Temporal Variability in Abundance of Demersal Fish Community from Izmir Bay, Turkey

M. Fatih Can, Zafer Tosunoglu, Okan Ozyadin, Aydin Demirci, H. Salih Guder,
Celalettin Aydin, Semih Leblebici, Sencer Akalin and Dilek Uckun
Faculty of Fisheries, Mustafa Kemal University, 31200, Iskenderun, Turkey
Faculty of Fisheries, Ege University, 35100, Bornova, Izmir, Turkey
Faculty of Science, Mustafa Kemal University, 31000, Hatay, Turkey

Abstract: Temporal variabilities of demersal fish species were analysed in terms of their numerical abundance in the Izmir Bay. A total of 545559 specimen belonging to eight different families were caught in 2005, covering all the year using a R/V trawl. The contribution of each family was Sparidae (34.38%), Serranidae (22.25%), Bothidae (15.09%), Mullidae (14.22%), Gobiidae (3.71%), Centrancanthidae (1.01%) and Uranoscopidae (0.28%). Based on temporal variabilities of the families, cluster analysis identified three main groups, which were group-I: the Mullidae, group-II: the Centrancanthidae, Uranoscopidae, Bothidae, Gobiidae and Serranidae and finally group-III: the Sparidae and Triglidae. The family belonging to the first group was more abundant in cold months (picked in January) than others. The second group were more yielded in general from June-October (picked in October). The third group were more abundant in May and June.

Key words: Temporal variability, abundance, demersal fish, centrancanthidae, Izmir Bay, Turkey

INTRODUCTION

To understand and to predict the effects of environmental variations and fishing on fish stocks, species structure of fish communities in space and time must be monitored in the context of ecosystem approach.

This is very important especially in the areas where, multi-species fishing is done (Muetter and Norcross, 2002). In those areas, as in Izmir Bay, trawl catches consisted of a large number of species (fish, cephalopod and crustaceans) resulting from the biological complexity of the environment (Ungaro et al., 1999; Kinacigil and Alkyol, 2001; Collaza et al., 2003).

Izmir Bay is one of the most important fishing areas of the Aegean Sea. Approximately, 200 macroalgae, 5000 invertebrates and 388 fish species inhabit in the Aegean Sea (Kocatas and Bilecik, 1992; Bilecenoglu et al., 2000). These species, however, have been subjected to urbanization, overpopulation and industrial development (Metin et al., 2000).

The purpose of this study is to identify temporal pattern of the demersal fish community from the Izmir Bay using more quantitative statistical approaches departing from the previous studies (Kinacigil et al., 1993; Togulga and Mater, 1992; Metin et al., 2000), which were conducted in the same area.

MATERIALS AND METHODS

This research was conducted in Izmir Bay situated on the western coast of the Anatolia peninsula and connected to the Aegean Sea. The data were collected in 2005 covering all year from the central part of the Bay around the Uzunada (Fig. 1).

A total of 36 hauls were carried out at three stations (3 hauls in each month). A traditional, 600 meshes around mouth, commercially used bottom trawl was operated onboard R/V Egesuf. The towing duration was 30 min for all hauls and the average towing speed was 2.4 knots (ranging between 2.0 and 2.8). A nominal 40 mm diamond mesh cod-end about 5 m in stretched length was used. Cover (24 mm mesh size) about 8 m in length attached over the cod-end was chosen both are considered to have low selectivity in terms of both species and size. Towing durations were 30 min in all hauls. Thus, numerical abundance of each demersal species were considered as 30 min for per haul. After each haul, catches in cod-end and cover were combined and then sorted, identified and weighted. All taxa and family were identified by Fischer et al. (1987) and systematic categories of fish species were given for Eschmeyer (1998).

Due to limited trawvable areas in the Bay and also reinforcement by Fishery Act No 1380, which regulates the fishing in Turkey, effect of depth on species

Corresponding Author: Aydin Demirci, Faculty of Fisheries, Mustafa Kemal University, 31200, Iskenderun, Turkey

2424
abundance was not considered. The mean depth±SD (range) of the hauls by stations were 40.50±3.66 m
(21.85-49.4 m) for station-I, 58.82±0.78 m (58.1-60.85 m) for
station-II and 39.03±9.32 m (16.0-46.25 m).

To identify the temporal variation of demersal fish
species, Cluster analysis was used to classify the species
based on their monthly abundance. Months were taken as
a temporal scale. The data were standardized before the
analysis owing to large differences in species abundance
using log (x) transformation. The data were also checked
against the non-normality via Shapiro-Wilk’s W test. All
computations and statistical analysis were done by
Microsoft Excel and Statistica for Windows (V.6.0).

