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Abstract: To avoid significant performance degradation due to control signal limitation usually termed as
controller windup, feeding the actual limited plant input signal into the controller's state observer is stipulated
by state-of-the-art anti-windup schemes. Based on piecewise affine system description, this study presents
necessary and suffcient conditions for such an observer-based controller structure to give rise to sustained
non-linear oscillations. An effective mumerical procedure is devised to evaluate period and the trajectories of
the resulting limit cycles. To demonstrate that existence of limit cycles is related to the structure of anti-windup,
1t 18 shown that global closed-loop exponential stability can, on the contrary, be guaranteed for the case when
the computed (unlimited) control signal 1s fed to the observer.
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INTRODUCTION

Since, all controlled plants are somehow subjected to
signal limitations, consequences due to constrains are
always of great concern to engineers. Controller
performance degradation, generally termed as windup, can
be as severe as loss of stability or sustained oscillations
even in a nominally well-damped loop (Hippe and
Wurmthaler, 1999). In their probably most spectacular
form, oscillations due to control signal linitations are
known in aviomes as Pilot Induced Oscillations and have
been cited as the cause of aircraft accidents with high
performance fighters (Rundquist, 1997; Dormhein, 1992)
as well as jetliners (Dormheim and Hughes, 1995).

Controller structures explicitly addressing the issue
of control signal limitation are known as antiwindup
controllers and have been intensively studied before, see
e.g., Hippe and Wurmthaler (1999), Roonnbock (1993),
Kothare et al. (1994) and Ohr et al. (1997). Since, any
linear dynamic feedback controller can be interpreted as
an observer-based state feedback, it will suffice here to
consider only controllers with an explicit state observer
(Walgama and Sternby, 1990).

According to Hippe and Wurmthaler (1999), a major
msight achieved in theory of anti-windup controllers and
shared by most of the research community is that "the
windup phenomenon 1s an observation error, occurring if

the observer 13 driven by the control output of an
unconstrained compensator, whereas the plant receives
a value limited by the saturating actuator”. Thus, all state-
of-the-art anti-windup controllers use the actual (limited)
plant input for state reconstruction. However, it is also
well understood that the lattermeasure alone does not
guarantee neither system stability nor absence of limit
cycles once the control signal 1s saturated. Hippe and
Wurmthaler (1999) attribute the remaining negative effects
of input saturation to the plant itself while the analysis
presented further on in this paper proves that the state
feedback gain matrix still plays an important role in
evoking limit cycles in anti-windup controllers. Observer
design 1s though immaterial to existence of limit cycles
when the saturated signal is used for state estimation.

Congidering a closed-loop anti-windup system over
the whole state space, i.e., both with and without control
signal saturation, calls upon non-linear analysis. For
instance, presence of fricton-mduced limit cycles
Preprint submitted to 5 February 2008 i observer-based
controllers for mechanical systems is shown by Putra and
Nijmeijer (2003). While dealing with an H,-controlled
active engine vibration isolation system, Olsson (2002)
pointed out that using the applied control signal for state
estimation could evoke sustained oscillations. This was
further explored using approximate describing function
analysis of a simple one kinematic degree of freedom
system (Olsson, 2003).
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The effect of actuator output magnitude limitations
in an otherwise linear observer-based feedback control
system can be exactly modeled and analyzed by means of
existing tools for piecewise affine dynamic systems and
autonomously switched dynamic systems (Branicky,
1998). In an anti-windup controller, switching occurs
between the plant open-loop dynamics under controller
signal saturation and the nominal closed-loop dynamics
within the actuator's linear range. Affine system structure
is due to the constant input signal to the plant under
saturation. Yet, no analysis of anti-windup controllers
based on piecewise affine dynamic system description
can be readily found in the literature.

Direct application or specialization of the results
developed in the field of hybrid systems to anti-windup
controllers s problematic for 2 reasons.

¢  The phenomena of switching (relay feedback) and
affine dynamics due to signal saturation are usually
treated as separate instances of hybrid systems,
Gongalves et al. (2003) and JTohansson (1997), while
they occur simultaneously
description of an anti-windup
specifically, existence and symmetry of limit cycles
corresponding to relay feedback systems are studied
e.g., in Di Bernardo et al. (2001) but not for piecewise
affine dynamics.

