al., 2004).

Navigation using INS: Inertial Navigation System is a
Self-Contained Autonomous System. It incorporates
three orthogonal accelerometers and three orthogonal
gyroscopes which measure three linear accelerations and
three angular rates, respectively. A set of mathematical
transformations and mtegrations with respect to time,
known as the mechanization equation are applied to the
raw measurements from the INS sensors to determine
position, velocity and attitude information. Unfortunately,
the INS cannot replace the GPS or operate on a stand-
alone basis. During the mechanization procedure, the
accuracy of INS position components deteriorates with
time due to the mtegral sensor errors that exhibit
considerable long-term growth. These errors include white
noise, correlated random noise, bias instability and angle
random walk. The errors are stochastic in nature and can
cause a significant degradation in the INS performance
over a long period of operation (Sharaf et al., 2005,
Noureldin et ai., 2004).
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Existing INS/GPS data fusion techniques: Tn order to
overcome the problems associated with the GPS and TNS,
the two systems are often paired together so that the
drawbacks associated with each system are elininated.
The INS/GPS data fusion is commonly performed using a
Kalman Filter (KF) in real time (Hosteller and Andreas,
1983; Noureldn et af., 2004, 2011). This method requires
a Dynamic Model of both INS and GPS errors, a
Stochastic Model of the inertial sensor errors and a priori
information about the covariance and gain values of the
data provided by both systems. Data fusion employing a
KF has been widely used and 18 comsidered as the
benchmark for INS/GPS integration. There are however,
several considerable drawbacks to its use (Hosteller and
Andreas, 1983, Noureldin et al, 2004, 2011). These
mclude the following:

The necessity of accurate stochastic modeling which
may not be possible in the case of low cost and
tactical grade sensors

The requirement for a priori information of the system
and measurement covariance matrices for each new
sensor which could be challenging to accurately
determine

Relatively poor accuracy during long GPS absence
The weak observability of some of the error states
that may lead to unstable estimates of other error
states

The necessity to tune the parameters of the
stochastic model and a priori information for each
new sensor system

More recently, several techniques based on Artificial
Intelligence (Al) have been proposed to replace KF in
order to eliminate the above mentioned drawbacks
(Hosteller and Andreas, 1983; Noureldin et al, 2004,
2011). The mam idea behind all of these methods 1s to
mimic the latest vehicle dynamics by training the AT
module during the availability of the GPS signals.

In case of GPS absence, all these models operate in
the prediction mode to correct the inaccuracies in TNS
outputs. In this research, researchers aim at developing a
different artificial intelligent neural networks for GPS/INS
Integration to find the optimum solution in terms of
Positioning accuracy, performance index, number of
epochs and execution time. Such technique combines the
advantages of some of the existing models with the
advantages of dynamic neural network architectures. In
this way, it should be possible to model the IN'S position
with greater accuracy and suitable tradeoff between
Neural Network parameters (Kumar, 2004).
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Proposed INS/GPS data fusion technique: The proposed
data fusion technique introduces New Position Update
Architecture (NPUA) which involves the Artificial Neural
Network (ANN) in it. It 15 derived from the concept of
Position Update Architecture (PUA) (Yun-Wen and
Chiang, 2008a; Nouerldin et al., 2009). The NPUA can act
in both prediction mode and training mode. The NPUA
recelves input like position and tume through INS
mechanization. Desired outputs are provided by system
in training mode when there is no GPS absence. When
there is GPS absence the system output is obtained by
executing in prediction mode. The proposed system
configuration 1s shown 1 Fig. 1. The different ANNs like
RBF, BPN, FCPN, Full CPN, ART-CPN, CNN, HONN and
IDNN can be used in NPUA. The different ANN uses
different algorithms.

ARTIFICIAL INTELLIGENT NETWORKS

RBF-Radial Basis Function neural network: Radial
functions are a special class of functions. Their
characteristic feature is that their response decreases or
increases monotomically with distance from a central pomnt
and they are radically symmetric. The centre, the distance
scale and the precise shape of the radial function are
parameters of the model. There are a variety of radial
functions available in literature. The most commonly used
one 1s the Gaussian radial filter which m case of a scalar
nput 1s:

Among the static and dynamic neural networks, the
RBF-NN 1s a commonly used structure which 1s shown in
Fig. 2. The design of a RBF-NN 1n its most basic form
consists of three separate layers. The input layer is the set
of source nodes (sensory units). The second layer is

(x—c)
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a hidden layer of high dimension. The output layer gives
the response of the network to the activation patterns
applied to the mput layer. The transformation from the
mput space to the hidden-umit space 1s nonlinear. On the
other hand, the transformation from the hidden space to
the output space is linear.

The advantage of using RBF is simpler in architecture
and it uses universal approximation methodologies. The
drawbacks of using RBF is that it has fixed topology and
also failed to attain the property of dynamicity.

BPN-Back Propagation Neural network: BPN uses
gradient-descent based delta learming rule and Least
Mean Square algorithm for the training process
(Ching-Piao and Lee, 1999). The network has the
following: one mput layer, number of hidden layers, one
output layer. The architecture of BPN is shown in Fig. 3.
During the traiming procedure of BPN, first the input
vector is presented to the input node. The weight factors
and bias are initialized randomly. The hidden nede (7,)
sums its weighted signals 7, and applies the activation

function (Z;) as shown in the following Eq. 2 and 3:
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Z—m] = Vo] + Z,:]X]\fij (2)

Z =1(Z_) 3

It send the signal to all the output nodes. The
activation functions can be bipolar sigmoidal, binary
sigmoidal, hyperbolic tangential and Gaussian. The
output nodes (y,) sums its weighted mput signals (y-ink)
and applies its activation function to calculate the output
signal (y,) as shown in the following Eq. 4 and 5:

(h

P
i=1 ZJWJk

y—i=w, +Z

y, = f(y—ink) (3

The output node (y,) receives a target pattern

corresponding to an input pattern and error information is
calculated as:

5, = (t, —y ) (v —1nj) (6)

The hidden nodes (Z;) sums its delta inputs from
nodes in the output layer and the error information term is

i = Z

calculated as:

m

8. )

k=1 lek

§ =6_ f(Z_) (8)

] —inj —ing
The weights (V;) and bias (V) of the network
between input layer and lndden layer are updated by:

V, (new) = V, (old) + AV, 9

Vv, (new) = V_ (old) + AV, (10)

The weight correction term (AV,) and bias correction
term (AV ) are given by the following:

AV, =abX (11)

AV, = ad (12)

o 1
where, o is the learning rate. The weights (w,) and bias

{(w) of the network between ludden layer and ouput layer
are updated by:
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(13)

w, (new) = w, (old) + Aw,,

(14)

W, (new) = w,, (old) + Aw,,

The weight correction term (Aw,,) and bias correction
term (Aw,,) are given by the following:

Aw, =ab,Z, (15)

Aw = ab, (16)

The advantage of using BPN is better accurate result
can be obtained using Gaussian and Binary Sigmoidal
functions. The number of epochs consumed by the
network 1s reduced when Hyperbolic Tangential (HTF)
and Bipolar Sigmoidal (BPSF) functions are used.

