International Tournal of Soft Computing 12 (5-6): 343-350, 2017

ISSN: 1816-9503
© Medwell Journals, 2017

Transactional Workflow Technique for Distributed Transaction Processing

Romani Farid Ibrahim
High Institute of Computer Science and Information, City of Culture and Science,
6-October City, Egypt

Abstract: Two Phase Commit Protocol (2PC) is an atomic and synchronous protocol and it is the common
protocol uses to coordinate the commitment of transactions mn distributed database systems. Most current
database systems use page, level and locks techmque to lock data items while transactions processing, other
transactions can’t access all records in the page while the update of a record in that page. If locks are released
quickly from data items, other transactions can access these records. In this study, we propose a modification
to the standard two phase commit protocol to release data items locks quickly after the preparation phase.
Participents doesn’t locks data items until the end of the transaction. We propose a two Phase Commit Protocol
with Incomplete state (2PC-T) which avoids the system blocking problem and ensures semantic ACID properties.
We propose a transactional workflow technique as an optimistic concurrency control technique that uses
(2PC-I) and actionability rules to handle the disconnection in transactions processing and increase the success
rate of transactions. We implemented a simulation prototype for the 2PC-I protocol and transactional workflow
technique to test the applicability of the 2PC-T protocol and measure the success rate of transactions.

Key words: Transaction, concurrency control, two phase commit protocol, long-lived transaction, distributed

database, mobile database, workflow, shadow paging, saga, caching, compensation

INTRODUCTION

Most of business application that run in different
organizations are based on the relational database model
which uses the transaction concept and both their
correctness are proved. Relational data model is based on
the set theory rules and transaction concept 18 proposed
to avoid race condition problems and it 1s based on the
transaction properties (ACID). Sernalizability theory 1s
used to prove the cormrectness of transactions schedules.
Also, transaction moves the database from consistent
state to a new consistent state so that users trust the
information retrieved from information systems.

A Distributed Data Base (DDB) is a collection of
multiple logically mterrelated databases distributed over
a computer network and a distributed Data Base
Management System (DDBMS) as a software system that
manages a distributed database while making the
distribution transparent to the user. A Data Base
Meanagement Systems (DBMS) are classified according to
the number of sites over which the database is
distributed. A DBMS is centralized if the data is stored at
a single computer site. A centralized DBMS can support
multiple users but the DBMS and the database reside
totally at a single computer site. A distributed DBMS
(DDBMS) can have the actual database and DBMS
software distributed over many sites, commected by a
computer network. Homogeneous DDBMSs use the same

343

DBMS Software at all the sites whereas heterogeneous
DDBMSs can use different DBMS Software at each site
(Elmasri and Navathe, 2011).

There are many types of transaction models we
reviews the models related to ouwr work only. Flat
transaction (or simply transaction) is defined as a means
by which an application programmer can package together
a sequence of database operations so that the database
can provide a mumber of guarantees, known as the ACID
(Atomicity, Comnsistency, Isolation and Durability)
(O’neil and O’nell, 2001). Nested transaction is a
collection of related subtasks or subtransactions, each of
which may also contain any number of subtransactions as
a tree structure and only the leaf-level subtransactions are
allowed to perform the database operations (Thomas and
Carolyn, 1999).

We viewed a transaction as a program in execution in
which each write-set satisfies the ACTD properties
(Hegazy et al., 2008) and the program that updates the
database as a three folds module (phases): reading phase,
editing phase and validation and write phase.

A distributed transaction is a database transaction in
which two or more network hosts are mvolved.
Usually, hosts provide transactional resources while
the Transaction Manager (TM) is responsible for
creating and managing a global transaction that
encompasses all operations against such resources.
Distributed transactions as any other transactions, must

Int. J. Soft Comput., 12 (5-6): 343-350, 2017

satisfy ACID properties. A distributed transaction is
composed of several subtransactions, each running on a
different site (Chandra, 2017).