*  As it will be demonstrated m the sequel, a certain
necessary eigenvalue condition on a product of 2
matrix exponentials plays a key role in existence of
stable limit cycles in systems controlled by anti-
windup controllers. This condition 1s, for simplicity
reason, excluded from consideration when limit
cycles in hybrid systems are studied. Especially, the
setup for analysis of limit cycles in Rubensson (2003)
would suite the purpose of investigating anti-windup
controllers if it could accommodate for the mentioned
eigenvalue condition.

in a mathematical
system. More

One way to exclude limit cycles 18 to prove global
asymptotic stability, implying convergence to the origin.
For piecewise systems (Johansson, 1999)
developed tools based on piecewise quadratic Lyapunov
functions and an extension to this research 15 presented
in Nakada and Talkaba (2003). A more versatile approach,
covering e.g., switching systems with unstable dynamics,
1s given by Gongalves ef af. (2003), presenting an analysis
methodology based on considerations of the behaviour
at switching surfaces associated with piecewise linear
systems.

In this study, necessary and sutcient conditions for
limit cyeles mn the generic structure of observer-based

affine

27

anti-windup with the state observer fed by the limited
control signal are given. An effective numerical method
for deciding on limit cyele existence and evaluating its
period 1s also provided. Somewhat unexpectedly, no limit
cycles are found in an alternative design where the
computed (unlimited) control signal is used for state
estimation and no explicit anti-windup measures are taken.
The method of piecewise quadratic Lyapunov functions
suffices for showing global closed-loop stability for
openloop stable plant. Possibility of limit cycles does not
necessarily 1mply that anti-windup controllers have
otherwise mferior performance compared to controllers
without explicit anti-windup.

STATEMENT OF THE PROBLEM

state feedback control in the
presence of actuator output magmtude limitations, 1.e.
input saturation, 1s considered. Specifically, the limitations
are assumed to be described by a standard saturation
function according to (1) where ¢ > 0.

Observer-based

—a, X <—
fx)=1 x|x|< « (1)
—, X P @

Two usual ways of implementing observer-based
state feedback controllers are schematically shown in
Fig. 1. One implementation uses the computed control
signal for observation while the other uses the applied,
possibly saturated, control signal. Tf the saturated control
signal could not be measured, a model f, (x) of the
saturation function could be used i the controller to
estimate the actual control signal.

Clearly, in case of an implementation according to
Fig. 1a there will be state estunation errors when the nput
signal 1s saturated since the observer is unaware of the
actual control input applied to the plant. This 15 usually
pointed out as the reason to controller windup, Hippe and
Wurmthaler (1999). The state estimation error due to the
input signal mismatch could therefore be eliminated by
feeding the observer with the possibly saturated control
signal according to Fig. 1b which is the solution
implemented in state-of-the-art anti-windup controllers
(e.g., Astrom and Wittenmark (1997)).

Let x (t) € R* denote the internal states of the plant,
% (t) € R* be the state estimates of the cbserver and
introduce the state estimation error € = x - % . In terms of
the augmented state vector Z = [ x' €'|" ¢ R*™ the
evolution of the closed loop system is given by:
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Fig. 1: Implementations of observer-based state feedback
controllers using (a) the computed control signal
for state estimation and (b) using fundamental
anti-windup techmque where the observer 15 fed
by the control signal applied to the plant

Z—F7+bfKx—Ke) (@)
A-BK BK] , [B
B=1 o a el T g

when the computed control signal i1s used for state
estimation. In (2), f(x is a static, odd, “dead zone”-type
non-linear function defined as:

X+ X< —ao
fix) = 0,

X— X 2> o«

X| << @ 3

When usimg the applied control signal for estimation,
the closed-loop dynamics are governed by:

7 =F?5-bp? f(Kx—K &) (4
F(Z) — A 0 . b(Z) — B
0 A-LC| 0

By scaling the state vector as
Z(t) = Z(t)/ « (5)

The dependence on the saturation limit ¢ could be
eliminated without loss of generality n both (2) and (4) so
thatg =1.

Remark 1: Since, the value of the saturation limit ¢ could
be excluded from the system descriptions using state
transformation, the characteristics of a specific solution
could not depend on this limit. However, the state space
trajectory corresponding to any given solution will of
course depend on ¢ through (5).

Remark 2: This study focuses on the case where the
observer is not augmented with any additional dynamics.
However, the analysis could easily be generalised to deal
with disturbance modeling or dynamic weighting
functions from e.g., H, or H_ design (Olsson, 2002).

