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Abstract: This study describes a Takagi-Sugeno (T-3) fuzzy model based solution to the SLAM problem. A
less error prone vehicle process model is used to improve the accuracy and the faster convergence of state
estimation. Vehicle motion 1s modeled using vehicle frame translation derived from successive dead-reckoned
poses as a control mput. Nonlinear process model and observation model are formulated as pseudo-linear
models and rewritten with a composite model whose local models are linear according to T-3 fuzzy model. Linear
Kalman filter equations are then used to estimate the state of the local linear models. Combination of these local
state estimates results in global state estimate. Stability of the fuzzy observer is addressed through the
assessment of local covariance estimates. Data association to comrespond features to the observed
measurement is proposed with two sensor frames obtained from two sensors. The above system is implemented
and simulated with Matlab to claim that the proposed method yet finds a better solution to the SLAM problem.
The proposed method shows a way to use nonlinear systems in Kalman filter estimator without using Jacobian
matrices. Pseudo-linear model which preserves the original information in nonlinear systems avoids direct
linearization as used in EKF. Tt is found that a fuzzy logic based approach with the pseudo-linear models
provides a remarkable solution to state estimation process because fuzzy logic always stands for a better
solution.

Key words: Simultaneous localization and mapping, pseudo-linear modeling, fuzzy Kalman filtering, T-5 fuzzy
model, data association, stability and consistency

INTRODUCTION

Introducing an altemative techmique to solve the
simultaneous localization and mapping (SLAM) problem
15 yet another step forward to advancement of the
ongoing research activities. In the domain of solutions to
the SLAM problem, there can be alternative and advanced
solutions but not yet identified. Accuracy of the solution
depends on the design of estimator and the data
assoclation scheme used to correspond the environmental
features to the observed measurements. Data association
is the toughest handling part of SLAM problem. Low
computationally complex and simpler scheme for
obtaining the solution attracts attention i such a
problem. Extraction of a solution to the SLAM problem
featuring above merits is described in this study for a
vehicle and landmarks system.

The SLAM problem (Durrant-Whyte and Bailey,
2006; Bailey and Durrant-Whyte, 2006), also known as

concurrent mapping and localization (CML) problem, 1s
often recognized in the robotics literature as one of the
key challenges in building autonomous capabilities for
mobile vehicles. The goal of an autonomous vehicle
performing SLAM 1s to start from an unknown location in
an unknown environment and build a map (consisting of
environmental features) of its environment incrementally
by using the uncertain information extracted from its
sensors, whilst simultaneously using that map to localize
itself with respect to a reference coordinate frame and
navigate in real time.

A vehicle capable of performing SLAM using
naturally occurring environmental features and capable of
runmng for hours or possibly days m completely
unknown and unstructured environments will indeed be
invaluable in several key areas of robotics. These include
autonomous vehicle operation in unstructured terrain,
systems, Imining, suveylng, cargo
handling, autonomous underwater explorations, aviation

driver-assistance
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applications, autonomous planetary exploration and
military applications. The first solution to the SLAM
problem was proposed by Smith et al. (1987). They
emphasized the importance of map and vehicle
correlations in SLAM and introduced the extended
Kalman filter (EKF)-based stochastic mapping framework,
which estimated the vehicle pose and the map feature
(landmark) positions in an augmented state vector using
second order statistics. Although the EKF-based SLAM
within the stochastic mapping framework gained wide
popularity among the SLAM research commumty, over
time, 1t was shown to have several shortcomings
(Leonard and Durrant-White, 1991; Dissanayake et al.,
2001). Notable shortcomings are its susceptibility to
data-association errors and inconsistent treatment of
nonlmearities.

EKF-based stochastic mapping approach is still
considered to be the primary framework of most
feature-based stochastic SLAM algorithms. But, the EKF
suffers mamly from a linearization problem because it
adopts direct linearization of nonlinear models. Here, we
propose some remedies to overcome the shortcomings of
the EKF algorithm. To preserve the nonlinearity of the
system, motion and observation models are represented
by the pseudo-linear models (i and Tikov, 2001,
Whitcombe, 1972). This avoids the direct linearization of
the system. Discrete tine motion model is derived from the
dead-reckoned measurements of the vehicle pose as to
reduce the error associated with the control inputs. This
assures a motion model prone to be less error enabling a
faster convergence. We propose a fuzzy Kalman Filter
(FKF) state estimator with a pseudo-linear model as an
alternative to the EKF and thereby obtain an improved
solution to the SLAM problem. Fuzzy logic has been a
promising reasoning tool for the nonlinear systems. Fuzzy
state estimation 13 a topic that has received very little
attention. Fuzzy Kalman filtering (Chen et al., 1998) is a
recently proposed method to the EKF to the case where
the linear system parameters are fuzzy varnables within
mntervals.