A distributed transaction 1s a transaction that
includes one or more statements that individually or as a
group, update data on two or more distinct nodes of a
distributed database (Kumari and Chanderkant, 2012).

A Long Lived Transaction (LLT) is a transaction
whose execution, even without interference from other
transactions, takes a substantial amount of time, possibly
on the order of hours or days. A long lived transaction
has a long duration compared to the majority of other
transactions either because it accesses many database
objects, it has lengthy computations, it pauses for inputs
from the users or a combination of these factors (Molina
and Salem, 1987).

A compensating transaction is a transaction with the
opposite effect of an already committed transaction. It is
mtended to undo the visible effects of a previously
committed transaction, e.g., cancel car 18 the
compensating transaction for rent car. A contingency
transaction is invoked upon the occurrence of some
failure condition and before commit of the transaction for
which it 18 an alternative. It 1s intended to accomplish a
similar goal as the original transaction as opposed to the
compensating transaction which is intended to undo a
committed (sub) transaction (Elmagarmid, 1992). A saga is
a long-lived transaction that consists of a set of relatively
independent subtransactions associated with them their
compensating subtransactions. To execute a saga, the
system must guarantee that either all of the
subtransactions in a saga are complete or any partial
execution i3 undone with their compensating
subtransactions (Molina and Salem, 1987). A wvital
transaction is a transaction that must be executed
successfully (1e., it has to commit) for its parent
transaction to commit. A non-vital transaction may abort
without preventing the parent
committing (Elmagarmid, 1992).

A mobile transactions 1s a transaction performed with
at least one mobile host takes part in its execution
(Gary and Pamos, 1997); also, it may be defined with
perspective of 1its structure as a set of relatively
mndependent (component) transactions which
interleave in any way with other mobile transactions.

Workflow is a collection of tasks organized to
accomplish some business process (e.g., processing
purchase orders over the phone, provisiomng telephone
service and processing insurance claims). A task can be
performed by one or more software systems, one or
a team of humans or a combmation of these
(Georgakopoulos et al., 1995).

transaction from

carl

344

Two Phase Commit (2PC) protocol is synchronous in

nature and thus not well suited for long-lived
transactions. Although, 2PC provides autonomy of a
transaction, the required processing load 1s rather heavy.
The transaction speed 15 always linited by the resource
manager with the slowest response and the network traffic
and latency 1s double that of a normal transaction
(Wilson, 2003).

In this study, we propose a 2-Phase Commit protocol
with Tncomplete state (2PC-T) which avoids the system
blocking problem and ensures semantic ACID properties.
We proposed a transactional workflow technique as an
optimistic concurrency control model that uses (2PC-I)
and actionability rules to handle discomection and

increase the success rate of transactions.

Literature review: Salem er al. (1989), the researcher
proposed a model called altruistic locking which allows
LLTs to release their locks early based on transaction’s
data access pattern. Once LLT is determined that the data
the locks protect will no longer be accessed, it issues
release operations and allows other transactions to access
this data concurrently.

Molina and Salem (1987), the researcher proposed
the Sagas Model which handle LILT as a sequence
of sub-transactions that can be mterleaved in any way
with other transactions. Each sub-transaction m the saga
guarantees that the ACID properties on the database are
preserved. Either all of the subtransactions m a saga are
complete or any partial execution 13 undone with
compensating subtransactions. Sagas relax the property
of isolation by allowing a saga to reveal its partial results
to other transactions before it 1s complete, consistency
may be compromised.

Elmagarmid et al. (1990), the researchers proposed
the flexible multidatabase
environment. Tt consists of a set compensable or

transaction model for
non-compensable subtransactions and a setof execution
dependencies among subtransactions. It relaxes 1solation
by using compensation. It relaxes global atomicity by
allowing the transaction designer to specify acceptable
state for termination of the flexible transactions.

Taft et al. (2014), NoSQL systems such as Cassandra
and Amazon’s Dynamo DB are able to scale infout a
DBMS cluster easily because they do not support full
SQL transactions.

