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Abstract: The surface waves ocour at and near the free surface of an unbounded sheet of liquid which is
urotational incompressible and two-dimensional. To illustrate the waves at the mterface of 2 liquids, the
progressive waves and stationary waves on the surface of a canal and on a deep canal are also considered. For
the convenience of our calculation, Bernoulli’s equation is taken and then at steady state the velocity
propagation is obtained. Tn fact, we have generalized velocity propagation when wave length is large compared

with thickness between 2 layers.
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INTRODUCTION

Raisinghama (2000) discussed the surface waves
occur at and near the free surface of an unbounded sheet
of liquid where the depth is considerable compared to the
wave length. For these wave the vertical acceleration 1s
comparable with the horizontal and vertical directions
(Coulson, 1968). We have discussed surface waves mn
different cases. A systematic pertuwrbation approach,
called the nonlinear Schrodinger method, which was
reported by Trulsen et al (2001) for second-order
nonlinear waves on deep water and by Trulsen et al
(2001) for second-order nonlinear waves on finite depth.
The kinematics of extreme waves in deep water was
recently analyzed by Grue et al. (2003). They discovered
that after proper normalization, the kinematics profiles
under a variety of extreme wave crests fitted surprisingly
well with a universal exponential profile e where z is the
vertical coordinate and k 1s a local wave number. The key
to the successful collapse of data demonstrated by Grue
et al. (2003) was to use the local trough-to-trough “wave
period” as basis for normalization at the crest to be
considered. Raisinghania (2000) also generalized the
velocity of propagation when depths of the liquids is
large compared with the wave length. Here we have
generalized the velocity of propagation when wave length
1s large compared with thickness between two layers. We
have also derived the equation of surface waves and
surface waves in different cases.

EQUATION OF SURFACE WAVES

Let the x-ax1s be taken in the undisturbed surface m
the direction of propagation of the waves and the y-axis
vertically upwards. Taking the motion to be irrotational,
incompressible and 2 dimensional as Clamond et al
(2003), the wvelocity potential ¢ exists such that
throughout the liquid

=0 Y]

and at a fixed boundary de/dx = 0.
The pressure can be obtained from the Bernoull’s
equation (Jensen et al., 2004),

p oy 1,
P20 oy g+ F(t 2)
> &y —24 (t)

Since, for free surface 15 a surface of pressure, p 18
constant, hence for the free surface

@:@+u@\f@:0
Dt &t ox oy

Where, u and v are the velocity components on the
free surface in x and y directions, respectively.
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But,

and at the free surface the relation 4 becomes

o 0p dp 09 p_ 3)
&t 8x Ox oy oy

Let the motion be so small that the squares of small

quantities may be omitted. Again without loss of

generality we may include F (t) in ¢ and hence we may
take F(t) = 0 in (2). Then (2) reduces

p_op

P gy )
P

ot

Substituting the value of p from (4) in (3) we get

o )

or, omitting the second and their terms which are of the
same order as ', we get

o_oo o _op
o’ ax axdt Oy

o

61;2

op

(5)
2oy

= 0.

Condition (1) must be satisfied at the free surface.

If 1 the elevation of the free surface at time t above
the point whose abscissa 1s x, the equation of the free
surface 1s given by

n = fx.t)
or,n—tx,t)=0.

But we know that if F(x, 1, t) = 1 - £ (x, t) = 0 be the

boundary surface, then we must have

aF
—+u—+v—=0.
ax

ot an

af of
: —+u —+v =0
ot ox

Le.

(6)

Now 8f/5t is M. Again 3f/0x or 31/9x being the

tangent of the slope of the free surface is small so that the
second term 1in (1) can be omitted. Then (6) reduces to
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N=v =-Jdg/dy. (7)
Which holds at free surface.

Thus for the surface waves the velocity potential is
a solution of Laplace’s Eq. (1) which makes dp/dx =0 as a
fixed boundary and satisfies Eq. (5) and (7) at the free
surface of the liquid.

Surface waves in different cases: To illustrate the above
theory, we consider the following cases

Case 1: Progressive waves on the surface of a canal
Consider the propagation of simple harmonic waves of the
type

T =asin(mx - nt), (8)
at the surface of canal of uniform depth h and having
parallel vertical wall. Let the free surface be along the x-
axis (L.e., y = 0), so that equation of the bottom 1s vy = - h.
Then we must find ¢ satisfying Eq. (8) and subjected to
the following boundary conditions

a—(PZO aty=-h,
& 0
6t2p+g o paty=o0, (9)
v:@:-a—q) aty =10 (10)
ot Oy

Using Eq. (8) and (10) gives dp/dy = an cos(mx-nt) at y =0.
We have,

@ =D coshim(y +h)} cos(mx — nt). (11
Again, using (9 and (11) gives
n® = gm tanh(mh) (12)

Let the velocity of propagation, ¢ = n/m and wave
length, A = 2m/m.

Then (12) reduces to ¢* = g/m tanh(mh) and ¢’
gh/2m tanh (27 h/24).

Case 2: Progressive waves on a deep canal: If the depth
h of the canal 1s sufficiently great in comparison with 4 for
e™ to be neglected, then in case 1 we must have B = 0.
Thus,

(13)

@ = Ae™ cos(mx —nt).

Taking n’=gm and ¢’ = gA/2T.
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We now determine the constant A of Eq. (13) in
terns of the amplitude a of the wave. Using Eq. (8) and
(13), the boundary condition Eq. (10) gives na = mA, so
that

¢ = (na/m) e cos(mx — nt) and
¢ = (ga/m) ™ cos(mx —nt)

The velocity components of the particles are:

u = 3@/Ix = nae™ sin(mx — nt) and
v = -0@/dy = - nae™ cos(mx — nt).