Data association, registration, or the correspondence
problem is one of the extremely difficult problems
encountered mn SLAM even m static environments and
much more challenging in dynamic enviromments
consisting of objects moving at varying velocities.
Almost every state estimation algorithm has to deal
with the correspondence problem m the form of
maximum-likelihood assignment or correlation search in
establishing the correspondence between the elements
of observations and the available features. Uncertainties
m vehicle pose, variable feature densities, dynamic
objects n the environment and spurious measurements
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complicate data association in the SLAM problem in many
respects. An efficient data-association scheme must aid
feature or track imitialization, maintenance, termination and
map management. The most widely employed data
association algorithm in SLAM is the nearest neighbor
data association algorithm (Dissanavake et al., 2001;
Bailey, 2002). Nearest neighbor algorithm with single
sensor frame 1s susceptible to false data association.

This study uses the data
association algorithm with two sensor frames that

nearest neighbor

ultimately improves data association, mstead of using a
single frame. We use two sensor frames to associate an
observation to a feature in the SLAM state vector. The
feature quality algorithm employed in the study is almost
similar to the algorithm used in Dissanayale et al. (2001).
This algorithm is considered to be effective in regard to
map management and feature initialization. The proposed
T-S fuzzy model (Takagi and Sugeno, 1985) based
algorithm to the SLAM problem (FKF-SLAM) has shown
that & demandmg (not conventional) solution to the
SLAM problem exists and it overcomes limitations of the
EKF-based SLAM, hinting a new path explored 1s much
suitable for finding an advanced solution to localization
and mapping problems.

VEHICLE MODEL AND ODOMETRY

In the history of SLAM problem, it has been the
common practice of generating the motion model with
forward velocity and steering angle as control inputs. In
this representation, measurement errors in control inputs
propagate into the next stage with the same noise
strength. But, the present model has control inputs prone
to be less error because control inputs to the motion
model are derived from the successive dead-reckoned
poses, where the current dead-reckoned pose subtracts
the mmmediate previous dead-reckoned pose to generate
the control inputs. Tt is hopeful that this subtracts the
common dead-reckoned error so as to generate control
inputs with low noise level.

Dead-reckoned odometry measurement: Assume that left
and right wheels of radius r mounted on both sides of the
rear axle turn amounts 60, and 80, in cne time interval, as
shown in Fig. 1. We want to express the change of
position of the center of rear axle of the vehicle (dx,, 8y,)
and the change of orientation (8d,) as a function of 86,
and 80,. From the geometrical relationship of Fig. 1, it is
easy to see that

80, =(c—L/2)a, 188, = (c+ L/ 2)x 4}
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Fig. 1: Geometric construction of rear wheel movements

Solving above 2 equations in Eq. 1 for ¢ and «, we
obtain

L8O, + 00,

c=— % o - L 50,-60,) 2
2 89, - 86, L
immediately then it yields that
8x, {1—cosa)e
8y, |=| csina 3)
8¢, —

The dead-reckomng system in the vehicle simply
compounds these small changes in position and
orientation to obtain a global position estimate. Starting
from an initial nominal frame at each iteration of its
sensing loop it deduces a small change in position and
orientation and then “adds” this to its last dead-reckoned
position. Of course the “addition™ is slightly more
complex than simple adding. What actually happens is
that the wvehicle composes successive coordinate
transformation. This 1s an wmportant concept and will be
discussed in the following.