The drawback of BPN is it has fixed topology and
lack of dynamicity, the learning process has intensive
calculations. Computing time 1s increased when mcreasing
the hidden neurons. The number of epochs consumed by
the networls is more when Gaussian and Binary Sigmoidal
functions are used.

FCPN-Forward only Counter Propagation Network: The
Forward-only Counter Propagation Network (FCPN) 1s a
combination of the Kohonen Self-Orgamzing map and the
output layer. Figure 4 shows the architecture of the CPN
which appears to be same as that of the back propagation
net. The net consists of three layers: input layer, cluster
layer (Kohonen layer) and output layer (Grossberg layer).
The training procedure for the FCPN comprises two steps.
First, an input vector is presented to the input node. The
nodes 1 the cluster layer then compete among
themselves (winner’s take all strategy) for the night to
learn the input vector. The weights of the network are
adjusted automatically during the learning process.
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Unsupervised learning is used in this step to cluster input
to separate distinct clusters of mput data. Second, the
weight vectors between the cluster and output layers are
adjusted using supervised learning to reduce the errors
between the CPN outputs and the corresponding desired
target outputs (Yen-Chang, 2001).

During the 1st step, the Euclidean distance between
the input and weight vectors is calculated. The winner
node is selected based on comparing the input vector X
(X, X, ... X)" and the weight vectors V, (V, V,, ... V)"
The winning node 7, has the weight vector wy
(W, Wy, ..., w,)', winner-take-all operation that permits
this cluster node T to be the most similar to the mnput
vector. The weights of the cluster node I are adjusted.
The weight vector of the winner 1s updated according

to time t:
V, (new) = (1— o)V, (old) + X, (17)
Where:
& = The learming rate
X The ith node of mput layer

After traiming the weights from the mput layer to the
cluster layer, the weights from the cluster layer to output
layer are trained. Each training pattern inputs the input
layer and the associated target vector is presented to the
output layer. The competitive signal is a variable,
assuming a value of 1 for the winning node and a value of
0 for other nodes of the cluster layer. Each output node k
has a calculated input signal w;, and target cutput y,. The
weights between the winning cluster node and the output
layer nodes are updated as follows:

W, (new) = (1—B)w, (old) + By, (18)

where, w;, denotes the weights from the cluster layer to
output layer and represents the learning rate. The
competitive signal of cluster layer 7, is computed by:

_|1if j=1, Jis winming node (19)
o 0 otherwise
The output node k 1s given by:
¥, = ZLWJKZJ (20)

v, 18 the FCPN's kth computed output. The FCPN
classifies the input vector to most similar cluster nodes
and then outputs the prediction result. The learning speed
of FCPN is fast compared to other neural networks owing
to the use of the efficient learning algorithm.
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Fig. 5: Full CPN architecture

The advantage of using FCPN 1s that which 1s simple
in architecture and consumes less number epochs when
compared to RBF and BPN. FCPN will give better results
when compared to RBF and BPN. The drawbacks of FCPN
is that it has fixed topology and property of dynamicity is
missing and it has two phase learning process.

Full CPN-Full Counter Propagation Neural network:
The architecture of Full CPN resembles an Instar and
Outstar Model. The layers included are two input layers,
a commeon cluster layer and two output layers as shown
m Fig. 5 The training phases include instar modeled
training and outstar modeled traimng similar to the
training procedure of FCPN. Full CPN also has two steps.
The 1st step is carried out during instar modeled training
and the second step is carried out during outstar modeled
training. During the instar modeled training, the
Euclidean distance between the input and weight
vectors 1s calculated. The wimner node 1s selected based
on comparing the input vecters X = [X,, X,....., X"
Y = [y, Yoo Yol and the weight vectors V,; (V,, V...,
VT wy, (W, Wy...., W), espectively. The wirming node
Z, has the weight vector Vi (V,, V... V)7, wy (W, W,
w,,)", winner-take-all operation that permits this cluster
node J to be the most similar to the input vector.

The weights of the cluster node T are adjusted. The
weight vectors of the wimmer are updated using enhanced
LMS weight updating rule:

V, (new) = (1— o)V, (0ld) + X, (21)
w,, (new) = (1—B)w,, (old) + By, (22)
Where:
¢and p = The learning rates

X = The ith node of X input layer
Vie The kth node of Y input layer
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After training the weights from the input layers to the
cluster layer in instar modeled training, the weights from
the cluster layer to output layers are trained. Each traming
pattern inputs the input layers and the associated target
vectors are presented to the output layers. The
competitive signal is a variable, assuming a value of 1 for
the winming node and a value of O for other nodes of the
cluster layer. Each output node k has a calculated nput
signal 1], and target output v,. Similarly, output node i
has a calculated input signal t; and target output 3. The
weights between the winning cluster node and the output
layer nodes are updated as follows:

U, (new) = (1—a)U, (old) +ay, (23)
t. (new) = (1—b)t, (old) +bX (24)
Where:
Upandt; = The weights from the cluster layer to output
layers
a, b = The learning rates

The competitive signal of cluster layer Z, 1s computed
by:

g 1if j=1, Tis wi.nm'ngnode (25)
! 0 otherwise

and the output node 1 and k are given by:

Vit = f: M (26)

4

X*=>"_ 7, (27)
Where
Ve The FCPN’s kth computed output
¥* = The Full CPN computed output

The advantage of using Full CPN 1s that 1t has sunple
in architecture, consumes less number of hidden neurons
when compared to RBF, BPN and FCPN and produce more
accurate results. The disadvantage of Full CPN is that it
has two phase leaming process and consume more
number of epochs.

ART-CPN-Adaptive Resonance Theory-Counter
Propagation Neural network: Adaptive Resonance
theory nets are designed to allow the user to control the
degree of similarity of patterns placed on the same cluster.
The adaptive resonance theory algorithm proposed by
Gross berg is a special neural network that can cluster the
training patterns. The appropriate imtial weight CPNs ith
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vectors can be obtained in contrast to the conventional
unsupervised learning algorithms. The ART-CPN
combines Adaptive Resonance theory and counter
propagation network to develop a new prediction network
model. The parameters make the network automatically
generate the algorithm redesigns the relative similarity
between the nput vector and the weight vectors for a
cluster node. The ART-CPN algorithm uses the Kohonen
and Grossberg learning rule for updating the weights of
the winning node. The network has fast learning speed
and good prediction performance (Grossberg, 1987).