RESULTS AND DISCUSSION

During the study, a total of 545559 specimen
belonging eight families were caught. In terms of
numerical abundance (N), the contribution (%) of the
families (highest to lowest) were, Sparidae (34.38%),
Serranidae (22.25%), Bothidae (15.09%), Mullidae
(14.22%), Gobiidae (37.11%), Centracanthidae (1.01%)
and Uranoscopidae (0.28%). Also, the mean abundance
(mean±SD) of each of the family was: the Sparidae
(1563.5±1898.24), Serranidae (1011.91±802.15), Bothidae
(686.08±451.34), Mullidae (646.75±271.44), Gobiidae
(169.04±133.23), Centracanthidae (46.25±67.15) and
Uranoscopidae (13.08±3.92) (Fig. 2). In the same way, the
percentages of fish caught by the month were (highest to
lowest), May (16.70%), October (11.24%), July (10.82%),

Fig. 2 Box-whisker plots of families based on their
numerical abundance (N)

September (9.23%), June (8.90%), August (8.09%),
December (7.58%), November (10.82%), January (5.47%),
April (5.23%) and February (4.18%).

By using cluster analysis, three main groups were
identified according to their abundance pattern based on
temporal scale. The first group consisted of only the
Mullidae. The second group consisted of the Centracanthidae,
Uranoscopidae, Bothidae, Gobiidae and the Serranidae families. The third group consisted of the
Sparidae and the Triglidae (Fig. 3). Correlation between
the abundance of the families based on temporal pattern
also supports the results of the cluster analysis (Table 1).
Contrary to the other families, the lowest abundance value was observed for the Mullidae family in May. The abundances of the Gobidae, Bothidae, Serranidae, Uranoscopidae and Centracanthidae increased gradually, generally, towards October (skewed to the right hand side from the Fig. 4). Triglidae and Sparidae families had the highest abundance from May-Jun. It was remarkable that the abundance made a peak especially, in May and then decreased dramatically for Sparidae.

Out of 18762 specimen belonging to Sparidae family, 15854 (84.50%) were Diplodus annularis and 10.01% (n = 1879) was D. vulgaris. Serranus kephal (n = 10448) was the most abundant species (90.78%) among the Serranidae (Serranus cabrilla: 7.80%, n = 898 and Serranus scriba: 1.41%, n = 163). The Bothidae (n = 1475) family were presented with three species in the study. These species with their contributions were Arrioglossus latera (97.62%), Bothus podas (1.28%) and Arrioglossus thori (1.08%). Mullus barbatus (n = 6755) and Mullus surmuletus (n = 111) were presented in the Mullidae family with 98.38 and 1.61%, respectively. The Gobidae (n = 1053) family were presented with four species which were Lesueurigobius friesi (57.64%), Gobius niger (40.26%), Pomatoschistus sp. (1.70%) and Gobius cruentatus (0.37%). The Centracanthidae were presented with Spicara flexuosa (87.29%), Spicara smaris (11.43%) and Spicara maena (1.27%). Only Uranoscopus scaber (n = 147) was presented in the Uranoscopidae family.

During the study, a total of 1504.97 kg fish were caught. The contribution of total biomass by families were the Sparidae (39.01%), Mullidae (17.04%), Bothidae (14.34%), Serranidae (13.59%), Triglidae (8.76%), Gobidae (4.50%), Uranoscopidae (1.96%) and Centracanthidae (0.76%).

Metin et al. (2000) investigated the seasonal change in the demersal fish compositions in bottom trawl on seasonal basis from the Gullbahce Bay (in Izmir Bay) and found that the species belonging to the Sparidae were dominant by 80.5% following the Mullidae by 6.2%. In a comparative study on the catch composition of trawl and beach-sieving from the Izmir Bay, it was found that D. annularis (47.5%) and M. barbatus (29.9%) were the dominant species in the bottom trawl and D. annularis, Pagellus erythrinus, M. barbatus and Spicara flexuosa were dominant in the beach-sieving (Akyol and Kara, 2003). As in our findings and previous ones, species belong to the Sparidae (34.38%) were dominant and among the Sparids, D. annularis was the most occurred species in this region.

Although it is possible to attribute the lower density of the Mullidae family in the study to the fact that they occur more frequently in the shore line, the real cause is the increasing rate of gillnet fishing which is intensively carried out on.

The Serranidae family was surprisingly in the second order in terms of species abundance in this study. The same issue is valid for the Bothidae. Based on these results, a series of questions are raised. The first, the difference in sampling efficiency between the study and previous ones? the second; the changes in species composition by the time in the Izmir Bay? In sampling we used three main locations based on monthly scale (i.e., 12 hauls in each location) and we handled much more fish than previous study. This may be leaded to these differences. To answer the question of changes of species composition does not seem to possible based on the results. These results should be proved in different studies by time in future. If it will so, the mechanism/s leading to such changes should be investigated in different ways.

Annular sea bream (D. annularis) starts to spawn in April in the Izmir Bay (Kinselik and Akyol, 2001). In the spring, the proportion of the younger size class in the population is higher than those in any season in the Izmir Bay (Ozbilgin et al., 2003). These references support our findings that the abundance make a peak in May.

