Diagnosis of Tuberculous Lymphadenitis in Red Sea State, Sudan

Ali K. Ageep
Department of Pathology, Faculty of Medicine, Red Sea University, Port Sudan, Sudan

Abstract: Tuberculous lymphadenitis remains both diagnostic and therapeutic challenge because it mimics other pathologic processes. In this study, researchers tried to find the best way for diagnosis of tuberculous lymphadenitis in Red Sea State. About 222 patients suspected to have tuberculous lymphadenitis were examined in the period from March 2008 to October 2011 in a histopathology laboratory in the Red Sea Medical center, Port Sudan, Sudan. This is the only regional laboratory to which fine needle aspiration cytology and histopathological samples were sent. Slides were stained by Papanicolaou, May-Grunewald Giemsa (MGG) and Ziehl-Neelson stains. Cultures were also done from the aspirate. Serum samples were obtained for Immuno-Chromatography Test (ICT). In 57 patients biopsies were taken and stained by Haematoxylin and Eosin (H and E). Cervical lymph nodes were the common lymph node group affected by tuberculosis (94.5%). Studied females were more than males (M:F = 1:1.2). About 94.6% of the cytology show positive result for TB. The mycobacterium grow in 88% of the culture media. Acid fast bacilli were seen in 61 patients (41.6%). Serological test was positive in 68% of the patients. So in a short facility region like the study area, FNAC remain the best method for the diagnosis of tuberculous lymphadenitis. PCR and culture may be considered in few cases whenever highly needed.

Key words: Tuberculosis, lymphadenopathy, FNAC, PCR, Port Sudan

INTRODUCTION

There are nearly 9 million new cases and 2 million deaths from Tuberculosis (TB) worldwide every year (WHO, 2005). Tuberculous Lymphadenitis (TBLN) is seen in nearly 35% of extra-pulmonary TB which constituted about 15-20% of all cases of TB (Sharma and Mohan, 2004; Corbett et al., 2003). Infection with the Human Immunodeficiency Virus (HIV) is associated with an increased frequency of both pulmonary and extra-pulmonary tuberculosis particularly lymphadenitis (Aguado and Castrillo, 1987; Finfer et al., 1991). Although, cases of tuberculous lymphadenitis are common in Red Sea State, Sudan no data was reported to highlight the actual incidence and prevalence of the disease.

Medical staff will get benefits from many lessons illustrated by this research. This research confirms the presence and diagnosis of TBLN in the region since this is the first documented study in Red Sea State regarding the diagnosis of TBLN. This study will also open the light to the local staff on the importance of diagnosing atypical mycobacteria in granulomatous lymphadenitis since this has a different treatment protocol other than the conventional anti-TB therapy (Balasubramanian and Ramachandran, 2000; Castro et al., 1985).

The method selected in this research for first line diagnosis of TBLN could be used in other regions of the world where short health facilities are present. The globally used protocol of the combination of history and physical examination, tuberculin test, staining for Acid-Fast Bacilli (AFB), radiologic examination and Fine-Needle Aspiration Cytology (FNAC) will help to arrive at an early diagnosis of mycobacterial lymphadenitis which will allow early institution of treatment before a final diagnosis can be made by biopsy and culture (Paredes et al., 1990; Ihekwe et al., 1997). However, this long list of investigations is impractical and could not be applied to the local short income population. So, researchers aimed at this study to find the best way for diagnosis of tuberculous lymphadenitis in Red Sea State, Sudan.

MATERIALS AND METHODS

About 222 patients suspected to have tuberculous lymphadenitis were examined in the period from March 2008 to October 2011 in a histopathology laboratory in the Red Sea Medical center, Port Sudan, Sudan. Port Sudan city is the capital of the Red Sea State and it is the major sea port of the Sudan. The total number of the whole population was (739,300) according to the national census of 2002 with adjusted growth rate. The laboratory is the only regional laboratory, to which fine needle aspiration cytology and histopathological samples were sent. The product of the aspirate was divided in to three parts for
cytology, ZN staining and culture. Cytology slides were stained by Papanicolaou and May-Grunewald Giemsa (MGG) stains. Ziehl-Neelson stain was used to detect Acid Fast Bacilli in the prepared smears. The third part of the aspirate was used to culture mycobacteria in Lowenstein Jensen (LJ) media. Serum samples from the same patients were obtained for immunochromatography test (Boson Biotech Co., China). Surgical biopsies were taken in 57 patients and stained by Haematoxylin and Eosin (H and E).

Ethical clearance of this study was approved from the regional Ethical Review Committee (ERC), Ministry of Health, Red Sea State Government. Data regarding the age, sex and the site of the involved lymph nodes was recorded in predesigned forms. The diagnosis of tuberculosis was considered as positive when either of the following criteria was met:

- Presence of epithelioid cell granulomas with or without multinucleate giant cells and caseation necrosis on H and E staining
- Demonstration of acid fast bacilli on Z N staining
- Isolation of mycobacteria on culture (Nataraj et al., 2002)

Leukemic patients are referred to the hematology department of the laboratory for bone marrow aspiration or biopsy, so they were excluded from this research.

Statistical analysis: Data were analyzed by using a computer Statistical Package for Social Sciences (SPSS) program Version 16 and results are presented as frequency and percentage.