Holt (2011), mapped data in CouchDB is stored in a
B+ tree index, effectively making it impossible to query
nonindexed data. Using a relational database you
can ndex your data to make your queries more efficient
but you can also query against non-indexed data.

Int. J. Soft Comput., 12 (5-6): 343-350, 2017

Holt (2011), the core of Paxos is a consenus algorithm
called Syned. Since,
asynchronus systems with failures, the Syned protocol
while guranteeing always to be safe, ensures progress
when the system is stable so that an accurate leader
election is possible. In order to gurantee safety even
during mstability period, the Syned algorithm employs a
3-phase commit hike protocol where umque balllots are
used to prevent multiple leaders from committing possibly
inconsistent value and to safely choose a possible
decision value during the recovery phase (Chockler ef al.,
2003).

Wikipedia concurrency control editing
optimistic, allowing editors concurrent access to web
pages in which the first write 1s accepted and a user
making a subsequent write 1s shown an ‘edit conflict’
screen and asked to resolve the conflicts (Coulouris et al.,
1994).

consensus 18 unsolvable in

for i

MATERIALS AND METHODS

In this study, we describe the important points we
considered to to propose the 2PC-I protocol and the
transactional workflow technique which are: transactions
dependency, actionability rules and description of
validation test.

Transactions dependency: We classified transactions
based on their structures as simple transactions and
compound transactions (Chandra, 2017). Simple
transaction s a transaction that cannot be divided imto
subtransactions and all ACID properties are achieved.
Compound transaction consists of two or more simple
transactions (called subtransaction) and theses
subtransactions may be nested, it can be ACID or
non-ACID. Examples of compound transactions are
nested transactions, sagas, long duration
transactions (I.1.T), kangaroo transaction, etc.

We define transaction as a umt of work which each
write-set satisfies the ACID properties. Unit of research
means the structure of the transaction depends on the
business logic (rules). The programmer constructs the
transaction by collecting the suitable mstructions
according to his’her view of the business process. For
example, if a programmer writes an application to calculate
the employee salaries of an organization, based on their
working hours or basic salary, total deductions (absence,
tax, loans, etc.) and additions (bonuses, overtime,
commission, etc.). The programmer can write the
calculating salaries transaction by different ways as a flat
transaction or as a compound transaction consists of
group of subtransactions for calculating deductions and

345

additions. Tf employee salaries data are distributed among
different branches of an organization he/she writes it as a
distributed transaction which can be flat or compound
transaction.

We classified dependency among transaction
according to the relation between them to independent,
dependent and partially dependent (Chandra, 2017). The
success (commitment) or failure (abortion) of an
independent subtransactions doesn’t depend on the
success or failure of other subtransactions in the
compound transaction. Success or failure of a dependent
subtransaction depends on the success of the other
subtransactions i the compound transaction, if any
subtransaction fail, the entire transaction fails because all
subtransactions vital subtransactions. Partially
dependent transaction includes some non-vital
subtransactions in the compound transaction, transaction
can commit without them. Also, we consider another
two types of dependency based on the return
values from transactions, sequence dependency and
value dependency. Sequence dependency means a
subtransaction doesn’t return any value to the next
subtransaction. For example, subtransactions that
calculate the employee salaries doesn’t return any value
to each other because salary of an employee doesn’t
depend on the salaries of other employees. Value
dependency means the next subtransaction depends on
the retumn value from the current and or previous
subtransactions and can’t complete its work without it.
example, calculating the salary of an employee is based
the return values from deduction subtransaction addition
subtransaction to the net salary subtransaction. From this
dependency analysis, we notice that sequence
dependency can be implemented as mdependent,
dependent or partially dependent according to the
business rules. Value dependency relation should be
implemented as dependent or partially dependent. This
analysis programmers in designing the structure of
transactions transactions processing.