We define 2 operators @ (compound) and & (inverse)
to compose multiple transformations (Smith ef af., 1987).
They allow us to express something (perhaps a pomt or
vehicle) described in one frame, in another alternative
frame. We can use this notation to explain the
compounding of odometry measurements. Figure 2 shows
a vehicle with a prior pose x, (k-1). The processing of
wheel rotations between successive readings (via Eq. 3)
has indicated a vehicle-relative transformation (i.e., in the

frame of the vehicle) u, = [dx,, 8y, 8¢,]" The task of
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‘World coordinate frame

Fig. 2: Deducing a new dead-reckoned state from a prior
dead-reckoned state with a local odometry
measurement

combining this new motion u, (k) with the old dead-
reckoned estimate x, (k-1) to arrive at a new dead-
reckoned pose x, (k) is trivial, i.e.,
X, (k) =x,(k=1)®u, (k) (4)
We have now explained a way that measurements of
wheel rotations can be used to estimate dead-reckoned
pose. However, we set outto figure out a way that a
dead-reckoned pose could be used to form a control input
or measurement into a navigation system. In other words,
we are given the low-level vehicle software to generate a
sequence x, (1), x,(2), ..., x, (k), etc. We want to figure out
the low error control mputs to the vehicle motion model
{(u, = [8x,, 8y, 6¢,]") from the successive dead reckoned
poses. Compounding x, (k) to the mverse relationship of
%, (k-1) results m u, (k) given by

u, (k)= 0x, k- D ®x, (k) (5)

Looking at Fig. 2, we can see that the transformation
u, (k) is equivalent to going back along x (1) and
forward along x, (k). This gives us a small control vector
u, (k) derived from two successive dead-reckoned poses
that 13 suitable for use in another navigation algorithm
prone to be hopefully less error. Effectively Eq. 5
subtracts out the common dead-reckoned gross error.

We are now in a position to write down the vehicle
motion model using successive dead-reckoned poses as
a control nput:
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Xy (k+1) =1(xy (k) uy (k)
=%, (K) O (O, (k-1 x,(k))
=%, (k)@ uy (k)

(6)

PSEUDO-LINEAR SYSTEM MODELING

This study describes the formulation of the velicle
motion maodel and the observation model in pseudo-linear
form is described in detail. Tn our implementation, the
vehicle 1s equipped with two sensors of the same type
which can provide measurements (range and bearing) of
the location of landmarks with respect to the vehicle. Our
main objective of this implementation is to prove that
there exists a much better solution to the SLAM problem
through the proposed algorithm presented m tlus study,
called FKF-SLAM algorithm, compared to the widely used
EKF algorithm. Tt is further aimed at demonstrating the
better performances of the proposed algorithm over the
key properties of the SLAM algorithm: convergence,
consistency and boundedness of the map error in
comparison with the EKF approach. In particular, the
inplementation shows how generally nonlinear vehicle
and observation models are represented by pseudo-linear
models and can be readily incorporated into linear Kalman
filter equations.

In the following, the vehicle state 13 defined by
%, = [X, v, ¢]", where, x and y are the ccordinates of the
center of the rear axle of the vehicle with respect to some
global coordinate frame and ¢ is the orientation of the
velicle axis. The landmarks are modeled as pomt
landmarks and represented by a Cartesian pair such that
m; =[x, w]% 1=1,.., N. Both vehicle and landmark states
are registered m the same frame of reference.

The pseudo-linear process model: Figure 3 shows a
schematic diagram of the wvehicle in the process of
observing a landmark. The dead-reckoned measurements
obtained from successive velicle frames can be used to
predict the vehicle state from the previous state. The
discrete-time vehicle process model can be obtained
according to the Eq. 6 and expressed in the following
form:

x(k+D ] [x(k)
yk+1) | =y |+
Ldk+D) ] k)

(7
Ccos(d(k))  —sin(pik)) O] Sx(k)
sin(pk))  cos(¢p(k)) 0O dy(k)

0 0 1| 8¢k)
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Fig. 3: Vehicle in process of observing a feature

which can be represented by the discrete-time pseudo-
linear vehicle motion moedel expressed by

x kD= x (4Bl u, () ®
for use n the prediction stage of the vehicle state
estimator.

The landmarks in the environment are assumed to be
stationary point targets. The landmark process model 1s

thus
{&&Hqﬂf&ﬂ
yitk+D | [yitk)
for all landmarks i=1,...,N. Equation 7 together with

Eq. 9 defines the process model of the vehicle-landmarks.
To represent the process model in the proposed SLAM

©)

algorithm, the vehicle-landmarks augmented state vector
can then be represented in the following pseudo-linear
form:

x(k+1) = x(k)+ B(kuck) (10)