RESULTS AND DISCUSSION

A total of 222 patients were enrolled in to this study. 40 patients were clearly diagnosed as having non TBLN lesions (like metastatic carcinomas or reactive changes) on FNAC. These 40 patients were excluded from the research. In 150 patients (1st group) from the remaining 182 cases, aspiration of the lymph nodes was done. In this group, 17 patients underwent surgical biopsy because the treating doctors were not convinced with FNAC result. Surgical biopsies were also taken from the 8 patients who have negative FNAC result for TBLN. In a second group, 32 patients underwent surgical biopsy of the lymph nodes.

Cervical lymph nodes were the commonest superficial lymph nodes group affected by tuberculosis (94.5%) (Table 1). This followed by the axillary group (3.8%) and the inguinal group (1.7%), respectively. Studied females were more than males (M:F = 1:1.2). The incidence of the disease increases in the age of twenties and peaks in the third decade of life and declines after that.

Table 2 shows the results of the different diagnostic techniques used in this study. Of the 150 cases of the FNA, 94.6% of patients show positive result for TB in the cytology smears. These patients received anti-tuberculous therapy and they were improved after 2 weeks follow up. So, the specificity of FNAC method for detection of TB was 100% in this study. The mycobacterium TB grow in 88% of the culture media. Acid fast bacilli were seen in 61 patients (41.6%). Serological test was positive in 68% of the patients. Histopathology of the 57 lymph nodes shows caseous granuloma in 98.2% of the sections. Of these 57 patients, 17 were already examined by FNAC method and they were all positive for TB. Although, this number of patients is small but it also supported the finding that FNAC is 100% specific for diagnosis of TB lymphadenitis. The 8 negative cases for TB by FNAC were proved to be positive cases by histopathology. So in this research the false negative cases for FNAC were 0.05% and no false positive cases.

Lymphadenitis is the most common clinical presentation of extrapulmonary tuberculosis (Brizi et al., 1998). In this study, tuberculous lymphadenitis most frequently involves the cervical lymph nodes. This is highly consistent with Khayy study in the center of Sudan (Khayy and Ahmed, 1992) and reports from other different countries (Thompson et al., 1992). TBLN most frequently affects patients in their second and third decades but may affect patients of any age. There is slight female predominance (approximately 1.2:1). This is also consistent with most of other studies (Enarson et al., 1980).

The diagnosis of TBLN in this region faces many obstacles. The first is ignorance and the less awareness of the rural population about the importance of early diagnosis and treatment of their illness. Secondly, the poverty of this population limits them from seeking medical advice and care. The third reason is the short medical facilities with few equipped laboratories that could make the diagnosis possible for all people in the

<table>
<thead>
<tr>
<th>Site affected</th>
<th>M</th>
<th>F</th>
<th><10</th>
<th>11-20</th>
<th>21-30</th>
<th>31-40</th>
<th>41-50</th>
<th>51-60</th>
<th>>60</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical</td>
<td>80.0</td>
<td>91.0</td>
<td>3.0</td>
<td>11.0</td>
<td>47.0</td>
<td>61.0</td>
<td>23.0</td>
<td>18.0</td>
<td>9.0</td>
<td>172</td>
</tr>
<tr>
<td>Axillary</td>
<td>2.0</td>
<td>5.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>7</td>
</tr>
<tr>
<td>Inguinal</td>
<td>1.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>3</td>
</tr>
<tr>
<td>Total (%)</td>
<td>94 (46.2)</td>
<td>98 (53.8)</td>
<td>3 (1.7)</td>
<td>11 (6.0)</td>
<td>45 (26.9)</td>
<td>64 (35.2)</td>
<td>25 (13.7)</td>
<td>20 (11.0)</td>
<td>10 (5.5)</td>
<td>182 (100)</td>
</tr>
</tbody>
</table>

M = Males, F = Males
The test of blood samples by the immunochromatography detects 68% positive cases of the studied population. The solid phase of the kits contains antigens of *Mycobacterium tuberculosis* (humans), *Mycobacterium bovis* and *Mycobacterium africanum*. The negative serology results with a positive cytology smears make us suggest other different strains of mycobacteria to be the cause of the TBLN in the patients with the negative serology results. Further researches are needed to evaluate this method in the diagnosis of TBLN in the region.

Histopathological examination gives high index value (98.2%) in the diagnosis of mycobacterial cervical lymphadenitis in studied patients. This is consistent with reports from different authors in other different countries (Flint et al., 2000; Kwon et al., 2000). Disadvantages of this procedure are the high cost, the need of surgery to obtain the sample and the more time (than the cytology) to have the result (Kwon et al., 2000).

Molecular tests like the Polymerase Chain Reaction (PCR) are very sensitive (43-84%) and specific (75 and 100%) (Schuit and Powell, 1978; Manitchotpirat et al., 1999) but they are not included in this research because they are not available in the studied region. In this study we have not considered the HIV status of the patients. However, Sudan has not got a high HIV prevalence as compared to other African countries (El-Sony et al., 2002; Hashim et al., 1997).

CONCLUSION

Cervical group of lymph nodes are the most affected nodes by tuberculosis. Cytological smears from FNA are sensitive, rapid, cost effective and easy method for the diagnosis of tuberculous lymphadenitis. So, this technique is recommended to be the first line investigation in the diagnosis of TBLN. PCR and culture may be considered in few cases whenever highly needed. The circulating different strains of mycobacteria should be studied in the future. Researches regarding HIV cases related to TB are also recommended in this region.

REFERENCES