Following the procedure of case 1, we obtain in the
case for the displacement (x, y) of a particle form its mean
position (x, y) x = ae™ cos(mx —nt), y = ae™ sin(mx —nt)
and hence the path of the particle is a circle, x* + y* =
(ae™) of radius (ae™), which decreases with depth of a
particle under consideration.

Case 3: Stationary waves on the surface of canal:
Consider a stationary wave of the type

1 = a sin(mx) cos(nt), (14)
at the surface of canal of uniform depth h and having
parallel vertical walls. Let the free surface be along the x-
axes (1.e. y = 0), so that the equation of the bottom (rigid
boundary) 13 y = -h. The we must find ¢ satisfying Eq. (1)
and subjected to the following boundary conditions

o =0aty =-h (15)
oy

2

G_Zp+g 9 =0, aty =0

ot ay

v:@:-@, aty=0. (16)
a

using Eq. (14) and (16) gives d¢/dy = an sin(mx) sin(nt)
aty = 0. Also we have,

@ =D cosh{m( yt+h)} sin(mx)sin(nt), (17
where D 1s a constant.
Again, using Eq. (15) and (17) gives
n’ = gm tanh(mh) (18)

Let
¢=n/m and A = 21t/m.
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denote the velocity of propagation and the wave length,
respectively. Then (18) reduces to:

¢? = £ tanh(mh),
m

¢’ = sk tanh(@ )
2n A

Case 4: Stationary waves on a deep canal: If the depth h
of the canal is sufficiently great in comparison with A for
e to be neglected, then in case 3 we must have B = 0.
Thus, we have,

@ = Ae¥sin(mx) sin(nx). (19)
Taking

n’ =gm and C* = gA/2T.

Here we also determine the constant A of Eq. (19) in
terms of the amplitude of the wave, using Eq. (14) and
(19), the boundary condition Eq. (16) gives na = mA,
so that

in(t
Q= 08 sin{mx) &()sin(t) and
m n
Pp= 82 oy sin{mx) sin{nt).
n

The velocity components of the particles one

c

= nae™ cos(mx) sin(nt) and

QPR

- = -nae™ sin{mx) sin{nt).

3

Following the preceding procedure we obtain in this case
x = ae™ cos(mx) cos(nt), y = x = ae™ sin(mx) cos(nt).

Hence, y/x = tan(mx) shows that the path of the
particle 1s a straight line.

Waves at the interface of two liquids: Let a layer of fluid
density p; and thickness h separates two fluids of
densities p, and p, extending to mfimty mn opposite
directions. Let ¢ be the velocity of propagation of
oscillatory waves at the interface of two liquids in the
direction in which the liquids are moving.

We make the motion steady by superimposing on
the whole mass the velocity-c. Thus the wave profile 1s



Int. J. Syst. Signal Control Eng. Applic., 1 (1): 69-73, 2008

Fig. 1: Waves at the interface of the liquids

reduced to rest in space and the new velocities of liquids
becomes v,-¢ and v-c as shown m Fig. 1.

The velocity and stream function for the lower liquid
moving with — (v-¢) in the negative direction of x-axis are
given by:

- (v-¢)x + D cos him(y+h)} cos(mx),
- (v-¢) vy — D sin him(y+h)} sin(mx).

®= (20)
Y= 2D

Similar, expression for the upper liqud may be
deduced from Eq. (20) and (21) by replacing v by v, and h
by —h,. Thus, we get

@, = - (v;-¢) x +D; cosh {m(y-h,)} cos(mx) and
¥, ~(v,-)y-D, sin(lm)(y-h,) sin(mx).

Clearly the above expressions for ¥ and ¥, make the
boundaries y = -h, v = h,
let

T = a sin(mx). (22)

represent the displacement of the interface. If the liquids
do not separate then (22) must be a streamline for both
surfaces. This condition is satisfied by assuming the
streamline to be ¥ = ¥, = 0. neglecting the squares of
small quantities (e.g., a*), we thus obtain

-(v-c)a —D sin{mh) = 0 and
-(vi-c)a + D' sin(mh) = 0.

From Bernoulli’s equations, we obtain

2 2
Ps =gy + l {&Pj + {&PJ = constant, (23)
P 2 Ox oy
1 (o, Y (oY
andp—l =gy +— (@1} J{(plj = constant.
P, 2 ox dy

(24)

But at the mterface v = 1 = a sm(mx), Hence

neglecting a’, Eq. (54) and (55) give
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p 1
— +gasin(max)+ E(V—C )2
3
(1-2amcoth(mh) sin(mx) )=constart

P
—L +gasin(max)+ 15(\/1 -c )2
1
(1+2amcoth {mh,) sin (mx)) =constant

Since, the pressure 1s continuous across the mterface,
putting p = p, in above equations, subtracting and then
equating to zero the coefficient of sin{mx), we obtain

g (ps - p) = (v — ) mp; coth(mh)
+ (v,-¢)'mp, coth(mh,) (25)
Equation (25) determines the velocity of propagation
¢ of waves of wave length 27/m at the interface. We; can
also treat Eq. (25) as the condition for stationary waves at
the interface of two streams.
Whose velocities are v-¢ and v,-c. When the liquids
are at rest (Le. v = v, = 0), the wave velocity 1s given by

o = g Ps Py
M p. coth(mh) + p coth(mh)

shows that when p;>p, the equilibrium position is
unstable.

Let the liquids be at rest and the waves of length A,
large compared with h, that we may take coth(mh) =
coth(mh,) =1, then we have

Ps
Ps

Py
Py

-3
m +

the finally,
o _gh | PP
2T (p,+p,)
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