Due to the non-linear characteristics of the 2
systems, it 1s natural to partition the state space mto
regions comesponding to mno saturation, positive
saturation and negative saturation, respectively. These 3
regions could be expressed as:

7 :{ZHKZ‘<1}
7 ={7[Rz>1} (6)
z, ={zRz< 1}

where, £ =[ K - K ]. Intreducing

po | 8 0 (7
BK A—-LC—-BK

both systems are suitably represented using a piecewise
affine system model of the form

Z(1) = F, z(1), z&#, (8)
21) = T® z(t) —b®, z€ Z, (9)
2(1) = F® 2(0) + b®, ze %, (10)
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where, p =1 for the implementation using the computed
control signal for state estimation according to (2) and
p = 2 for the implementation given by (4), using the
applied control signal for state estimation.

For notational convemence, the superscript p is
dropped in the sequel whenever, an expression holds for
both systems.

CLOSED ORBITS AND LIMIT CYCLES

A periodic solution 7 to system (8)-(10) of least
period T > 0, 1.e, such that Z (t;) = Z(t, + T) and Z(t, + T)
#=7({t)for0<t<T,1saclosed orbitinR 2n, seee.g.,
Nayfeh and Balachandran (1995). Figure 2 shows a 2-
dimensional visualisation of such a closed trajectory
passing through the 3 regions defined by (6). The dashed
lines correspond to the boundaries between the regions
%, Z, and £, represented by the hyperplanes P*, given by
Kz =+l and P, givenby Kz = - 1. The notation T, 18 used
to represent the duty times, 1.¢., the time elapsed between
2 subsequent crossings of the region boundaries.
though of

corresponding to periodic solutions is of interest, the

Even existence closed orbits
existence of limit cycles has been of main concern for this
research. According to the definition by Poincaré
(1892-1899), a limit cycle is an isolated periodic solution
corresponding to an isolated closed orbit 1n state space
and every trajectory initiated near the limit cycle
approaches it either as t —* s« or as t — —oo .

As demonstrated in Di Bernardo et al (2001),
unforced linear dynamic systems with symmetric non-
linearities might have asymmetric orbits. For the special
case of relay feedback, it has been shown that systems
with real stable poles and no zeros can only have
symmetric orbits. Relay feedback implies though that the
system dynamics 1s the same before and after relay
switching. This is, however, not the case with anti-windup
controllers where the dynamics alters from the nominal
closed-loop to the plant open-loop under control signal
saturation.

The following theorem specifically
symmetry properties of the system at hand and will be

COINCerns

used m the sequel to investigate the existence of closed
orbits in anti-windup controllers.

Theorem 3.1: Consider either of the systems (2) or (4)
described by (8), (%) and (10). Tf z(1) is a solution to any of
these systems, then the symmetrically opposite time
dependent vector -z(1) must correspond to another
solution to this system.

20

Z(m)

Z@2%,+1) ] p P

Fig. 2: A 2-dimensional visualisation of a closed orbit cor
responding to a periodic solution

Proof: Assume there exist a solution

7es UE UZ,

to the systems described by (8)-(10). As a consequence of
the odd non-linear characteristics of the saturation
function the bidirectional mappings:

%ﬂ ;1) ZD=%1 ;1) Z2= %2 ;1) Z1
yield
Z =Fzt)., zcZ
Z()=Fzt)+b zcZ, (11)
21 =Fzt)—b 7<%
Where,
#(t) = — z(t) (12)

Since, the equations given by (11) are the same as
(8)-(10), but with Z written for z a sclution Z(t)
corresponding to the solution Z(t) must exist with
Z{t) = -Z(t) ¥t t > 0. Thus, the 2 solutions 7 (t) and
Z(t) represents 2 unique, identical but symmetrically
opposite, trajectories.

Remark 3: As a consequence of Theorem 3.1, a solution
Z(t) to the systems described by (8)-(10) with Z (t) = -Z(0)
for some t> 0, corresponds to a half of a closed symmetric
orbit.

Introduce the following matrices and vectors.

(I)I(Tl) = anﬂ’ (I)z(Tz) =
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I+®,(1)P (1)
K
K& (1))

M(r, 1,) =

T
T2

T
N(r,) = [ f e“*“)de] 1-1

0

Based on the symmetry argument, necessary and
sufficient conditions for existence of closed orbits and
limit cycles in the systems under consideration are
formulated in the theorem below.

Theorem 3.2: A closed orbit corresponding to a seolution

to (8)-(10) exists iff 3 1, > 0 and T, > 0 such that

N(t,) € Im (M (T, T,)) (13)

Moreover, this closed orbit corresponds to a limit

cycle solution iff |&;| < 1, ¥ # 1, where A, are the
eigenvalues of the matrix

Dy = @y(1,) @, (1) (14)

with increasing index for non-increasing absolute values,

Len (A 2 [As] 2 o2 ).