Where,

x(k) =[xy (k) m")",

B(k):[BE (k) of f andu(k) = u, (k)

in which 6, is a null matrix.
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Observation model with two sensors: We adopt a rather
different technique to model the observation model for a
particular landmark. In our problem setting, semnsor
arrangements can be described as follows. The mobile
robot vehicle is equipped with two sensors of the same
type. Two sensors are fixed at the center of the rear
vehicle axle so that one sensor starts reading
measurements from the x axis (horizontal axis) and the
other from the center axis of the vehicle. The vertical axes
of 2 sensors are assumed to be aligned. Each sensor
returns range 1; (k) and bearing 6, (k) measurements to a
particular landmark 1 at an mstant The range
measurements and bearing measurements are taken from
the center of rear vehicle axle where the vehicle position
(x, y) 18 taken. Referring to Fig. 3, the observation model
for 1th landmark with respect to the sensor 1 1s written as

1 (k) = (5~ x () + (y; —y ()% +v, (k) 1D

i1y — yi—yik) (12)
0,(k) = arctan [7}{ S J + Vg (k)

i

and for the sensor 2

) = x4 (v -y Hv, () 1P

yi —y{k)

_ (14)
% x(k)j bk +vg, (k)

i2(1{) = arctan[

We propose an observation model for the ith
landmark derived from above 2 measurement models as:

2;(k) = [ (k). 6; k), B ()] 13)

Where,

R (k) = 1k (K) = (x5 — x00Y + (v; v +v, (K)
(16)

0, (k) = 0l (k) = arctan[wJ vy D
x; —x(k)

Bty = 0| (k) B} (k) = k)~ vp(k) U8

where, v, and v, are the white noise sequences associated
with the range and bearing measurements with zero means
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and standard deviations o,, 0y respectively. v, is also
assumed to be white with zero mean and standard
deviation op. It should be mentioned here that the
subtraction in Eg. 18 results in lower noise angle P
compared to the noise in bearing angle because Eq. 18
subtracts out common mnoise m bearing angle. The
covariance matrix R, for the observation model given by
Eq. 16-18 1s then in the form:

ol 0 0

R,= 0 a5 O (19)
2
0 0 S

We want to express this observation model given by
Eq. 16-18 in pseudo-linear.

Pseudo-linear observation model: In this study, we
present the pseudo-linear measurement model (Li and
Jikov, 2001; Watanabe, 1991) that 13 employed in the
feature based estimation for localization and map building.
In early works of estimation problems, pseudo-linear
measurement models are widely used in bearing only
target tracking problems (Aidala, 1979, Lindgren and
Gong, 1978). The pseudo-linear measurement method,
originated in Whitcombe (1972), attempts to circumvent
the bias problems of the EKF by avoiding explicit
linearization of the nonlinear measurement model
given by Eq. 16-18 in the mixed coordinates. Tt relies on
representing such a measurement model in the following
pseudo-linear form:

y(z) = H{z)x +vy(x,v) (20)

where the pseudo-measurement vector y (z) matrix H (z)
are known functions of the actual measurement zand
v, (x, y) is the corresponding pseudo-measurement error,
now state dependent. The underlying idea of the
approach is clear. Once a pseudo-linear model (20) is
available, a linear Kalman filter can be readily used with
y (z), H (z) and R, (x) cov [v, (x', v)] where a common
choice of x" is the predicted state estimate % . Equations
16-18 can be rearranged by algebraic and trigonometric
manipulations to obtain the following model expressed by

1 (k) = (x; = x{k))cos(8; (k) +
(yi = y(sin(®; (k) + v, (1)

21)

0= (¢ —x(k))sn(0; (k) —
(y; — y(k)eos(8; (k) + vg (k)

(22)
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Bi (k) = k) +vp(k) (23)

Where,
Vo (k) = 1 grye (K)vg (k)

The observation model composed of Eq. 21-23 can be
expressed mn the following pseudo-linear form for the ith
landmark:

5 (k)
y(z)=| 0 | =H(z)x+vy(xv) (24)
Bi (k)
Where,
H(z)=[Hy 0 Hg 0,] (2%)
—cos(0,(k)) —sin(®,(k)) 0
0, =| sin® k) cos® (k) 0 (6
0 0 1
cos(O;(k))  sin(0;(k))
Hg =| sin(6;(k)) —cos(6,(k)) (27)
0 0

Here, 0, and 0, are the null matrices. Pseudo-measurement
noise vector for the ith landmark v, (x, v) is considered to
be white with its covariance expressed in the form:

Gr2 0

Ry;(x)=| 0 i 0 (28)
2
0 0 o

Note that, predicted value of 1, is used in calculating
covariance matrix (R;) because true value of r,is not
available.