We classified applications according to the division
their compound transaction to atomic compound
applications which their compound transaction divisible
and satisfies ACID properties and Transactional
Workflow (TW) applications which their compound
transaction is divisible and satisfies semantic ACID.

are

Motivating example: As an example of applications that
can be applied as atomic transaction application or as a
transactional workflow application, we are considering a
big salespersons that can connect to the system through
wired network using fixed hosts. Or through wireless
network by mobile units. The salesperson performs a task

Int. J. Soft Comput., 12 (5-6): 343-350, 2017

Ceniralised compound transaction

G2 (st (5 (56D

Server unit

Database system
| DBMS |

Enterprise
database

Fig. 1: Centralized compound transaction

that handles customer big order which consists of groups
of sub-orders. The relations among suborders depends on
the business logic rules.

Case 1: Compound transaction 1s a centralized transaction
and the relation among
independent.

its subtransactions 1s

Case 2: Compound transaction 1s a centralized transaction
and the relation among subtransactions 1s dependent
partially dependent.

Case 3: Compound transaction 1is a distributed
transaction and the relation among its subtransactions 1s
independent.

Case 4: Compound transaction 1s a distributed
transaction and the relation among subtransactions is
dependent partially dependent.

In Case 3 and 4, we assume that the data are
distributed among database partitions on different
sites. Figure 1 compound
transaction that consists of six subtransactions which
access a centralized database that is stored on only one
(the server). The
subtransactions can be independent,
partially dependent.

Figure 2 shows a distributed compound transaction

shows a centralized

machine relationship among

dependent or

It accesses a
distributed database system which can be homogenous
or heterogeneous databases. The figure shows that
subtransactions sl and s3 i1s executed on the server 1,

that consists of six s ubtransactions.

subtransactions s2 and s5 1s executed on the server 2,
subtransactions s4 and s6 1s executed on the server 3. The
relationship among subtransactions can be independent,
dependent or partially dependent.

346

OJOXOIOXOIO

8D
Server unit 1 Server unit 2 Server unit n
Database system Database system Database system
| DBMS | | DRMS |
) () [
_ _ _
DDB part 1 DDB part 2 DDB part n

Fig. 2: Distribution compound transaction

Actionability rules: Tn this study, we summarize the
actionability concept and rules that is used in the
M-Shadow Model (Ibrahim, 2017) to describe how a
transaction behaves if a value-change is occurred on one
or more of its attributes during its processing time
and by other transactions. Other than key attributes
(K) actionability classifies the data items used by a
transaction into five types: change-accept, aware, reject,
passing and location-time attributes.

Change-Accept (A): Any attribute retrieved during the
read phase to complete and explain the meaning of the
transaction. If it is potentially changed (by another
transaction) while the transaction is processing, it does
not have any effect on the transaction behavior.

Change-Reject (R): This type of attributes is subject of
periodical changes (e.g., currency values, tax rates, etc.).
the value of such attribute remains constant for long
period. But once it 13 changed during the transaction life
time (by another transaction), it affects severely the
transaction behavior.

Change-aware (W): This type of attributes 1s subject to
change more frequently by different concurrent
transactions. A modification on the value of this type of
attributes may be accepted if the new value still in the
acceptance range. Otherwise, the transaction aborts.

Change-Passing (P): This type of attributes is not
basically part of the transaction data but the result of the
transaction processing 1s passed to this type of attributes.
For example, in an insurance company (or many other
applications) all different departments are related through
the financial department so that all insurance transactions
in all departments should pass their financial values to the

Int. J. Soft Comput., 12 (5-6): 343-350, 2017

financial attributes. Usually this subtransaction is
succeeded because it only increases the financial
attributes by the new amounts and the previous change
and the current values of this type of attributes doesn’t
effect on the transaction data or behavior. But if the
subtransaction that changes their values is failed for any

reasor, it causes the main transaction to fail.

Location-Time (L): This type of attributes is for handling
Location dependent transaction processing.