From the geometric perspective, the similarity of two
vectors 1s the distance metric of the two different vectors.
The p-norm metric is commonly used and was defined as
follows:

X=[¥%.3%,.X,] ad Y =[y.y,..v.]

p-norm metric;

- Y= %Y <pee (28
The following conditions must be satisfied:
Cl:d(x,y) 20 (29)
C2d(x,y)=d(y,x) (30)
Cahdxy)=dx zHd(z y) (31)

The p-norm is generally used to determine whether
two patterns are the same class. The distance between
two vectors 1s as follows:

X=¥[=3,

p=1 (32)

X Y|

)1f2 (33)

p=2 X ¥[=Q2 X V.

Equation 31 is Manhattan distance and Eq. 32 is
Euclidean distance. The competition learming uses
Euclidean distance for determming the winner. The
Euclidean distance between the input vector and weight
vectors is calculated and weight vector which has the
smallest Euclidean distance from the mput vector is
considered as the winning unit.

ARTCPN uses the mean of Manhattan distance to
calculate the similarity between the input and weight
vectors. Consider m unlabeled training patterns to have n
dimensional attributes using a set of the vectors
(X, X, ..., X,), the similarity between two vectors X1 and
X2 is calculated as follows:
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>N =

=X X

o X X Tand X, = [X,, X000 X0 |

212 hggrt e
Similarity between two vectors Vixz: between X,

and X, 1s given by:
v, (34)

S(E. %) 1-D

5(¥),X2)

0 lin

DS(Xl:Xz) :{21 =1 D

where, 1 mean of Manhattan distance. The
training procedure for the forward-only counter
propagation net includes two steps in learning process.
The ART-CPN simultaneously trains the weights of the
input layer, cluster layer and output layer. An input vector
(X) 1s presented to the cluster node, then the V.x, of the
weight vector (V) is caleulated. Each training vector is
presented to the input layer and the associated target
vector is presented to the output layer. The nodes in the
cluster layer compete (winner-take-all) for the right to

(35)

s(FEy)

D

s(E,H)

learn the mput vector. The maximum Vi, 1s the winming
node. The winning node sends a signal of 1 to the output
layer. Each output nede k has a calculated input signal wy,
and target vector. The learning rule updates the weights
of the winning nodes. Meanwhile, the learning rule
updates the weights from the input layer to the cluster
nodes as:

V, (new) = (1— )V, (0ld) + X, (36)

where, I denotes the winmng node. The leamimng rule
updates the weights from the cluster nodes to the output
layer:

W, (new) = (1—Byw, (old) + By, (37

The competitive signal of cluster layer Z; is computed

by:
s 1if j=1, Tis wir.ming node (38)
! 0 otherwise
The leaming rule for the weights from the cluster
nodes to the output nodes can be expressed using the
delta function:

W, (new) = (1—BZ, )w,, (old) + BZ y, (39)

The training of the weights from the input nodes to
the cluster nodes continues at a low learning rate with
gradually reducing learning rate for the weights from the
cluster nodes to the output nodes. The output node k is
given by:

Y, = ET:1WJkZJ (40)
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In this algorithm setting the vigilance parameter can
generate the number of the cluster nodes. If the vigilance
1s set to be high, then 1t gathers a large munber of cluster
nodes. After training, the weights of the cluster nodes are
distributed in a statistically optimal manner that improves
the accuracy performance. The learning speed of
ART-CPN is extremely fast due to the one step learning
process and the efficient learning algorithm.

The advantage of using ART-CPN is that it gives
more accurate results when compared with BPN, RBF,
FCPN, Full CPN. Uses one way learning process and use
of vigilance parameter of ART reduces the number of
mathematical updates.

The convergence of solution may obtain at the very
first epoch too. It consumes less number of epochs when
compared to RBF, BPN, Full CPN but it failed in the aspect

of producing dynamicity because of the fixed
topology.
CNN-Constructive Neural Network: The CNN

architecture starts with a minimal topology, consisting
only of mput neurons and output neurons. The 1st step
of CNN training procedure begins with the minimal
topology for entire training data set until no further
unprovement can be achieved.

The minimal topology as shown in Fig. 6 is
implemented using Kohonen’s algorithm (Hagan et al.,
1996). During this process, there is no need to back
propagate the output position error (between the networlk
output and the GPS updates) through hidden neurons
(Noureldin et al, 2004, 2011; Cliang et al, 2008,
El-Sheimy et al., 2008, Hosteller and Andreas, 1983).

The second step 1s the recruitment of the first ludden
neuron. A pool of candidate neurons that have different
sets of randomly imtialized weights 13 applied to reduce
the sensitivity of mtial weights. The recruitment of the
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Ist hidden newon can be completed in a two-step
process. During the first step of recruitment, each
candidate neuron is connected to each of the input
neurons but not to the output neurons. All the candidate
neurons receive the trainable input connections from the
external inputs and from all pre-existing hidden neurons.
In addition, all candidate neurcns receive the same
residual error for each training pattern fed back from the
output neurons as shown m Fig. 7. The weights on
connecting the input neurons and candidate neurons are
adjusted to maximize the correlation between the output
of each candidate neuron and the residual error at the
output neuron. The pseudo connection is applied to
deliver the error information from the output neurons but
not to forward propagate the output of candidate
neurons.

A number of passes over the training data are
executed and the mputs of all the candidate neurons are
adjusted after each pass. The goal of this adjustment 1s to
maximize 3 and to find the correlation between, the output
of a candidate neuron and the residual output error
observed at unit (o) as indicate in the Eq. 41:

S=3"" (Z—Z)(re, —ar) (41)
Where:
Z, = Output of candidate neuron
Z, = Mean of output candidate neuron
re, = Residual error at output neuron
ar = The average residual error of output neuron

The (S) indices of all the candidate neurons in the
pool are computed simultaneously and the candidate
neuron with the highest value of (S) is recruited after all
the (S) indices stop improving.
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During the 2nd step of recruitment process only a
single layer of weights are trained. The mcoming weights
of the winming neurons are frozen and the winner
becomes the hidden neuron which is inserted into the
active network mn the 2nd step of recruitment. The new
hidden neuron is then connected to the output neurons
and the weights on connection become adjustable. All
connections to the output neurons are trained as shown
i Fig. 8 In other words, the weights connecting the input
neurons and the output neurons are trained again using
the quick propagation algorithm. On the other hand, the
new weights connecting the hidden neurons and output
neurcns are trained for the first time. The second hidden
neuron is then recruited using the same process as shown
m Fig. 9 and 10. This unit receives input signals from
both input newrons and previously recruited hidden
neurons. All weights connecting input neurons and
candidate hidden newrons are adjusted to recruit the
second hidden neuron. The values of the weights are then
frozen as soon as the hidden neuron is added to the
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active network. All the connections to the output neurons
are then established and trained. The process of recruiting
new neurons, training their weights from the nput
neurcns and previously recruited hidden newrons, then
freezing the weights and training all connections to the
output neurons 1s continued until the error reaches the
traiming error goal or the maximum number of epochs. The
finalized CNN topology shown in Fig. 11 with n hidden
neurons and n hidden layers.