TAKAGI-SUGENO (T-S) FUZZY MODEL

The fuzzy model proposed by Takagi and Sugeno is
described by fuzzy TF-THEN rules, which represent local
linear input-output relations of a nonlinear system. The jth
rule of the T-3 fuzzy model 1s of the following form:

Rule J: IF ¢, (k) is F,, and ... and q, (k) is F,, then

x(k+1) = Apx(k)+Bju(k)

y(k)=Cjx(k) j=12,---.r. (29)
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Fy is the fuzzy set and r is the number of TF-THEN
rules. X (k) ¢ #* is the state vector, u (k) £ ™ is the input
vector, y (k) € &” is the measurement vector. q, (k) ~q, (k)
are the premise variables. Given a pair of (x (k), u (k)), the
final outputs of the fuzzy systems are inferred as follows:

> w(alk)iA jx(k) + Bjulk)}

x(k+1)=2 .
> wilqk)
i1
~Sh J(a){A (k) + Bjuk)} (30)
=1
Where,
q(k) =[q; (k)---qg (k)] (31)
g
w;(q(k) = [ [ F(ar (k) (32)
1=1
(qlk
jgle(q( 0 @
wi(q(k)) = 0
(q(k
hj(q() = AP "
> wilq(ky
i1

forall k. I, (q, (k)) 1s the grade of membership of q, (k) in
F,. From Eq. 30-34 we have

2 hjlak) =1

i=1
hy(a(k) = 0

=121 (35)

for all k.

Fuzzy modeling of nonlinear terms: Fuzzy description of
nonlinear term cos¢ can be expressed using the
procedure described mn Tanaka ef af. (1996). It is assumed
that ¢ varies in between —7 and 7. Cos¢ can be rewritten
for two cases by using 2 linear models for each case. This
is illustrated in Fig. 4. They can be represented as follows:

cosh= Fl1 (d)1+ F12 (drcosa for |dlEn/2 (36)
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¥y = cos

¥y=1

YZO“

-7 -b /I I\ b n -
VA [CUMEIN
y=cosb

y=-1
| 4

Fig. 4: Approximation of nonlinear term cos¢
cos b = Fb()(=1)+ FF (¢)cosb for m/2 < pl<n B7)

Here, a =m/2-06, b=1/2+ & and d is a small positive angle.
The membership functions in Eq. 36 and 37 are defined as:

Fl1 = {about 0}, F12 ={about +a},

F% = {about + 7} and F;_,z = {about + b}

Where,

HORORIONT ORI
B+ @)=1 39)
By )+ F @) =1 (“40)

Solving the above equations gives
L4 COS d—cosa 4
H@ 1—cosa “
R )= 1-F (g = 0 (42)

1—cosa

1,,. Ccosb—cos¢ 43
2(p= 1+cosb -
B@)=1-BHg=1 ¢ (44)

1+cosb

In the same way, sind can also be rewritten by the
combination of linear models and can be deduced from the
above ¢ by the following formula:
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sin¢ = sgn((l))\/l - c052¢ (45)
Where,
1 if¢=0
- (46)
gn(¢) {—1 if <0

FORMULATION OF FUZZY ALGORITHM
INSLAM PROBLEM

To reduce the computational cost in using the T-5
fuzzy model in the SLAM problem, the fuzzification of the
process model and the observation model are split into
two cases according to the vehicle azimuth angle. A set of
fuzzy rules is constructed for each case and is executed
based on initial separation of vehicle azimuth angle.

Case 1: If the azimuth angle of the vehicle (¢ (k)) lies
between —1/2 and 1/2, the jth rule for this case will be of
the form:

Local linear system rule j relative to the #th landmark:

IF ¢ (k)is P, and 6, (k) 18 g then

xj(k+1)= x(K)+Bj(Kuk) for j=1,2---8

F,, Fy € {F', F', F',F*}, are the membership
functions of fuzzy sets of vehicle azimuth angle (¢) and
bearing angle (0,) for the jth rule respectively. B, is the
matrix with its nonlinear elements sectored as discussed
in fuzzy description of nonlinear terms and then this
results in a linear matrix for fuzzy sets of vehicle azimuth
angle (&) for each rule in T-S fuzzy model of the SLAM
problem. In the similar way, the nonlinear elements of the
matrices H; are sectored according to the fuzzy sets of
bearing angle (6,).

Case 2: It is defined for n/2 <|d (k)|<m and will be
composite of eight similar local linear models as defined
above.