Description of validation test: The validation test for
subtransactions is performed as an optimistic
concurrency control technique by comparing the original
values of some data items with its current values on the
primeary server which succeeds m three cases:

No change which means that the original values are
equal to the current values on the primary server
Constrammed change which means that some
Change-aware attributes has been changed by other
transactions during disconnection (working offline)
time but still these changes within the mtegrity
constraint acceptance range

Insignificant change which means that
Change-accept attributes has been changed by other
transactions during disconnection (working offline)
time or during the execution of the transaction but
these change-accept data items does not effect on
the current transaction

s0me

The validation test fails in the following two cases:

Significant change In which we detect that some
change-reject data items have been changed during
the transaction processing and/or disconnections
Out-of-constraints change, in which we detect that
one or more change-aware data items have been
updated m such a way that the global changes put
the stored values out of the acceptance ranges

The 2-Phase Commit Protocol with Incomplete state
(2PC-I): The two Phase Commit Protocol (2PC) is
commonlyused used to coordmate the commitment
of transactions in distributed database systems. Tt is an
atomic commitment protocol, it has only two states
commit or abort transaction. The coordnator issues
commit state message if all participations vote ready to
commit and issues abort state message if at least one
participation decides to abort its subtransaction. Tt locks
data items while transaction 5 processing, until the final
decision (commit or abort) of coordnator 1s received.

347

Page-level-locks are currently the most frequently
used locking method for multiuser DBMSs (Coronel and
Steven, 2016). If locks 1s released quickly from data items,
other transactions can access these records.

We propose a modification to the standard two
phase commit protocol to release data items locks quickly
after the preparation phase. Participants doesn’t locks
data items until the end of the transaction.

We suggest to add a new state the
subtransactions at participant database sites which is
Incomplete state (I). Also, data items (records) include an
attribute contains the state of the last transaction
(last trans_state) that accessed the data item.

If a participant votes ready to commit, it put the
state of subtransaction and last trans state attribute to
incomplete state and locks are released.

When it receives the final decision {commit or abort)
of the coordinator, it changes the transaction state and
data item state to committed or aborted and undo the
database

for

effects of its subtransaction on the items
(restore before image).

If the coordinator fails before sending its message
when 1t recovers, it checks the log file. If it found the
initialization of a transaction and doesn’t find a decision
(commit or abort) or end of the transaction, it sends a
state request message to all participant sites.

When the coordmator receives the state messages
from all participants, it takes a new decision based on the
retuned messages. If all participants send ready to
commit, the
otherwise, 1t aborts the transaction and sends its final
decision to the participants.

Tf the coordinator fails after sending its decision to all
participants, then when it recovers, it checks the log file.
If it found the end of the transaction or commit or abort
record which means transaction 1s completed then, it will
do nothing but if it didn’t find the end of the transaction
record in the log file, it sends a request state message to
all participant to checks the comrectness of the
subtransactions states on all participated sites.

If a participant still in the incomplete state, the
coordinator send its final decision to that participant, then
the coordinator write end of the transaction in the log file.

If a participant fails before sending its vote message
to the coordinator, the coordinator waits for the
predefined time period and then send abort message to all
active participants.

If a participant fails after sending its vote message to
the coordinator when the participant is recovered, it send
a request state message to the coordinator to know the
final decision of the transaction and apply it. If a
new transaction requests to update data items from a

coordinator commits the transaction

Int. J. Soft Comput., 12 (5-6): 343-350, 2017

participant (calling participant) which its current
transaction state 1s incomplete and its coordnator still
fails, the participant checks the predefined timeout period
if 1t passed, it sends a request state message (call) to all
participants.

If at least one participant has the final decision of the
coordination, it acts as a coordinator and sends the
decision to the other participant and end transaction.

If no participant has the final decision of the
coordinator and at least one participant 15 decided to
abort its subtransaction, this participant acts as a
coordinator and sends the abort decision to all other
participants. All participants undo the effects of their
subtransactions on the database items.