New dynamic learning algorithm: The new dynamic
learning algorithm used in CNN includes the following
steps:

Step 1: Start with required input and output units.
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Step 2: Train the net using Kohonen algorithm until the
error reaches a minimum. If the error is negligible, stop the
training process. Else, compute residual error (re) for each
training pattern, the average residual error (are) and move
to step 3:

re = ((y-ay1)."2)/2 (41)
are = sum(re)/n 42y
Where:
v Target output for input vector
ayl = Computed output for input vector

The following are done in Kohonen’s

algorithm:

steps

Step 2a: Set learning rate, initialize weights.

Step 2b: While stopping condition is false, do steps
2¢-2h

Step 2¢: For each input vector x, do steps 2d-2f.
Step 2d: For each j, compute squared Euclidean distance:

D; :Zlnzl(wijfxi)z;izltonandj:ltom (43)

Where:

W Weights between input unit and output unit

x; = Inputvector
Step 2e: Find index I when D;is minimum.

Step 2f: For all units J with the specified neighborhood of
T and for all 1, update the weights:

w; (new) = (1-a) w, (old)+ex; 1=1ton (44)
Step 2g: Update learning rate.
Step 2h: Test stopping condition.

Step 3: Then, recruit first idden unat.

Step 4: A candidate unit z is connected to each input unit.
Initialize weights from mput units to z.

Step 5: Train these weights to maximize S. When no
change in weights, they are frozen and the first ludden
neuron is added. Maximum correlation is given by:

S=Y,(z(1)-z1) (re (1)-are) where i=1ton (45)
Where:

z (1) Output of candidate neuron
zl = Mean of output candidate neuron
S = Magnitude of correlation
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Step 6: Train all weights between input unit and hidden
unit, hidden wnits and output umits using quick
propagation algorithm. Tf acceptable error is reached, the
stop else move to step 7. Quick propagation weight
updating for input to ludden layer is givern:

dwl (i, j) = a.*err (j).*x (i); (during first iteration)
dwl(1, 1) = (s1 (1/(seldl (1)-s1(1))).*dwoldl (1,7)

(46)
sl = a *err.*x (47)
wl ., = wl +dwl (48)
Where:
dwl = Weight change between input and hidden
layer
dwoldl = Previous weight change
err = Emor (difference between target and
actual output)
X = TInput at input layer
a learning rate
wl = Weight between input and hidden layer

Quick propagation weight updation for hidden to
output layer:

dw2 (1, 1) = a.*err(J).*z (1); (during first iteration)

(49)
dw2 (4, 1) = (1 (DY/(soldl (D-s1 (). *dwold2 (4, j)
(50)
sl = a *err.*x (51
w2, = W2, dw2 (52)
Where:
dw?2 = Weight change between input and hidden
layer
dwold2 Previous weight change
err = Error (difference between target and actual
output)
z = Qutput at hidden layer
a = Learning rate
w2 = Weight between hidden and output layer

Step 7: While stopping condition is false, do steps 8-10,
1.e., add ancther lmdden neuron.

Step 8: A candidate unit z is connected to each input unit
and each previously added lidden umnit.

Step 9: Train these weights to maximize S. When these
weights stop changing, they are frozen.

Step 10: Train all the weights to the output units. If
acceptable error or mimmum number of umt has been
searched, stop the process else proceed the training.
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The advantage of using CNN is on the fly
construction of architecture and minimal topology. CNN
gives better accuracy when compared to other networks.
The disadvantage of using CNN is requires more
mathematical knowledge.

IDNN-Input Delay Neural Network: If INS position errors
are examined, one can determine that they are
accumulative, usually grow over time and follow a certain
trend. It may not be possible to mimic and appropriately
model this trend with an AT Based Model that relates the
INS error to the corresponding INS output for a certain
time instant. Therefore, a collection of particular number
of past INS position sequence has to be presented to the
model i order to capture the trend of the error pattern,
thus establishing an accurate model of the INS errors.
This can be realized by employing the tapped delay line
approach by which the last k values of a signal are
sinultaneously presented at the input layer of the network
(Noureldin ef ai., 2011).

The static neural network is transformed into a
dynamic neural network by incorporating a memory and
associator units at the input layer of input delay neural
network. This Input Delayed Model 1s tramed to learn
sequential or time varying pattern of the TNS samples. The
memory holds past samples of TNS wvalues and the
assoclator uses the memory to predict future events. The
network processes time varying pattern of the TNS
samples applied as mputs. This Dynamic Model neural
network considers a cluster inputs for the training process
whereas the static neural networks produces the future
outputs based on current samples position alone. In other
words, we can say that the static neural networks output
does not considers the past events. Because static neural
networks are memory less topology that is effective for
complex non linear static mapping. In fact, INS position
error prediction is a procedure where previous errors have
to be seriously considered. A fixed number of past events
are selected and introduced to the input layer of the
network.