Proof: Assume a solution to (8)-(10) initiated at 7,
belonging to the hyperplane P* givenby Kz = 1, evolving
through £, entering =%, at t =1, and returning to the
other hyperplane P~ at 7 (T, + 1,) with 7 (1, + T,) = —Z;.
Consequently, at t = T, and t = T, + T, this solution 1s
given by

Z{t)=¢&"" Z

0

T2
Zr,+1,) €7 Z(r)+ [ & bdr
o

Substituting the expression for 7 (t,) in the expression for
Z(t, + 1) and using Z (T, + T,) = —Z, gives

T2

(I e")Z, = — f eF(r,—mhdr (15
0
Z, belonging to the hyperplane P* and Z(t) entering
%, (i.e., intersecting P-) at t = T, implies

Kz, =1,Ke™ 7 =—1 (16)

30

From Theorem 3.1, Z(t); t_ [0, 2(t, + 1,)], constitutes
a closed orbit, 1.e., from (15) and (16), a closed orbit exists
iff 31, >0, t,>0and 7, ¢ R* satisfying

M (ty, 1) Zg =N (1) (17)
which yields (13).

The eigenvalue condition for himit cyele solutions
follows from Floquet theory (Nayfeh and Balachandran,
1995) where the eigenvalues of the monodromy matrix,
called the Floquet or characteristic multipliers, determine
the stability properties of the corresponding periodic
solution. A periodic solution requires one of the Floquet
multipliers to be located on the unit circle in the complex
plane and is asymptotically stable, i.e. con- stitutes a limit
cycle, 1if there are no multipliers outside the unit circle. For
a periodic solution corresponding to (13), the monodromy
matrix is given by:

D — (eFT2 eFm])Z

T

As a consequence of symmetry, DT could be written
D: = (DY, with D g, according to (14). Since, the
eigenvalues of DT/2 are the square root of the
eigenvalues of D the requirements on the Floquet
multipliers for stability of a periodic solution, apply also
to the eigenvalues of D,.

Remark 4: Notice that the sought periodic solution 1s
initiated at the hyperplane P* without loss of generality.
Furthermore, for a non-singular matrix F, the integral in the
left hand side of (13) evaluates to F~' (e™ — I)b.

Corollary 1: A limit cycle requires A, = —1 where A, is the
eigenvalue of the matrix Dy, given by (14) with largest
absolute value.

Proof: Using a non-linear function f (z; t), a periodic
solution Z (t) to (8)-(10) could be written

Z()=[(zt) (18)
Taking the derivative of both sides of (18) yields
zzaf(z=t)z (19)
a7

Z(t) is thus a solution to the Linear Time Varying
(LTV) system (19). Since, Z(t) is a periodic solution, so is
Z.(t). Moreover Z(0) = -Z(t, + 1) implies that Z(0) =
-7.(1, + 1,). Considering the sclution to the LTV system
{19} for half a period and writing Z.(t) = V(t), it follows that:
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T+®,{,) @, (1, ) V(0 =(T+Dy,) V() =0

Consequently, for V (0) # 0, (T + Dy, ) has to loose
rank. This is only possible if A, = -1 for someie [1, ..., 2n].

Remark 5: The eigenvalue conditions of Theorem 3.2 and
Corollary 1 are crucial to existence of (stable) limit cycles
i anti-windup controllers. Unfortunately, the problem of
spectral radius characterization of the product of 2 matrix
exponentials is apparently yet an unsolved problem in
linear algebra (Bernstein, 1992). An analytical example of
dimension 2 given in the Appendix reveals how a product
of matrix exponentials can have eigenvalues on and
outside of the unit circle even for Hurwitz matrices. The
eigenvalue conditions imply singularity of the matrix
I + Dy, which in its tum effectively prevents direct
application of results on limit cycles provided n e.g.,
Rubensson (2003) and Di Bernardo et al. (2001).

The necessary and sufficient conditions of
Theorem 3.2 are stated in terms of the block matrices
F,.F and F¥ as given by (2), (4) and (7). To get insight
into how the structure of the observer-based system
nfluences the conditions, the latter are treated below 1n
terms of the plant and controller matrices for each one of
the cases.

