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Abstract: Susceptible (3), Exposed (E), Infectious (T), Quarantine (Q), Recovered (R), Stochastic Compartmental
Model for computer virus has been developed and researchers assume that the transmission of virus in

computer network are probabilistic. To implement this concept, Reversible Tump Monte Carlo Markovian Chain
(MCMC) algorithm has been implemented The MCMC algorithm basically includes Bayesian inferences,
likelihood function, prior distribution, posterior distribution and predictive distribution. The threshold R, has
been defined to determine the removal of the disease if threshold parameter 1s at most one, otherwise endemic

state exists. The effect of quarantine has been implemented on SEIR Stochastic Model and time dependency
has been analyzed by implementing predictive distribution for virus removal time.
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INTRODUCTION

The electronic mail, secondary storage devices, etc.
are the major source of transmission of computer virus in
the computer network these days (Newman et al., 2002).
Transmission of viruses in computer network and the
concept of Bayesian inference for stochastic epidemic has
been used (Boys and Giles, 2007). The action of malicious
objects throughout the network can be studied by
using epidemiological model for diseases propagation
(Mishra and Saini, 2007; Kermack and McKendrick, 1927,
Mishra and Jha, 2007; Gelenbe, 2005, 2007, Gelenbe et ai.,
2004; Piqueira and Cesar, 2008; Piqueira et al., 2005;
Forest et al., 1994, Wang and Wang, 2003). Based on
the SIR Classical Epidemic Model, dynamical models for
malicious objects propagation were proposed, providing
estimation for temporal evaluation of nfected nodes
depending on network parameter considering topological
aspects of network (Allen, 1994; Kermack and
McKendrick, 1932, 1933). The Model SEIR assumed that
secondary hosts have a permanent immunization period
with certain probability which are consistent with real
situation. In order to overcome the limitation, a SEIRS
Model with latent and temporary immunity period is
developed  Extending this  property  the
compartment quarantine has been introduced to control
the spread of virus in computer network by several
actions (Mishra and JTha, 2010, Zou et al, 2003,
Kephart et al, 1993; Keeling and Eames, 2005;
Williamson and Laeveillae, 2003).

In this study, researchers have developed SEIQR
Stochastic Compartmental Model for virus outbreak where
focus have been given on time mhomogenity and
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infectious nodes are removed from the epidemic. The
viruses are spread in computer network exponentially and
the rate parameters of the distribution are step function.
The SEIQR Compartmental Model has different steps of
recovery and having different probabilities to transfer
between different compartments. The complication arises
during partial observation of data for epidemic outbreak.
Recent resources have focused on the implementation of
MCMC Technique to help the overcome a missing data
problem and parameters are estinated using Bavesian
perspective (Thommes and Coates, 2005; Yan and Liu,
2006; Gibson and Renshaw, 1998, O'Neill and Roberts,
1999). We have used several parameters like latent period,
quarantine time, immunization time for viruses. On all
existing parameters reversible jump, MCMC methodology
has been used to quarantine and remove viruses from the
computer nodes (Gamerman and Hopes, 2006, Green,
1995).

MULTI-TYPE SEIQR MODEL

This model has five compartment and has defined as
Susceptible-Exposed-Infected-Quarantined-Recovered in
which susceptible compartment is partitioned into m sub
categories. The susceptible nodes having m groups are
due to different potentiality of viruses. Tnitially, there are
N, nodes in group i, 1= 1, 2, 3,..., m and the epidemic begin
as soon as any member of the group contracts the
viruses. Having contracted the viruses, nodes enter m a
latent period where they show no symptom of the attack
of the virus and are unable to mfect susceptible nodes
before becoming infective. We have considered latent
peried of fixed length ¢ with cohesion appropriately
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according to known properties of the infection (infection
due to viruses). The epidemic proceeds according to the
following transitions probabilities 1 the small interval of
time (t, t+dt) and the model 1s:

P {S(t+dt), E(t+dt)} = {S,(t) -1, E(t) +1} = BS,(t)
L(t)dt+o(dt)

P, {L(t+dt), Qit+dt)} = {I(t) -1, Q(t) +1} = yL(Hdt+o(dt)

P, {Qt+d), Ri(trdt)} = {Q(t) -1, Rty +1}
— aQ(Odt+o(db)

fori=1,2, 3., mwhere S5(t), E(t), L{t), Q,(t), Rt} denotes
number of nodes in group 1 at tume t that are susceptible,
exposed, quarantine and recovered, respectively with:

(1) =311

Each mfected node makes infective contract with
number of susceptible group 1 with the rate P, and pass
through latent period before becoming mfective. Since the
mfection time 1s unobserved, the first sign that the
epidemic is in progress is at the time of first removal. For
this reason, the time of first removal 1s set to zero and all
infection and removal time are set relative to this reference
time. The time dependence of the removal rate is modeled
as a step of function with k steps at time s, s = {5, 8,,...,
s+ The function y(t) takes the values v, where to(s ;s ,)
for; =0,1, 2, ..., k, where for convenience s,=< and
8, =T. This formulation is equivalent to a model in which
distribution of the infectious period has an exponential
immurity ¢, within mterval (s,, s, ).

The end of epidemic 13 defined as the first ime n
which no infective, exposed and quarantine nodes
remains in the computer network. Tnitially, all nodes are
susceptibles and the infections consist of several groups
of susceptibles denoted as N = {N, N,, ..., N}. Since
each infected groups are either quarantined or recovered,
s0 have been denoted as q; orry (where1=1,2,3, .., m
and j =1, 2,3, ..., n), denotes time of quarantine or
removal j in group 1, iy denotes total numbers of group of
nodes quarantined or recovered.

Researchers have defined T for the time of infection
J ingroup 1, so node becomes infective at time T,+¢ at the
end of latent period.

Researchers have used r = r; to denotes the matrix of
removal time, g = ¢; denotes the matrix of quarantine time
and T = t; denotes the matrix of infections time. Infection

time excluding the time of first infection is T; 4, 1.
Researchers have observed complete infected nodes so
total mumber of quarantined nodes and recovered nodes
1n each group 1s equal to n, and denoted as:

Complete data likelihood: The several parametric
inferences have been used to define likelithoed function,
like infection rate of node p = (B, P, ..., Po) the
quarantined rate v = (Y, ¥,..... ¥,) and recovered rates of
nodes ¢ = (&, &,, ..., &) because removal rate steps are k
and ™ = mean of infection time of the nodes has been
taken. Researchers assume that the infection, quartine and
removal times data are observed. The likelihood function

150
n TE’ga’k’S’imin7qimml
v B

Prior model: In Bayesian statistical inference, a prior
probability distribution often called prior of an uncertain
quantity. Researchers have used prior distribution for
infection rate {p,), the group and time for the first infection
and step function for the quarantine and removal rate. The
quarantine rate v, removal rate ¢ all are imposed on
gamma prior:

B = F(gﬁlnahﬁll ), i=L2,...,m
v .
L=(eeh) =00k

o .
(B b ) =01k

The number of steps k in the interval (0, T) has been
used to define Poisson distribution. The parameter A with
probability function given by:

)\.,k
H(kpE k=01.%_,
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having probability function with maximum steps (K.
The K., has been used to define maximum number of
change pomt in the quarantine rate and removal rate.
Since K 1s not constant for mformative prior specification
for the vy;/k and e;/k 0 it define posterior distribution. The
concept of joint distribution has been used to every ath
order statistic for size {a(k+1)-1} pomts sampled urmformly
over (0, T).

Since in case of prior distribution no jump occurs in
step function at time zero, so consecutive change has
been defined S, - 5/T by implementing [((a, ak)
distribution. Thus, ¢ has reflect prior benefit about
change point in the quarantine rate y and removal rate «
with large value of an essential putting step position on
a fixed grid.