If no participant has the final decision of the
coordinator and the state of all current subtransactions at
all participants sites is incomplete state, then the calling
participant acts as a coordinator for the current
transaction and send a commit state message to all other
participants and end the transaction. Then it allows the
new transaction to access the requested data items.

If the coordinator and one or more participant fails,
the calling participant acts as a coordinator for the current
transaction and send an abort state message to all other
active participants to avoid system blocking. When the
coordmator 1s available, it send a request state message
to all participants. If it found that participants are aborted
the transactional workflow and the coordmator i1s
committed it, it write a correction record in the log file, to
indicate the failure of the transactional workflow task and
send a message to the user so, he/she can execute it
again.

If a new transaction request to read data item which
heold incomplete state and the coordinator and other
participants are active, this participant transfers the
request to another available replica. We assume using the
lazy replication protocol to update replicas of the
databases. Update of replicas 1s only allowed for
committed transactions.

Transactional workflow technique: We assume wired
distributed database system and all sites are available
while the transaction processing. Mobile units can
delegates its transaction data to a fixed host agent using
a model similar to M-Shadow Agent Model (Ibralum,
2017).

The transactional workflow task follows the
optimistic concurrency control model and it consists of
three phase: read phase, edit phase and validation and
write phase. All subtransactions of transactional workflow
task are vital subtransactions.

The read phase and the edit phase are performed
without locking, only the wvalidation phase is under
locking until the end of the preparation phase.

348

Each transactional workflow has an transaction-id
which referencing its issue site and each subtraction has
a sub-id. The transactional workflow coordinator sends
transactional workflow 1d and sub-1ds to all participants in
the transactional workflow, to be used in the recovery
case. Participants add their local subtransaction-id to its
subtransactions.

Fixed hosts or mobile units retrieve sales orders data
(transactional workflow data) we call it original data, from
the their primary servers or from the nearest replicas and
the user edit it (edited data).

The transactional workflow coardinator starts the
validation and write phase by sending its subtransaction
data (original and edited) to their primary servers. It uses
2PC-I to decide the final decision of commitment or
rollbacking of the transactional workflow.

The primary server compares the current data with
the orignal data. If the original data 1s not changed or the
change-aware attributes are changed but these changes
within the mtegrity constraint acceptance range, it
accepts the edited data as a new current values of the
data items and the validation test 13 considered success
otherwise, it 18 considered fail.

If a subtransaction validation 1s succeeded, the
participant sends ready to commit message to the
transactional waorkflow coordmator, set the
subtransaction state and the last-transaction-state
attribute to mcomplete state and releases locks of its data
items.

When participants receive the final decision of
the transactional workflow coordmator, the
participants change their subtransaction state and the
last-transaction-state attribute to committed. or aborted
and undo the effects of its subtransaction on the
database items (restore before image).

Advantages and limitations of the transactional workflow
technique: The advantages of usmg the transactional
workflow technique are:

Only local locks are used for subtransactions on
different participant sites and for short time at the
validation phase and to the end of the preparation
phase of the standard two phase commit protocol
Releasing looks quickly from data items

Reserve database semantic consistency

Transactions complete its processing, even if case of
failure of its coordinator

If the network is disconnected while the transaction
processing, the transaction not fail

No need for using compensation

It can be used for homogenous or heterogeneous
distributed database

Int. J. Soft Comput., 12 (5-6): 343-350, 2017

Tt can be used for applications that moved to the
cloud environment and need to use distributed short
transactions, regular database size and semantic
consistency

The limitations of the transactional workflow
technique are: it 1s designed for commercial applications
that have a few shared data items among transactions and
the validation test is not suitable for some real-time
applications. Also, it is not designed for handling huge or
big data.