The case of computed control signal: Introduce the
following notation:

d,(1) = e, ¢, (1) = "
(bg(t) = gl BELOL 4)4 (t) = (A LOt

f1 (71) = j;"'l d)z (T)BK ¢4 (T1 o T)dT
fz (Tz) = L"’Z (ba (T)BK¢1 (T2 *T)d’r

Corollary 2: In the case of an implementation according
to (2), 1e., using the computed control signal for state
estimation, Theorem 3.2 holds for the following values of
the involved matrices

D _ d)l(TZ)d)](Tl) d)l(TZ) fl (Tl)

T ) b, () £, )E (T + 0, ()b, (1)
I+, (1) by (1) & (1) £ (1)
(T T M, (T,,T,

Mr 1 )= xaim _1(< )
Ko, (1))

K(f1 (Tl)i ¢‘4 (T1))

T2 T

N(r,)= [ [ e Bdr

1]

N;(Tz)l -1

31

Where,

N, ()= [, -k o, r-vat)
+¢, {1, —T)dTB
M,, (TI’TZ):IJ’_fZ (Tl)fl (T1)+¢3 (Tz)d)e; (Tl)

Proof: Taking the block matrix structure of the invelved
matrices into account, the result follows from a direct
evaluation of (14) and (13) with F;, F* and b™ given by
(2), (4) and (7).

The case of applied signal: In this study, it 1s proven that
for the case of the observer-based anti-windup controller
using the applied (lunited) control signal m state
estimation, the observer design is immaterial to existence
of limit cycles. The necessary and sufficient conditions
for existence of closed orbits and hmit cycles provided
below in Corollary 3 are formulated solely in terms of plant
properties and the state feedback gain matrix.

In the case when the applied control signal 1s used
for state estimation, it is convenient to introduce the
following notation:

Id, (), (1)
K

K, (7))

M, (T1>T2):

T

1-1

T2

N, (r)= [ f "™ Bdr

0

Corollary 3: A closed orbit corresponding to a solution
to (8)-(10) exists 1ff 3 7, == O and T, > 0 such that

N, (1) € Im (M, (7, 7)) (20)

Moreover, this closed orbit corresponds to a limit
cycle solution iff |A| < 1, ¥, # 1, where A, are the
eigenvalues of the matrix D, ¢ R*®

D¥12 = ¢‘2 (Tz) ¢‘1 (T1) 2

with increasing mdex for non-increasing absolute values,

e, Mz M) 2 o2 A,

Proof; Inserting Fy, F¥ and b given by (2), (4) and (7), in
Doy, M (1y; T,) and N (1) from Theorem 3.2 yields

_o(m) o, (r) b ) £ (1)
T/2 0 ¢)4 (T1+T2)

nxn

D (22)
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I—"_d)l (’TZ)(‘JVDZ (Tl) (‘JVDI (Tl)fl (Tl)

M = Op [+, (1, +7,)
K&, ()  KE@)—6, )] 23

T2
Jemar

0

N 0 . 1-1

nxn

Condition (13) in Theorem 3.2 is fulfilled if a solution
7, to (17) exists. Writing 7Z,= [X", E' ], X, R%, E, ¢ R®
and evaluating part of (17) corresponding to the second
lines in M and N given by (23) it follows that:

(I+¢4 (Tl +T2)) Eu = (I+B(A7LC)(T1+T2))E0 =0

Since, (A - LC) 1s a Hurwitz matrix and t, > O; T, > 0,
it must hold that E, = 0. Taking the equations of motion
given by (4) mto account, it 18 clear that with e(t) = 0,
t = 0, it must hold that £(t) = 0; t > 0. Consequently, (22)
could be reduced to (21) and (20) follows from (17).

Analysis of closed orbit existence condition: The
question of whether a limit cycle exists or not mn the 2
above considered controller implementations boils down
to the problem of solving system of Eq. 17 with respect to
Zq. The lmear system of equations is overdetermined and
T;, T, have to be manipulated to make it consistent. The
following observations can be readily made.

*  Letting 7, = 0 leads to an inconsistent system due to
the last 2 equations of (17).

s Z,# Osince otherwise the equation K Z,= 1 carmot
be satisfied.

e Assuming T, = Ovields (T + e™") Z, = 0 which cannot
be fulfilled since det (I +¢e™") # Oand Z, # 0.

+  Due to stability of F,, lim,,_. K " = 0. Thus large
values of T, cause inconsistency of the system.

*  For 1, = = and a stable F, one gets.

7 =—lim [ &b di=—F 'b

b TI—00 n

To yield a solution to (17), 2 conditions have to be
satisfied by choosing T,

KF 'b=—1,
Ke™ F' b=1

This 15 unlikely but cannot theoretically be ruled out.