Therefore, the network is involved with a static
memory that is specifically expert knowledge-dependent.
This has a beneficial effect on the prediction accuracy
especially in the case of GPS absence. This model relies
on input delay elements at the input layer so that the
output IN'S position error 18 modeled based on the present
and past samples of the corresponding TN'S position. The
unpact of different delay elements present at the input
layer improves the positioning  accuracy
(Noureldin et al., 2011).

overall
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Hidden layer

Transfer function Transfer function

Fig. 12: Input delayed newural network architecture

Another way of dealing with temporal patterns is the
use of an internal time delay operator within the MLPNN
network. This leads to the time delay neural network also
referred to as the Input-Delay Neural Network (IDNN). In
this case, the static MLLPNN is transformed into a dynamic
network by replacing each static synaptic weight with a
finite weight factor. Thus, the munber of the embedded
time delays provides the network with a short-term
memory. The number of neurons associated with the input
layer is equal to the number of input variables therefore,
the IDNN integrates temporal context information
implicitly and it thus recognizes temporal patterns that
have arbitrary time intervals or arbitrary lengths of
temporal effects. Thus, the TDNN is suitable for situations
where temporal pattemns should be considered. This has
a beneficial effect on the prediction accuracy which is the
major objective of this study. Furthermore, the IDNN can
be trained even with the standard back-propagation
algorithm (Bishop, 1995). The general architecture of an
input-delayed neural network n addition to zooming on
the internal structure of a single newron is shown in
Fig. 12. The architecture consists of a tapped delay line
that mvolves the L most recent inputs. In this example,
researchers show three delay elements represented by the
operator D. For a case of L. delay elements and an
input variable x (t), the network processes x (t), x (t-1),
x (t-2), ... and x (t-L) where L 1s known as the tapped delay
line memory length (Noureldin et af., 2011; Bishop, 1995).
Therefore, the input signal S, (t) to the neuron U, (Fig. 12)

is given as:
S,(=3"_ wkx(t—L)+b, (53)
Where:
w; (k) = The synaptic weight for neuron 1
b = Bias

1
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Then, the output of this neuron (1)) is obtained by
processing 3, (t) by the non-linear activation function
G (), chosen as a sigmoid activation function of neuron 1:

U, =GO, wdx{t—k)+b) (54)

1

G(8 (W)= 5w (53)

The output of the IDNN, assuming that it has one
output neuron j, a single hidden layer with m hidden
neurons and one input variable as shown in Fig. 12 1s
given by:

(56)

y(0=F3__ wU +ao)

where, F(.) is the transfer activation function of the output
neuron j (which can be chosen to be a sigmoid or a linear
function), «; is its bias and w; is the weight between the
neurons of the hidden layer and the neuron of the output
layer. During the update procedure, researchers use a
second-order back-propagation variation, namely the
Levenberg-Marquardt Back-Propagation (LMBP). The
network training process is performed by providing
input-output data to the networle which targets minimizing
the error function by optimizing the network weights.
LMBP uses the second derivative of the error matrix (E) to
update the weights of the network in a recursive fashion
(Haykin, 1994; Bishop, 1995). The advantage of IDNN is
that due to its dynamic and delayed values of mput we
can predict the future values which will be useful when
there 1s an absence of GPS signal.

New dynamic back-propagation learning algorithm: The
training criteria of the network mvolves new dynamic
back propagation learning algorithm based on input
delayed model of TDNN (Noureldin et al, 2011;
Sivanandam et al., 2002):

The weight is initialized as small random values
The input signal x; is given to each input unit and the
mput unit transmits the signal to all hidden layers
Each hidden umt sums its weighted input signals as:

Z, =3 Wx(t-L)+o, (57)

and the activation function 1s applied for traimng the
mput signal:

Z,=1(Z_) (58)
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The hidden layer output is given as input to output
unit. Each output unit sums 1t weighted mput signals
as:

y—ink=F(} " W,H +8) (59)

and the activation function to calculate the output

signals:

Ve =1y ) (60)

Comparator function of the trained output neuron j
and input neuron 1 1s given as:

€= CFCC Wil +8) ©D

Each output unit receives a GPS target pattern.
According to the received GPS signal corresponding
error information is calculated as:

6, =t — v xf(y_ ) (62)

Each hidden unit receives the feedback from output
unit and sums its delta inputs from the units in the
layer above:

b, =FO " 6xw,) (63)
The error information is calculated as:
6 =b—, x[(Z_) (64)
+  Each output unit updates its bias and weight
s The weight correction term is given by:
Aw, = ab,Z, (65)
And the bias correction term is given by:
AB, = ab, (66)
Therefore:
w,, (new) = w, {old) + Aw,, (67)
3, (new) = B, (old) +AB, (68)

Each lidden umit updates its bias and weights The
weight correction term:
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AW, (k) = ab, X, (69)

The bias correction term:
Aoy, = by, (70)

Therefore:

w, (new) = w, (old) + Aw,, (71)
o (new) = o, (old) + Acy, (72)

¢ After the errors are minimized, the training process

was stopped

HONN-Higher Order Neural Networks
MNN-Multiplicative Neural Networlk: The Multiplicative
Neural Network (MNN) can be considered as a special
case of the Multi Layer Perceptron (MLP) and therefore,
the Back Propagation (BP) algorithm forms the basis for
deriving the MNN learning rule. Tt is one of the higher
order neural networks where the replacement of
summation at hidden node and output nodeby
multiplication results in more powerful mapping
(Burse et al., 2008; Schmitt, 2002; Heywood and Noakes,
1995 Giles and Maxwell, 1987). The neuron contains units
which multiply their inputs instead of summing them and
thus allow inputs to mteract nonlinearly (Burse et al.,
2009, Tyoda et al., 2002).

Multiplicative node functions allow direct computing
of polynomial mputs and approximate higher order
functions with fewer nodes (Cliang et al, 2008). The
architecture of MNN is shown in Fig. 13. The output of
the multiplicative neural network is given by:
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Where:
v, (x) = Output of the hidden layer where i=1, 2, ...,
M
v (x) Output of the neural network
£; = Bipolar sigmoidal activation function
X = N dimensional input where j=1,2, ..., N

The multiplicative neural network gives superior error
performance and performance index but it takes more time
and more number of epochs to carry out the traming
process when compared to the sigma Pi-NN.

SPN-Sigma-Pi Neural network: The Sigma-P1 neural
network is one of the higher order neural networks and
Back Propagation (BP) algorithm forms the basis of
deriving the Sigma-Pi neural network learning rule. In this
architecture, the replacement of summation at the hidden
node by multiplication and output node by summation,
results in more powerful mapping (Yun-Wen and Chiang,
2008a, b).

They allow neural networks to learn multiplicative
interactions of arbitrary degree. The general and extended
architecture of Sigma-P1 ANN 1s shown in Fig. 14. The
output of the Sigma-P1 neural network 1s given by:

ZEEDDRASED Dl |§ LIS S
v 0 =[T_ §x) (76)
Where:
v, (x) = Output of the hidden layer wherei=1,2, ..., M
y(x) = Output of neural network
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+h

= Bipolar sigmoidal activation function
N dimensional input where j=1, 2, .., N

The Sigma-P1 network includes the following
advantages: superior error performance in nonlinear
input-output mapping, less execution time and improved
performance index.