RESULTS AND DISCUSSION

Implementation and performance evaluation: The
standard two Phase Commit Protocol (2PC) aborts
transaction if disconnection is happened while any time
of the transaction is processing period. To evaluate the
applicability of 2PC-I protocol and the success probability
of transactions we wused three database systems:
Microsoft Access 2010, SQL Server 2008 and Oracle 10 to
create the homogenous and heterogeneous DDBS
enviromments. Application program 1s written by VB.net
2010. We simulated the coordinator by the application
program. Participants are simulated by stored procedures
at each database system. Log file and transaction state are
simulated by tables include trans id, subtrans id as
primeary key and last trans_state attribute 1s added to data
tables.

State message is simulated by a query reads the state
from the transaction state table. Commit state is simulated
by changing the transaction state and last trans state
attribute to committed and appending a record in the
log_file table to indicate the commit event. Abortion state
is simulated by changing the transaction state and
last trans_state attribute to aborted, undo the effects of
its subtransaction on the database items (restore before
image) and appending a record in the log file table to
indicate the abort event.

Validation test 1s implemented according to the
actionability rules. The primary server compares the
current data with the orignal data. If the original data is
not changed or the change-aware attributes are changed
but these changes within the integrity constramt
acceptance range, it accepts the edited data as a new
current values of the data items.

If the coordinator is failed and a new transaction
request to access a record which last trans state
attribute is incomplete a trigger is activated that checks
the active participant state and decides whether to commit
or abort the transaction. We measured the success rate of
2PC and 2PC-I protocols 1n the short disconnection case

349

Table 1: Comparison between success rates of 2PC and 2PC-1

2PC-1 2PC
Disconnection
rate (%) Succeeded Failed Succeeded Failed
5 99 1 95 5
10 97 3 90 10
20 95 5 80 20
30 93 7 70 30
50 91 9 50 50
120 1
100 —m—mem
é --------------
E 80
3
‘E 60
2]
k]
E 401
z
20
=-==2PC-1
—2PC
0 T | T T T
10 20 30 40 50
Disconnection rate (%)

Fig. 3: Comparison between success rates of 2PC and
2PC-1

(Table 1). 2PC-I protocol success rate is higher than the
standard 2PC protocol because it is implemented as an
optimistic concurrency control techmque. While 2PC 15 an
atomic technique. Transactions fails in 2PC-L, in case of
failure of participant while its processing in the validation
test phase or in case of a new transaction requests to
update data items from a participant which its current
transaction state 13 incomplete and the coordinator and
one or more participant fails. Figure 3 shows a graphical
representation for the result.

CONCLUSION

In this research, we define transaction as a unit of
work which each write-set satisfies the ACID properties.
We propose a two Phase Commit Protocol with
Incomplete state (2PC-I) which avoids the system
blocking problem and ensures semantic ACID properties.
We propose a transactional workflow technique as an
optimistic concurrency control techniqu that uses (2PC-T)
and actionability rules to handle the disconnection in
transactions processing and increase the success rate of
transactions. We implemented a simulation prototype for
the 2PC-T protocol and transactional workflow technicque

Int. J. Soft Comput., 12 (5-6): 343-350, 2017

to test the applicability of the 2PC-T protocol and measure
the success rate of transactions. 2PC-I is designed to
handle transaction processing of regular database size
and normal busmess environment but when database size
becomes very large, the system will be very slow because
of long time for reading and updating data.

RECOMMENDATION

In our future research, we will investigate how 2PC-I
can handle transaction processing for very large size
database and big number of attributes. We tested the
applicability of the transactional workflow technique and
the success rate of its transactions, we will tests the
performance of 2PC-T compared to the standard 2PC.

REFERENCES

Chandra, G.ID., 2017. NoSQL: Database for Storage and
Retrieval of Data in Cloud. CRC Press, Boca Raton,
Florida, USA., ISBN:9781 498784368, Pages: 455.

Chockler, G., D. Malkhi and D. Dolev, 2003. A
Data-Centric Approach for Scalable State Machine
Replication. In: Future Directions m Distributed
Computing, Schiper, A., AA. Shvartsman, H.
Weatherspoon and B.Y. Zhao (Eds.). Springer,
Berlin, Germany, ISBN:978-3-540-00912-2, pp:
159-163.