The small value of ¢ can result n the MCMC
algorithm accepting intervals containing no data (removal
times), define prior option. Tts impact has implemented on
posterior distribution.

Posterior distribution: The posterior distribution is the
combination of likelihood function and the prior

distribution work on the observed data or unknown
parameter and are combined using Baye’s theorm:

T
mnlqlmnl”qJ
qr

. rq
mﬂ{k,nY,Ot,s,lm,rlmlqim_l,Y,B]*

T{k,B, Y080 T

ﬂ:(k: B: ¥, aasaimin:* T1m_lqim1 )

To define equilibrium distribution of posterior
inference, Markov Chain Monte Carlo (MCMC) process
has been used.

Initially, MCMC is used with some suitable
parameters mitialize Markovian Chain. Further
Markovian Chain has been simulated by successively
updating parameter values with the help of either Gibbs
sampler or Metropolish-Hasting sampler which define
equilibrium distribution of Markovian Chain used in
posterior distribution.

The updated parametric values has also changed
dimensionality of Markovian Chain. The MCMC algorithm
has constructed and employed Gibbs sampler updates
and appropriates Metropolish-Hastings updates, both are
used to simulate from posterior distribution. This
technique use to explore the spaces of infections rate,
quarantines rate, hidden infection and quarantine times
for uncertainty of steps function k and to mimmize
complication on number of steps kg, reversible jump has
been used.

to
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Inferences for the basic reproduction number: For the
epidemiological interest, researchers have defined the
basic reproduction number R, To define R, the
inferences parameters the
unobserved infection rates, infection times, quarantine
rate, quarantine time and removal rate steps functions is
used.

Heterogeneity m mnfectivity across the population
has been studied using a model which allows nodes to
have different reproduction number, each of which 1s
drawn from a distribution with mean R,,, however we have
focused on estimating the nodes level reproduction R,
{Becker and Hopper, 1583).

The epidemic will occur if R>1 and the model is virus
infection free if Ry<1. Tnitially epidemic has been defined
by Poisson process with rate:

about model such as

BN,

i=1

infective remain so far as mean period is 1/y,. The basic
reproduction number for the model is:

1
R, =—YBN
: YDEBH

MCMC SCHEME

In this MCMC scheme, researcher’s thought are
related to make infection time feasible. At the end of
epidemic no infectious, exposed or quarantine nodes exist
in the networle. The MCMC scheme is cycled with the
help of following steps:

Update infection time : In this step, the infection time has
been continuously updated by randomly selected
infection time T sampled from a U (-d, T) distribution. The
new time for which nodes becomes infective 1s T'+c which
will also update 1.,

If =7, and randomly selected infective 1s different
t0 i, having the move with probability min {1, A} and
includes quarantine time ¢ where:

A _ Tl?(T’,q/B: ’Y)kv S7i1’nm’ri/m1 )
T[(T,q/B;Y:k>S=irmn’Tlm_1 )

Update infection parameter: Sample a new value for each
infection rate parameters B(i = 1, 2, ..., m) from the
conditional posterior distribution gives all other states of
the of the chain as:



Int. J. Syst. Signal Control Eng. Appl., 4 (4-6): 74-79, 2011

T
Bzl eB, +n, 3,08 + [ S (1)1(t)dt

where, 1 =1, 2..., m, &; is the kronecker’s delta function.

Update quarantine time: The update sequence of hidden
quarantine time by randomly (uniformly) chosen
quarantine time to new time ¢ sampled from a U(-d, T)
distribution shift the associated time at which nodes
becomes quarantined to a new time g +c¢ which will also
update i, if the group of randomly selected quarantine is
different to i, and 4’4, accept the proposed move with
the probability min {1, A} where:

N (g, veksi,.q )
ﬂ(q,r/Y:Y:kas’imin’qlml)

Update quarantine parameter: Sample a new value for
each quarantine rate parameter y(1 =1, 2,..., m) from its
conditional posterior distribution given all other status of
chain as:

T
R N R IOK

% pin
where, i=1, 2, ..., m and 3% is Kronecker’s delta function.
Update removal rate step function: The removal rate step
function have been used and includes different move for

each aspect of the step function. At each interaction one
of the following step must be involved:

Updates removal rates step with probability p;: For each
removalrate i, ] = 0,1, 2, ..., k condition on k, s and other
states of chain has been included and new values of
simulation have been defined as:

&y

ks :F(goC +w,h, + ]. Q(t)dt}

i

i=0,1..k
where, ¢, 1s total number of removal in (s, 3,,,).

Update existing step position with probability p,: Select
one of the step positions s; uniformly from the k existing
steps, propose moving s; to a new positicns S° ;sampled
from a U(s,, ;) distribution. Accepts the position with
probability min {1, A} where A has been given as:
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.
a(gr/ ks, a0, ),

(
Tc(q,r/Y, a,kasaimim qlm_l )

Increase number of steps with probability p;: Researchers
have used an additional step at a position 3° sampled
uniformly over (0, T) and s "€(sy, 8 1,,). The current removal
rate o, over (s, s;,) must be split into removal rate ¢,
over the removal interval (s, s") and o', over (s', s,,).

A=

-8
73]

Adding a new step induce an enlargement of the
parameter sub-space by two new parameter s° and an
additional removal rate. A preposed division of ¢; into
(¢, &'3) 18 achieved using a stochastic mnovation and
preserving a weighted geometric mean as:

(s'fsJ )IOgGJ’Jr (SJ+1 fs’)logotL1 = (SJ+1 -8y )logotJ
and % _lu
a’ u

where, u is sampled from a u(0, 1) distribution. The move
is accepted with probability min (1, A):

A= Tf(qaf/% G":k’: S”imm’qlmnl ) *
7/, LK )
n(k+1),  [o(k+2)-1]
n(k)  T*[a(k+1)-1](a-1)

(S’_SJ)(SJ“ _SJ)CH v NaBo
(Sm_sj) F(ga)

L Za-1
C(.]C(.]H Py ’ ’ w
— eXp{—hu(OLj+0‘Lj+1 —aj)}
a]

I I 2
p,T (Otj + am)
pj(k+1) C(.]

The increase in the number of steps beyond k. can
not be accepted as m(k =5, +11=10.

Decrease number of steps with probability p,=1-p,-p, -
p:: Researchers have used removal of step position s;. Tt
has been uniformly selected k existing steps. The removal
rate (¢ _,, ;) are replaced by a new removal rate o', _,
which satisfies the weighted geometric mean condition:

’

(s] -8, )logoLj_1 +(Sj+1 —s])logaj :(Sj,r1 —SJ_I)logot]_1
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The move is accepted with probability min {1, A}
where A 1s:

n(q,r/y, ct’,k',s',imm,qiml )
N T[(q,r/y, ot,k,s’,imin,qlmm_1 )
(k1) . T*{ok —1){o —1)!

(k) [afk+1)-1]
{ (545 T*F(gm)*
(Sj+1 _Sj)(SJ _SJ—I)

h.g.
o a1
[aj_tclle *eXp{fh“(aJ{‘l o, 731)}*

-1
p,T (arl + 0‘!)2

*

o

The reduction in the mumber of step below zero can
not be accepted.

CONCLUSION

This model has been formulated to define different
states of viruses in which quarantine and removal rates
are time inhomogenou. The quarantine and removal times
of infective nodes are available for analysis. The complete
data likelihood has been defined on observed data and
further concept of prior model has been implemented. The
quarantine and removal rates changes have been
formulated using posterior distribution.

In this model predictive distribution for quarantine
and removal times have been used as improved fit. R, has
been constructed for dynamic spread of wviruses. The
MCMC algorithm has been formulated for computer
network viruses outbreak. Further reversible jump has
used for the models with time dependency for infection
rate, quarantine and removal rate on more improved data.
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