ISPN-Tmproved Sigma-Pi Neural network: Sigma-Pi
algorithm implemented along with Dynamic Weight
Pruming (DWP) algorithm 1s referred to as Improved
Sigma-P1 algorithm. The network 1s mmtially converged
using Sigma-Pi algorithm.

Weight pruning algorithms typically require network
comvergence before pruming is applied. Two tests
mvolved in DWP algorithm are; Stability Criteria test,
Weight Significance test. In Stability Criteria test, the
point at which weights or neurons are representative of
their target state must be identified. In the Weight
Significance test, significance of weights local to the
target neuron is estimated. These two tests form the basis
of our dynamic weight pruning process. Pruning following
network convergence only requires a weight significance
test.

Dynamic weight pruning algorithm used in SPNincludes
the following steps

Step 1: Imtalize Sigma-P1 training until the network
converges.

Step 1a: Initialize weight to small random variables.
Step 1b: While stopping condition is false, do steps 3-10.
Step 1e: For each input signal, do steps 4-9.

Stepld: Each input receives the input signal x and
transmits this signal to all of the hidden units.

Step le: Each hidden umt multiplies its weighted input
signals as:
mjnfl)

Step 1f: Each output unit multiplies its weighted input

(77)

no__ Mn—1 n—1
y]n - f(H]n—l (anjn—Ian—l +b

signals as:
Mn—1 n
Yo = f(Hjn:1 (WkJTJYJn + bk]n) (78)
Step 1g: Mean square error function is computed as:
1 K P 2 79
EMSE_ﬁZkzlzpzl(yIc:lk7Y£) ( )
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Step 1h: Weights and biases are updated as:

new
i

W = Wi”l‘1 + Aw, (80)

b =b™ 1 Ab, (1)

Step 1i: Weights and Bias correction terms are given by:

Avvy, = e (82)
8ka
Nn—1 n
[1 oy (WY bk;n)} (83)

:1’]6 "
‘ (Wi, Vi, +b,)

b = é{Z:z DN A (AT EER A *YE)H

(84)
Ab, — g {H:;(kay?n + by, )} (83)
o " (qunY?n + bk_]n )
_ A% (86)
Y

Step 1j: Test the stopping condition, i.e., number of
epochs.

Step 2: Imtialize count of DWP criteria count to 1.
Step 3: Calculate DWP count.
Step 4: Check whether the weight values are set to zero.

Step 4a: Perform Stability Criteria test, i.e., the point at
which the weights or neuron are representative of their
target state is identified.

Step 4b: If the test satisfies, decrement DWP Criteria
Count and re-introduce the weight values:

DWP criteria count = DWP criteria count—-1  (87)
wnew (1) = w (1) (88)

Step 4¢: If not, increment DWP criteria count and replace
the weight values:

DWP criteria count = DWP criteria count+1  (89)
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wnew (1) = w (1)+0.5 (90)
Step 5: If the weight values are rather than zero, perform
weight sudation.

Step Sa: Perform Stability Criteria test.

Step Sb: Tt the test satisfies, then perform Weight
Significant test, i.e., the significance of weights to the
target newron is identified.

Step 5c: Tf the Weight Significance test satisfies, check
whether DWP criteria count 1s greater than DWP count.

Step 5d: Assign the weight values to DWP and mcrement
DWP criteria count:

DWP shortlist = w (1) 91

DWP criteria count = DWP criteria count+1  (92)

Step 6: Consider the next weight and repeat steps 4-5d.

Step 7: Check whether previous and current weight
values are same. Then, set the redundant weight values as
ZOro!

current

W 0 (93)

prev

=w
Step 8: Consider the next Neuron and repeat steps 4-7.

Step 9: Continue Sigma-P1 algorithm and repeat steps
la-1j.

MATERIALS AND METHODS

Along each of the East, North and vertical directions,
the INS position and the time (t) are the inputs to one of
the NN modules while the error n the corresponding INS
position is the module output. During the availability of
the GPS signal, the NN module operates in the tramning
mode. In order to train the network, the INS position error
provided at the output of this NN module should be
compared to a certain target or a desired response. In this
case, the INS position error is the difference between the
INS onginal position and the corresponding GPS position.
The difference between NN module output and the true
position error 18 the estimation error of the NN module. In
order to minimize this error, the NN module is trained to
adjust the NN parameters that are continuously updated
according to the least square criterion until reaching
certain the minimal Mean Square Error (MSE). The training
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procedure continues and is repeated for all GPS/INS data
windows until a GPS absence is detected. When the
satellite signal 1s blocked (during GPS absence), the
system is switched into the prediction mode where the NN
module 15 used to process the INS position Py at the
input and predict the corresponding position error using
the latest NN parameters obtained before losing the
satellite signals.

The estimated error of current INS position for GPS
presence 1s seriously considered for the prediction mode
training process in order to predict the corrected TNS
position during GPS absence in prediction mode. The
prediction mode traming procedure of the neural network
starts after finding the estimation error of current TNS
position just before lose of satellite signal. The pattern of
INS and GPS position components are used to train the
neural network module to reflect the latest velucle
dynamics and the INS error trend. The neural network
module 1s trained until a certam number of MSE 1s
reached. To provide a complete navigation solution for a
aircraft vehicle, the longitude, latitude and altitude
compoenents are considered and applied to the NN module
to estimate the MSE.

RESULTS AND DISCUSSION

The real time trajectory path shown m Fig. 15 was
taken into consideration and the training algorithms for
different ANNs were mnplemented. This path shows
Bangalore to Mumbai air route in India and sample values
for GPS and IN'S are taken for the commercial aircraft. The
GPS values are directly taken from Google map software
database for this air route and INS values are taken from
standard database of Inertial Measurement Unit (IMU) for
this route. The INS sample values are taken as the input
vector and the GPS sample values are taken as the target
vector.

Training was performed for latitude, longitude and
altitude components of the aircraft vehicle. The actual
output, i.e., corrected INS value for all the three
components were found using different artificial
intelligence based neural networks. The sample values
obtamed from inertial measurement unit varies m terms of
seconds of latitude and longitude component. So, the
continuous change in values of latitude and longitude
samples are seriously considered for the training process.
The performance of the various artificial intelligent neural
networks for GPS/INS mntegration module was examined in
training mode (GPS presence) and prediction mode

(GPS absence). Over the whole trajectory of normal
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Fig. 15: Trajectory path

mode test, no natural GPS absences were detected and
thus the corrected INS position of each sample was
predicted and simulation result was plotted by taking air
travel time 1n x axis and target value, original INS value
and corrected INS value in y axis. During training of
various neural networks, network over-fitting problem was
encountered. Network over-fitting is a classical machine
learning problem. It usually occurs when the network
captures the internal local patterns of the training data set
rather than recognizing the global pattern of the data set.
It i1s mmportant to realize that the specification of the
training samples 13 a critical factor n producing a neural
network output which is capable of making correct
response. Two procedures have been evaluated to
overcome the problem of over-fitting namely, early
stopping and regularization. In this ANN Model, early
stopping procedure was used to solve the network
over-fitting problem.