Coronel, C. and M. Steven, 2016. Database Systems:
Design, Implementation and Management. Cengage
Learning, Boston, Massachusetts, USA.,.

Coulouris, G., I. Dollimore and T. Kmndberg, 1994.
Distributed Systems: Concepts and Design. 2nd Edn.,
Addison-Wesley, TUSA., ISBN-13: 9780201624335,
Pages: 644.

Elmagarmid, A K., 1992. Database Transaction Models for
Advanced Applications. M. Kaufmann Publishers,
?Burlington, Massachusetts, USA. ISBN:
9781558602144, Pages: 611.

Elmagarmid, A K., Y. Leu, W. Litwin and M.E. Rusinki,
1990. A multidatabase transaction model for
interbase. Proceedings of the 16th International
Conference on Very Large Data Bases, August 13-16,
1990, Morgan Kaufmann Publishers Inc., San
Francisco, California, TJSA., TSBN: 1-55860-149-3, pp:
507-518.

Elmasri, R. and S. Navathe, 2011. Fundamentals of
Database Systems. 6th Edn., Addison-Wesley,
Boston, Massachusetts, USA., ISBN:9780136086208,
Pages: 1172.

E

350

Gary, DW. and K.C. Panos, 1997. PRO-MOTION:
Management of mobile transactions. Proceedings
of the 1997 ACM Symposium on Applied
Computing, April 1, 1997, ACM, New York, USA., pp:
101-108.

Georgakopoulos, D., M. Hornick and A. Sheth, 1995.
An overview of workflow management: From

process meodeling to workflow automation
infrastructure. Distrib. Parallel Databases, 3:
119-153.

Hegazy, O.M., A H. El-Bastawissy and R.F. Thrahim, 2008.
Handling mobile transactions with discommections
using a mobile-shadow. Proceedings of the 6th
International Conference of Informatics and Systems,
March 27-29, 2008, Cairo Umniversity, Giza, Egypt, pp:
1-8.

Holt, B., 2011. Writing and Querying MapReduce Views
in CouchDB: Tools for Data Analysts. O'Reilly
Media, Sebastopol,
ISBN:978-1-449-30312-9, Pages: 63.

Thrahim, R.F., 2017. Agent mobile transaction model. Tntl.
I. Inf. Electron. Eng., 7: 48-54.

Kumari, A. and Chanderkant, 2012. New approaches of
transaction processing in distributed database
system. Intl. . Comput. Sci. Commun., 3: 101-104.

Molina, G. and K. Salem, 1987. Sagas. ACM. SIGMOD
Rec., 16: 249-259.

O'eil, P. and E. O'nell, 2001. Database Principles
Programming Performance.
Publisher, Burlington,
ISBN:9781558604384, Pages: 870.

Salem, K., H. Garcia-Molina and R. Alonso, 1989.
Altruistic locking: A strategy for coping with long

California,

Morgan Kaufmann
Massachusetts,

lived transactions. High Perform. Trans. Syst, 1:
175-199.

Taft, R, E. Mansour, M. Serafim, J. Duggan and A.J.
Elmore et al, 2014, E-store: Fine-grained
elastic partitioning for distributed transaction
processing systems. Proc. VLDB. Endowment, 8:
245-256.

Thomas, M.C. and E.B. Carolyn, 1999. Database Systems:
A Practical Approach to Design, Implementation and
Management. Addison-Wesley, Boston,
Massachusetts, USA., ISBN: 9780201342871, Pages:
1093,

Wilson, A., 2003. Distributed transactions and two-phase
commit. SAP SE, Walldorf, Germany.

	343-350_Page_1
	343-350_Page_2
	343-350_Page_3
	343-350_Page_4
	343-350_Page_5
	343-350_Page_6
	343-350_Page_7
	343-350_Page_8