¢ Naturally, (17) has to be solved numerically to obtain
the parameters of limit cycle 1, T, An efficient
method for 1its provided in
Appendix A and B.

solution 18

APPENDIX A

Eigenvalues of matrix exponential products: Considerthe
following matrix product:

P(T,,T,)=exp (AT, Jexp (D_lAzDTz) =exp(AT )D_l

Where,

A - a, —b A, a, -b, e d 0
b, a b, a, 0 a,
and 7, T, € R", a, a8, ¢ R , d,, d, € R\ A direct evaluation
of P yields

P:e(a'IIJram) {pn plz}
2 Pa Pz

Where,

Py :dlz((d2 —d,Jeos(b;T, —b,T,)
+(d, +d,)cos (b,T, +b,T,))

P2 :cil((d2 —d,)sin(b;t, —b,1T,)
+(d, +d,)sin(b,T, +b,T, )

Pa :dlz((d2 —d,)sin(b;t, —b,1T,)
—(d, +d,)sin(b;T, +b,T, )

Pas :dL((d1 —d,)cos(b,T, —b,T,)

1

+(d, +d,)cos (b,T,+b,T,))
The matrix P is always nonsingular since
detP=*™item) -
The eigenvalues of P are

2
h(X):éi iiez(alﬁﬂlzb)
2 4

Where,
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ata g +a37y )
e 14 242

: 2d,d,
(b1, +b,7,)—(d, —d,)* cos (b,T, ~b,T,))

((d, +d,)’ cos

The condition that the eigenvalues are real is
equivalent to

4‘d1d2|£ (d, +c12)2 cos(b,T, +b,T,)—
(d, ~ d,)* cos(b,T, ~ b,T,) <2(d? +)

where the upper bound is always valid.
For complex eigenvalues, it is straightforward to
show that

sup |7L(X)| —glntan)

and therefore this quantity is independent of d, b,
1=1, 2. Thus, none of the eigenvalues of P can be on or
outside of the unit circle for the specified parameter
mtervals.

For real eigenvalues, it applies

d|ld

-2

(X)) <|g] <e®™" ™ max( .
1

)

]

2

and | A (X)| 1s unbounded as D approaches singularity.
For the special case d, = d,, the left hand side
mequality of the eigenvalue realness condition becomes

1< |cos(b,T, +b,T,)|

which can be satisfied only if 7, 1 =1, 2 are chosen so that
|cos(b T, + b, 1;)| = 1. This, in its turn, means that:

MX)=+ LRy

which is definitely inside the unit circle. Thus, the
scaling of eigenvectors d; # d, 1s necessary for obtaiung
A= 1.

In fact, when d, # d,, it 1s easy to show that ¥|r| = 1
there exist infinitely many combinations of ©, T,, d,, d,
such that A =r. Consider the following case where T, and
T, are chosen so that

cos(b T +b,T,)=Lcos(b T, —b,T,)=0

In this case
bl +d,)
2dd, ' ?

33

Where,
k= e(alT,1 +a,T,)

is a constant with O < k < 1.
The corresponding eigenvalues are given by

2MPY=k(p+Jp’ 1) (A1)
Where,
2
_Ady 4 14 pl>1 (A2
4dd,  4d, 2 44,

It is clear that V| A| = 1, there is asolution p to (A.1)
with |p| = 1. Moreover, from (A.2) it follows that all
p. |pl = 1, could be achieved by an infimte number of
combinations of d, and d, obeying

d,=—d,(1-2p)L£2d Jp"—p
APPENDIX B

Separable nonlinear least squares: Introduce the

augmented vector of unknowns

and the residual
?(Zu) = N(Tz)*M(TPTz)ZU

To find a solution to (17) numerically, the following
optimization problem can be considered

Z,=ag min, T (Z)¥(Z)

The corresponding Jacobian matrix whose elements
are defined as:

J — 8?1(~0)
Y8z,
is given by
I=00 T, M, 1))

System of algebraic Eq. 17 depends linearly on Z; and
nonlinearly on T, T, and thus 1s suitable for the
application of separable nonlinear least squares method
{(Golub and Pereyra, 1973). The derivation mn the sequel
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follows the lines of Nielsen (2000). Yet the formulae of the

latter work cannot be readily applied due to the

dependance of N on one of the optimization variables.
The structure of (17) implies

Zy (T3, T) = M (1, T,) N (1)

where ~+ denotes pseudoinverse. Thus, the duty times T,
T, can be found numerically by solving the following
optimization problem

T

(TT, T;) = arg miTn I"T(TI,TZ) r(T1,,71,)
2

Where

T (TI’TE) = N((Tz) - M(T1’T2)
M" (7,,7,) N(1,)

(B.1)
A closed arbit exists if and only if | r(t",, T,)] = C.