Estimation process: In the formulation of T-5 fuzzy model
based SLAM algorithm, the linear discrete Kalman filter is
used to generate local estimates of vehicle and landmark
locations for each local linear model defined in T-S fuzzy
model. The Kalman filter algorithm proceeds recursively
1n the 3 stages:

Prediction: The algorithm first generates a prediction for
the state estimate, the observation (relative to the ith
landmark) and the state estimate covariance at the time
k+1 for the jth rule according to
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xjk +11%) = x(k | k)+B;(k)u(k) (48)

§ij(k+1|k)=Hij(k+l)§j(k+l|k) (49)

Pk +1/k)=P(k|k)+B;&K)QKB] (k) 9

Observation: Following the prediction, the observation
v, = (k +1) of the ith landmark of the true state x (k+ 1) 1s
made according to Eq. 24. Assuming correct landmark
association, an innovation is calculated for the jth rule as
follows:

vk +1) = vk + D=y (k+1] k) (51)

together with an associated mnovation covariance matrix
for the jth rule given by

5,(k+1)=H,(k +DP(k +1/k)
Hyk+D)+R;k+1)

(52)

¥ij

Update: The state update and cormresponding state
estimate covariance are then updated for the jth rule
according to

xj(k+1]k+1) = xj(k +1]k)+ Kk + Doy (k +1)53)

Pi(k+1[k+1)=PF(k+1|k)-
(34)
K (k o+ 18 (k+ DKk +1)

Here, the gain matrix K, (k+1)is given by
K (k+D=P&+1|KH k+D) 5 'k+1) )

Local state estimates are then combined according to
the Eq. 30 to obtain the global state estimate for the T-S
fuzzy model given by Eq. 47. The global estimate is then
obtained by the following equation:

o~ 8 o~
x(k+11k+1)= 3 h;(qi(kxjk +1]k+1) (56)
Fl

Where,
qi (k) =[qi (k) gi2 (k)] =[¢k) G;(k)]

Propagation of uncertainty for the augmented state
error of the T-S fuzzy model 1s realized by a common
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covariance which is chosen to be the local covariance that
has the maximum trace, 1.e., we consider the worst case to
assure the stability of the T-S fuzzy model based SLAM
algorithm because it is of paramount importance in state
estimation using fuzzy algorithm. The common covariance
can be formulated as follows:

P(k+1]k+1)=max(trace Pj(k +1|k+1)) ¥j 7

The resulting global state estimate and common
covariance are then preceded to the next stage of
prediction. Each rule in the T-S fuzzy model takes the
global state estimate and the common covariance to
generate the next stage prediction. This process is
repeated until the required criteria for the state estimation
18 met.

PERFORMANCE EVALUATION

In this study, we show the simulation results for the
FKF-SLAM algorithm with the measurement model
derived from two sensor frames for the system composite
of Eq. 10 and 24. We investigated the performances of
the proposed SLAM algorithm and the conventional
EKF-SLAM algorithm when applied to the vehicle-
landmarks nonlinear system while keeping all the
conditions remain unchanged for the two cases.

Map building: An environment with arbitrarily placed
landmarks was simulated with a given vehicle trajectory.
Simulation results are depicted in Fig. 5 and 6. Figure 5(a)
and 6(a) show the evolution of the map over the time
obtained from applying the EKF algorithm and the
pseudo-linear model based FKF algorithm respectively. It
can be seen that error ellipses in Fig. 6(a) converge to the
actual landmark locations faster than that in Fig. 5(a). This
observation can be made from Fig. 5(b) and 6(b). A feature
that has the same map registration number (where its pose
is registered) in the state vector has been indicated in
Fig. 5(b) and 6(b) to compare the performances of
uncertainty convergence rate between two methods. The
selected feature in Fig. 5(b) is detected at the point A, and
it requires d, time span to reach to a minimum bound in
uncertamnty since detection A, And m Fig. 6(b), for the
selected landmark, it takes d; time span to reach to a
minimum bound in uncertainty since detection at A This
discloses that the proposed pseudo-linear model based
FKF approach has higher convergence rate than the EKF
approach (d, > dp. From Fig. 5(c) and 6&(c), it can be
observed that the actual landmark state error for all the
landmarks obtained from the pseudo-linear model based
FKF approach reaches to a mimmum bound within a less
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number of time steps compared to that obtained from the
EKF algorithm implying map of landmark locations could
be accurately constructed faster than that of the EKF
estimator.