The aim of early stopping 1s to mimic the prediction
of future individuals from the population (Nouerldin ef al.,
2009; Haykin, 1994). The second method utilized to avoid
the over-fitting problem and to optimize the NN Model is
the regularization technique. This 1s known to be a very
desirable procedure when the scaled comjugate gradient
descent method is adopted for training (Noureldin ef al.,
2011; Bishop, 1995). In this research, early stopping
criterion procedure 1s used to accurately model the INS
position error. During the traiming stage, the module
performs the function of understanding the input/output
mapping. The early stopping criterion was chosen due to
its swtability for real time implementation as the
computational time 13 a substantial limitation. On the other

Erod
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Table 1: Architectural complexity of RBF, BPN, FCPN and Full CPN
neural networks

RBF BPN FCPN Full CPN
Rimple in Complex in nature  8imple in architecture  Cormplex in
Architecture when compared to (3 layer with counter  nature compared
(3 layer with RBF (Thoughitis propagation approach) with FCPN
feed forward an 3 layer (Because of its
approach) architecture it’s two way counter

having both feed propagatiomn)

forward and feedback

propagation)

Table 2: Architectural complexity of ART-CPN, CNN, HONN and IDNN
neural networks

ART-CPN CNN HONN IDNN

Complex Though it is Complex in Complex due to
because of dynamic, selection nature because delayed input

the resonance and recruitment of of the summation and the need of
and counter  hidden nodes and multiplicative memory and
propagation  become complex  process in the associator circuits

node

hand, artificial GPS absences
introduced to real time trajectory in order to test its ability
to accurately predict the INS errors and provide reliable
INS position information.

A time of absence of GPS signals at subsequent

were intentionally

intervals were selected at different locations on the
trajectory path based on the consideration of GPS
jamming and multipath error.

The architectural complexity of neural networks is
shown in Table 1 and 2. The algorithmic complexity of
neural networks 1s shown i Table 3 and 4. Feedback
provision of neural networks are shown in Table 5.
Table 6 shows the activation function which is used in
between input to hidden layer of the various neural
networks.
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The analysis was performed for the following
parameters: Root Mean Square Error (RMSE), Performance
Index (PI), number of epochs and execution time for
different neural networks.

The root mean square error and performance index are
calculated from the target output and computed output
according to the equation given:

RMSE =

Where:

yv; = Thetarget output

ay; = The computed output

m = Thenumber of data patterns
Iyl = Modulus of target output

Table 3:  Algorithmic complexity of RBF, BPN, FCPN and Full CPN
neural networks

RBF BPN

Simple Complex due to

FCPN FULL CPN
It is a combination It has two way
algorithm  backing and of supervised training process
like LMS  comparing of learning and because of counting
algorithm  error with previous  unsupervised propagation nature
and present values  learning
in the output layer

Table4: Algorithmic complexity of ART-CPN, CNN, HONN and IDNN
neural networks

ART-CPN CNN HONN IDNN

Tt uses Quick propagation Weight pruning New dynarnic
Grossberg  algorithm and upstart  algorithm is used  leaning algorithm
leaning for algorithm are used to remove the zeros is used to make
resonance  to dynamically and redundancy the dynamic
adaptive train the CNN of weights during  nature of inputs
training and updation process

kohonen

algorithm for

CPN

Table 5: Feedback provision of neural networks

The time taken by the neural network to complete the
traiming process 1s referred to as execution time. The
simulated results for latitude, longitude and altitude
components for the various artificial intelligent neural
networks are shown in Fig. 16-18, respectively.

During the training of all the intelligent networks INS
position error value was calculated, so that it can be
stored and used during the prediction mode. The mean
square error value was calculated for each and every
epoch in all networks. The performance measure graph
was plotted with mean square error value iny axis and
number of epochs in x axis for RBFNN, BPN, FCPN, Full
CPN, ARTCPN, CNN, MNN, SPN and IDNN, respectively.
Figuwe 19 shows latitude MSE, longitude MSE and
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Fig. 16: Latitude output
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Fig. 17: Longitude output

RBF BPN FCPN Full CPN

ART-CPN HONN IDNN

No feedback is Feedback from output  No feedback is required Feedback is required from  Feedback is not  Feedback provision No feedback is required

required layer to hidden layer  for learning input layer to cluster required is not required
is needed to get error layer and from cluster
accuracy layer to input layer
Table 6: Type of activation function used for neural networks
RBF BPN FCPN Full CPN CNN HONN IDNN

Guassian function is
used like RBF NN

Guassian function is
used between input
laver to hidden layer

Bipolar sigmoidal
function is used

Guassian function is
used like RBF NN

Bipolar sigmoidal
function is used

Bipolar sigmoidal
function is used

Bipolar sigmoidal
function is used
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Fig. 18: Altitude output
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Fig. 19: RBF error performance
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Fig. 20: BPN error performance

altitude MSE of RBFNN. From mean square error graph of
RBFNN 1t was found that the MSE value decreases
monotonically with distance from a central point and they
are radially symmetric. But as the central point weight
computed based on Kohanen feature maps the error was
decreased gradually. Figure 20 shows latitude MSE,
longitude MSE and altitude MSE of BPN. From mean
square error graph of BPN it was found that the MSE
value increases mitially and goes to a lugh peak due to
error propagation. But as the weight factors and bias are
trained based on gradient descent learning rule the error
decreases and reaches the minimum value. From Fig. 21,
1t was inferred that the MSE value of FCPN goes to an
high value at the beginmng of the traming but as a result
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Fig. 23: ARTCPN error performance

of tuning the synaptic weight between the input layer and
cluster layer using Kohonen weight updating method
during the first phase and updating the weight between
cluster layer and output layer during the second phase,
the MSE value was reduced. Figure 22 shows latitude
MSE, longitude MSE and altitude MSE of Full CPN. From
mean square error graph of Full CPN it was found that the
MSE value first increases gradually and then reaches to
a maximum level. But as the selection of winner node
based on enhanced weight updating rule the error starts
decreasing gradually and reaches to a mimmum level
Figure 23 shows latitude MSE, longitude MSE and
altitude MSE of ART- CPN. From mean scquare error graph
of ART-CPN it was found that the MSE value dynamically
varies from low to high and high to low and vice versa.
But as the weights of the winning node was
computed based on Kohonen and Gross berg learning
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Table 7: Comparison performance of artificial neural networks