The corresponding Jacobian has the form

ar(T1=Tz) ar(TPTz)
aT oT

I (TI’TZ) -

1 2

where the columns can be evaluated from (B.1) as

a v,

aT, o, I, B.2)
ﬁ = 8_N_8_M Z, _MBZ“
ar, dr, I, o1,

with the arguments dropped for brevity. By taking
derivatives of the mvolved block matrices one obtains

®, (1) K @ (1) F®, () & (1)

M SOM 0
o, ’ o,
KFU @1 (Tl) 0
and
BNT T2 T
= {f(Ffu O,(t,~HbdI+b) 0 0

2

To evaluate the nghtmost terms in (B.2), the
derivatives of Z, with respect to T, and T, are necessary.
Recall now that 7, satisfies the system of normal
equations

M MZ,=MN
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Taking derivatives of the equation above yields

T 8Z T
oMM Z, MM = LM N
, T, o,
T 8Z T
BMMZU+MTM D:‘81\/[1\I+1\/1T8—1\T
T ot ot a7

2 2 2 2

Now rearrange the equations leaving only the terms
involving derivatives of 7, in the left-hand side

T T
MTM%:BM N— oM M+MT8—M
o, I, o, I,
T
7, =M g
Tl
T T
MTMaz“ _ M N+MT8—N7 oM M+MT8—M
aT, o, o, aT, aT,
T
7, =M
TZ
(B.3)

The vectors dZ,/dt,1 = 1, 2 can be found solving
normal Eq. (B.3). Substituting them into (B.2) results in the
sought expressions for the Jacobian matrix of the
separated problem. Now (17) can be resolved by means of
standard software for the Gauss-Newton method (or its
Levenberg-Marquardt modification) using the obtained
formulae for the Jacobian.

EXPONENTIAL STABILITY

One way to exclude the existence of limit cycle
solutions is to prove global stability of the closed loop
system. Since, the existence or non-existence of limit
cycles says nothing about stability, this kind of
wnformation  iumplies increased knowledge about
closedloop system performance. In this study exponential
stability is therefore, analysed making use of existing
mathematical tools. It 1s also shown that this kind of
analysis provides upper bounds on convergence rate.

Johansson (1999) has formulated the search for
piece-wise quadratic Lyapunov functions for piecewise
affine systems m terms of LMIs. A limitation arising in
this approach with respect to analysis of anti-windup
controllers is that the plant dynamics have to be stable.
Global analysis for the case of open-loop unstable plants
can be performed by means of more versatile technique
suggested in Gongalves et al. (2003) but not pursuedhere.
The method of Johansson (1999) is suitable for the
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openloop stable plants considered in this study and a
Lyapunov function of the form

gl

ET
Viz) =1z

ET

 Z, ZEZ,
(24)

ol

7, ZEZ,

jgs!

. Z, 2E7,

where, Z = [z 1] and z is a solution te (8)-(10), could be
sought for using the theorem given below. It is asumed
hat the trajectories could not end up in attractive sliding
modes. To deal with sliding modes the analysis
conditions have to be extended (JTohansson, 1999).

Theorem 4.1: Tf there exista symmetric matrix T and
non-negative scalars u,, v,, U, v,, Ay, &, and A,, with

P, =H TH,
P =1 TH, (25)
P, — A TH,
and
IN{ _1 leln 0
[ [FL L] = o, of "R —1] @9
Inxin
:[anln 0 Inxin 0
such that
0>F' P, + P, F+u, Q, + 2, P,
0<P —v, Q,
0>F B, + P, K, +2&, B, @7
0<P,
0>F" P, + P, F+u, Q, + 24, P,
0<P,—v,Q,
Where,
. |F b
F= (28)
leln 0
and
- T T
Ql— OZnXZ:J K ) Q2 — 02nx2n~ - (29)
K -2 —K -2

then, every trajectory z(t) tends to zero exponentially.

Proof: A proof is given by Johansson (1999).
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In Theorem 4.1 ﬁ1 , ﬁu and ﬁ2 are chosen to ensure
continuity of the Lyapunov function while the matrices F
are introduced to deal with the affine terms b® in (9) and
(10). The relaxation terms uQ, are selected to avoid
conservatism by exploiting the fact that each affine
dynamics is used in the limited regions 7Z,, 7, and 7, of
the state space, while the largest possible 4;, A, and A,
deliver a convergence rate measure.