Simultaneous localization and mapping: The newly
described method is applied to the feature based SLAM
problem. An environment populated with point landmarks
was simulated with the FKF algorithm to generate the
state estimates and state errors/covariance. Simulation
results are depicted in Fig. 7-9.

Figure 7(a) shows an instant of the FKF-SLAM
algorithm running on the vehicle-landmark systems. It can
be seen that error ellipses of the features converge to
actual landmark locations because the map of the
landmark locations 1s being constructed when the vehicle
navigates tlrough the environment. Figure 7(a)
exemplifies that a solution to the SLAM problem through
the pseudo-linear model based FKF algorithm is well
accepted. Figure 7(b) shows the imnovation mn range
measurement and in difference of bearing measurements
obtained from two sensor frames together with associated
20 confidence limit. Innovations are the only available
measure to examine online filter behavior when true state
values are unavailable. Innovations here indicate that the
proposed filter and the models are consistent.

Figure 8 shows standard deviation and error
associated with the vehicle state obtamed from the two
methods. Figure 8(a) shows the velicle localization results
obtained from the EKF-SLAM algorithm. Tt can be seen
that the oscillation in vehicle state errors is higher when
the vehicle 13 cornering (at around 1500 time step) and it
needs considerable time to be rebounded by the
confidence himits in the estimation error. The true vehicle
state error values and the estimated vehicle state error
values are higher than those of the FKF-SLAM algorithm.
Figure 8(b) shows the true vehicle position and
orientation error and the 20 confidence limit in the
estimate error obtained from the FKF-SLAM algorithm.
The actual vehicle error i1s clearly bounded by the
confidence limit of estimated vehicle error. Thus, the
estimate produced by the FKF-SLAM algorithm is
consistent. The estimated vehicle error defined by the
confidence linits does not diverge so the estimates
produced by the FKF-SLAM algorithm are stable. From
Fig. 8(b), it can be seen that the vehicle position error lies
well within the confidence limit and the oscillation in the
vehicle position error 1s negligible even if the vehicle 1s
comering. Vehicle position error 1s enveloped m a smaller
region. That is a highlighting point in the FKF-SLAM. It
can be stated that the vehicle orientation can be estimated
with higher accuracy. This i1s implied as the vehicle
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orientation error is found to be smaller in Fig. 8(b). These
results imply that the FKF-SLAM algorithm with two
sensor frames based measurement model generates
vehicle location estimates which are more consistent,
more stable and have well bounded errors compared to
those of EKF-STLAM algorithm.

Figure 9 shows the evolution of the actual landmark
location error and the covariance of landmark location
estimate for all detected landmarks obtained from the
FKF-SLAM algorithm. Figure 9(a) shows actual the
landmark location error for landmark number 1 and
landmark number 5 obtained from the two methods. Tt can
be observed that the actual landmark location error
obtamed from FKF algorithm reaches to a mimmum bound
and 13 smaller than that of EKF algorithm. The landmark
location estimates generated by FKF algorithm are thus
consistent with actually landmark location errors reach to
a mimmum bound. Figure 9(b) shows the estimated
covariance for all the detected landmarks generated by the
FKF-SLAM algorithm. The estimated landmark location
errors also decrease monotonically and thus overall error
in the map reduces at each observation. The estimated
landmark location error for each landmark does not
diverge. So, the estimates generated by the proposed filter
are stable.

CONCLUSION

A fuzzy logic and pseudo-linear model based
solution to the SLAM problem has been proposed in this
paper, where the validity of the method was shown with
simulation results. The need for direct linearization of
nonlinear systems for state estimation is diminished
because the newly proposed method performed well and
provided a better solution to the SLAM problem. Results
obtained from the proposed method were compared with
those obtained from widely used EKF algorithm to
highlight the merit of the FKF-SLAM algorithm. It was
shown that the pseudo-linear model based FKF algorithm
provided more satisfactory results over the EKF because
the pseudo-linear models did not lose its nonlinearity
when employed mn the Kalman filter equations. Nearest
neighbor data association with two sensor frames further
improved the solution. State estimation of wvehicle-
landmark system was able to be performed with a higher
accuracy with two sensor frames based measurement
model introduced in this paper. Tt could be seen that a
fuzzy logic based approach with the pseudo-linear models
provided a better solution to state estimation process
because fuzzy logic has been always standing for a better
solution.
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