Criteria

RBF BPN FCPN FULL CPN__ART CPN CNN MNN SPN IDNN
Latitude MSE 3.6812 3.1702 2.3323 1.9780 1.7959 1.2450 0.8741 0.6552 0.6452
Longitude MSE 3.6501 2.2034 2.0453 1.6779 1.3641 0.9085 0.7041 0.5212 0.5206
Altitude MSE 2.6522 2.2006 2.0734 1.7464 1.4647 0.90454 0.9290 0.6612 0.6138
Latitude RMSE 1.9186 2.0421 1.5272 1.4064 1.3401 1.1158 0.9349 0.8094 0.8032
Longitude RMSE 1.9105 1.4844 1.4301 1.2054 1.1680 0.8253 0.8391 0.7219 0.7215
Altitude RMSE 1.6285 1.5164 1.4399 1.3215 1.2103 0.9501 0.9638 0.8131 0.7834
Latitude PI 0.2478 0.2018 0.1128 0.0057 0.0860 0.0602 0.0598 0.0189 0.0145
Longitude PI 0.0378 0.0276 0.0256 0.0210 0.0171 0.0120 0.0117 0.0158 0.0139
Altitude PI 0.0967 0.0734 0.0662 0.0557 0.0467 0.0288 0.0245 0.0147 0.0124
No of epoch 14 9 8 17 8 7 7 5 7
Latitude ET 11.7910 7.3290 8.6745 14.7456 10.4589 12.5634 18.0891 12.5101 7.8290
Longitude ET 10.2390 9.5801 7.9784 13.6487 10.7456 11.6745 16.7801 11.6302 10.5801
Altitude ET 10.7180 9.7020 7.4567 14.0747 9.8765 11.7947 17.2871 11.8010 10.5670

50510 160 '

2 454 - Latitude MSE 2 140 & Latitude MSE

= 404 - Longitude MSE > = Longitude MSE

Z 354 - Altitude MSE g 10 - Altitude MSE

E 3.0 £ 100

m 254 j45)

o 2. o 80

S 2.09 g

& 151 = 60

S 1.04 g 40

S 0.5 B

> s 20

0.0 » ¢ by T w nd
l 2 3 4 5 6 7 OIIO l T 7I0 2I 3I0 3I 4I 4I IO
Number of epoch ’ = - 3 ! 3 0 3 >
Number of epoch

Fig. 24: CNN error performance

D3
S S

40,
304 -® Latitude MSE
204 -* Longitude MSE
104 = Altitude MSE

Mean Square Error (MSE)

(=]

3 4
Number of epoch

v
a4
-

Fig. 25: MNN error performance

rule the error has been reduced at the end of training.
Figure 24 shows latitude MSE, longitude MSE and
altitude MSE of CNN. In CNN, the mean square error first
suddenly goes to a lugh peak value due to all candidate
neurons receive the same residual error for each training
pattern fed back from the output neurons. But as the
weights on connecting the mput neurons and candidate
neurons are adjusted the error was decreases suddenly to
very minimum level

Figure 25 and 26 shows latitude MSE, longitude MSE
and altitude MSE of MNN and SPN, respectively. In this
case, the mean square error value of MNN and SPN 1s
monotonically decreases from high to low and finally
reaches to very mimmum level This is because of
replacement of summation at hidden node and output
node by multiplication m MNN and replacement of
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Fig. 26: SPN error performance
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Fig. 27: IDNN error performance

summation at hidden node by multiplication and output
node by summation. As a result, the error was decreased
monotonically and finally reaches as minimum level.

Figure 27 shows latitude MSE, longitude MSE and
altitude MSE of IDNN. From mean square error of IDNN
it was found that the MSE value increases initially and
goes to a maximum level and once again increases slightly
from the previous level due to back propagation of errors.
But as the weight factors and bias values of time delayed
elements are trained based on Least Mean Square (L.MS)
rule the error decreases gradually and then reduces to a
very mimimum level The result obtamed during the
training process of different Neural Networks 1s shown in
Table 1. The architectural complexity of Neural networls
is shown in Table 7.
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CONCLUSION

From the resultant table and its analysis, it was found
that IDNN and SPN gives more accurately corrected TNS
value when compared to RBFNN,BPN, FCPN, FULL CPN,
ART-CPN, CNN and MNN. It 1s also found that latitude
RMSE, lengitude RMSE and altitude RMSE of IDNN, SPN
and MNN are less when compared to RMSE values of
RBF, BPN, FCPN, Full CPN and ART-CPN and CNN so
IDNN, SPN and MNN are more suitable in terms of error
accuracy. The RMSE values of RBF, BPN are the highest
when compared to the other, so RBF and BPN cannot be
used to give accurate results. Similarly latitude PI,
longitude PT and altitude PT of TDNN, SPN and MNN are
lesser than the PI values of RBF, BPN, FCPN, Full CPN
ART-CPN and CNN, so IDNN, SPN and MNN are also
more suitable in terms of improved performance. Among
the intelligent networks analyzed, RBF, BPN has the
highest PI value, so RBF, BPN cannot give optimum
performance.

FCPN, Full CPN, ART-CPN and CNN give better
performance and accuracy when compeared to RBYF, BPN.
Full CPN is more accurate when compared to FCPN. Full
CPN also has lesser PI values when compared to FCPN,
so it shows better performance than FCPN. Although, Full
CPN has less RMSE values and PI values than that of
FCPN but 1t takes more number of epochs to obtain
accurate position value.CNN takes least number of
epochs when compared to BPN, FCPN, Full CPN and
ART-CPN.

But it takes high performance index and high
execution time for the training process when compared to
the IDNN, MPN and SPN. Moreover, the error accuracy of
CNN 1s somewhat lower than IDNN, MNN and SPN.
RBFNN, BPN takes lesser number of epochs when
compared to Full CPN but it consumes more execution
time and less performance in terms of error accuracy and
performance index.

From the overall statistical analysis, the traming of
IDNN, SPN and MNN models
performance m mean square error, root mean square eITor,
performance index, execution time and least number of

shows superior

epochs when compared to all other Intelligent Neural
Networks.

So, IDNN, SPN and MNN are optimized neural
network for GPS/INS Integration in terms of error accuracy
and improved performance even during the signal
blockages m GPS. So, IDNN, SPN and MNN networks are
proposed to predict the accurate position of the moving
vehicle in training mode as well as prediction mode.
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