Choosing Qi according to (29) is intuitive and takes
advantage of the state space partitioning as follows. In
region®,, Kz -1z 0whenzcZ and Kz - 1 < 0 when
z & %&,. Since,

7'Q,7Z=2(Kz—1),7Z (u Q)Z >0 when
ze€Z and z' (u, Q) z <0 when z €7,

Therefore, it might be easier to find a P, satisfying the
first two LMIs 1n (27) for some u, > O and v, = 0.

Remark 6: In Johansson (1999) an algorithm to generate
relaxation terms is given which suggest that the terms wQ,
and v,Q, above are replaced by terms of the form E! U E,
and ETW E where U; and W, are symmetric matrices
with nlon-rieglative entries and the matrices E are given
by the algorithm. The choices (29) for Q; used here are
equivalent to using search variables U and W, in
Theorem 4.1 in Johansson (1999) according to

(30)

where, u, > 0, v, > 0. This simple choice of relaxation
terms adds only cne extra variable for each LMI and
proved to be powerful enough when solving the LMIs in
Theorem 4.1.

NUMERICAL EXAMPLE

The attention is now turned to a 3rd order dynamic
system borrowed from Hippe and Wurmthaler (1999) and
described by the transfer function

2

I 31)
s’ +28" +2542

G(s) =

To avoid numerical problems a balanced state space
realisation is used in standard 1.Q synthesis (Glad and
Ljung, 2000) to calculate the optimal state feedback and
Kalman filter gains K and T, by minimisation of the
following cost function
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1
J=lim — [z CTOCx4+u Ruydr (32)
lim J;( Q )

Uaingz Q= 100000, F =1 and assuwming process ninise
w atw] measrem ent noise nto be white noise processes
with spectral densities &, = 10° -1 and &, = | gives

K =[-214.7 1965 09201

] (33)
L=[-12.04 5868 0419

Blaximoan outpndt of the actuator is setto one, 16, =1

in(l).

App lied control signal for estimation: From Corollary 3,
aperiodic solutionis known to exist if there are duty times
T, atd t, satisfying (200 This condition has bheen
irrvest gated using unconstrained nonlinear mimmi sation
of the form

min, ., X, "II""IIX(Tl T E — N, (ﬂ:‘”g (34)

Usitg a separable nonlinear least-squares method
(Appendix), aminiman dose to zero was found for

0.8332
0.0059

i xllm?l,xux 0.9547 (35)

Tl —0.0836

To investigate the stability of this periodic soluton,
the e gerrralues of the matrix D%, given by (210 have been
computed and the remalt is

[% % »]=[-l000 —0748 0033 (38

Hence, according toCorollay 3, the periodic solution
givenn by (35), cott esponuds to a limit eyele. Figure 3 shows
the states of the plant corresponding to a sinndation of
the dosed-loop system with both plant and observer
states indtiated to 0. 53, (1.e, e D=0,

Computed conirel signal for estimation: Inthi s case, limit
cycles could in fact be excluded using exponentisl
stahility analysis according to Theorem 4.1, The LMIsin
Theorem 4.1 are found to be feasible and with mamsa
iz, it was possible to achdewe the maximum vaues 0.2,
12and02fard,i=0,1,2 Without reaxation term s, the
LIIs(d7) are feasible bt not strictly feasitie.
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Fig 3: The states of the plant corresponding to a
sittdation where both observer and plard states
are imtiated to 3720 with 2 given by (350

CONCLUSION

Existence of saturati ore induced limit cyeles iz shudied
for 2 principally different condroller implementati ons of
ohserver-based state feedback controllers, one of which
is typical to state- of-the-art ardi-winchy controllers.
Sufficient conditions for exponential stability, as well as
necessary and sufficient conditions for limit eyeles using
at exact representation of the non-linearity ae provided
for both implemertations. It is proven that existence of
litnit eyeles in the caze of the actual limited) control & gnal
uged for state estimation (anti-windup controlles) is
iminaterial to the observer design and solely depends on
plard properties atd the feedback gain mateiz, A meverical
example demonstrates that while Llimit cycles existin case
of at1 implemm entati on using for state estimation the control
signal applied to the plant anti-windup controller), global
stability could bhe groven for  the  alternative
implementation wilising the computed control signal
Finally, the condition for limit cyclesis shown to itrral we
the wet  wmsolwved problem  of  spectral  radius
char acterizati on of the product of 2 matrix exponertials,
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