Haidar (1970) showed that in the central and northern Adriatic, there are two migration types of M. barbatus: the migration of the young fish from the coast towards the open sea and the spring migration of adult spawning fish towards the channels region along the Croatian coast at depths between 50 and 85 m. Other authors found similar inshore-offshore behaviours (Scaccini, 1947; Zupanovic, 1963; Jardas, 1996). The lowest abundance value for the Mullidae was in May. Depending on GSI values,
Table 1: Correlations (Pearson-r) between the abundance of the families based on temporal pattern

<table>
<thead>
<tr>
<th>Family</th>
<th>Triglidae</th>
<th>Serranidae</th>
<th>Sparidae</th>
<th>Centracanthidae</th>
<th>Mullidae</th>
<th>Uranoscopidae</th>
<th>Gobiidae</th>
<th>Bothidae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triglidae</td>
<td>0.35</td>
<td>0.44</td>
<td>0.25</td>
<td>-0.44</td>
<td>-0.02</td>
<td>0.29</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Serranidae</td>
<td>-0.30</td>
<td>0.49</td>
<td>0.06</td>
<td>0.34</td>
<td>0.79</td>
<td>0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparidae</td>
<td>0.44</td>
<td>-0.30</td>
<td>-0.06</td>
<td>-0.54</td>
<td>0.14</td>
<td>-0.14</td>
<td>-0.30</td>
<td></td>
</tr>
<tr>
<td>Centracanthidae</td>
<td>0.25</td>
<td>0.49</td>
<td>-0.06</td>
<td>-0.25</td>
<td>-0.05</td>
<td>0.13</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>Mullidae</td>
<td>-0.44</td>
<td>-0.10</td>
<td>-0.54</td>
<td>-0.25</td>
<td>-0.07</td>
<td>-0.21</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Uranoscopidae</td>
<td>-0.02</td>
<td>0.34</td>
<td>0.14</td>
<td>-0.25</td>
<td>-0.07</td>
<td>0.71</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>Gobiidae</td>
<td>0.29</td>
<td>0.79</td>
<td>-0.14</td>
<td>0.13</td>
<td>-0.21</td>
<td>0.71</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>Bothidae</td>
<td>0.11</td>
<td>0.49</td>
<td>-0.30</td>
<td>-0.05</td>
<td>0.02</td>
<td>0.57</td>
<td>0.81</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4: Monthly abundance of the families

reproduction for *M. barbatus* takes from April-August, but the most in May (Metin, 2005). In the same area, distribution and abundance of pelagic eggs and larvae of teleost fishes were investigated considering five sampling
depth) to shallow areas, where trawling is banned. In this
period (spring to summer), the yield of this species from
gillnet fishing, which is operated in all seasons and much
more close to the coastline than trawling, is remarkable.

REFERENCES

Ak, Y. and B. Hossu, 2001. Diversity, distribution and
abundance of pelagic eggs and larvae of teleost
fishes in Izmir Bay. E.U. J. Fish. Aquat. Sci.,

determination of catch compositions of the bottom
trawling and beach-seining in the Bay of Izmir

Bilecenoglu, M., E. Taskavak, S. Mater and M. Kaya,
Zootaxa, 113: 1-194.

Colla, F., M. Cardinale, A. Belluscio and G. Ardizzone,
2003. Pattern of distribution and diversity of demersal
assemblages in the central Mediterranean Sea. Est.

Publication, California Academy of Sciences, San
Francisco, 3: 2905.

Fischer, W., M.L. Bauchot and M. Schneider, 1987. Fishes
FAO Identification species for the purpose of fishing
Mediterranean and Black Sea area fishing zone. 37,

Haidar, Z., 1970. The ecology of red mullet
(Diplodus annularis L.) in Eastern Adriatic. Acta

Jurdas, L., 1996. Adriatic ichthyofauna. School books,
Zagreb, pp: 536.

selectivity of growth and reproduction in Diplodus
annularis (L., 1758) of Izmir Bay (Aegean Sea). Arch.

Kinacigil, H.T., A. Tokac, A. Lok, C. Metin and U. Sunlu,
1993. Determination of the economically important
pelagic and demersal fish stocks in Izmit bay
(in Turkish). Ege University, Project No. 1991 SUFAK
003, pp: 44.

living resources. Bodrum, Ministry of Agriculture

Metin, C., Z. Tosunoglu, A. Tokac, A. Lok, C. Aydin and
H. Kaykac, 2000. Seasonal variation of demersal fish
composition in Gulbahce Bay (Izmit Bay). Turk. J.
Zool., 24: 437-446.

Metin, G., 2005. Reproduction characteristics of red mullet
(Diplodus barbatu, L., 1758) in Izmit Bay (in Turkish).

patterns in the demersal fish community on the shelf
and upper slope regions of the Gulf of Alaska. Fish.
Bull., 100: 559-581.

Seasonal variation in trawl codend selectivity for
annular sea bream (Diplodus annularis L., 1758).

biologia dei Mullidi nell’Adriatico medio occidentale.

the trawl catch composition in Gulbahce Bay

Ungaro, N., C.A. Marano, R. Marsan, M. Martino,
M.C. Marzano, G. Strippoli and A. Vlora, 1999.
Analysis of demersal species assemblages from trawl
surveys in the South Adriatic sea. Aquat. Living
Resour., 12: 177-185.

Zupanovic, S., 1963. Contribution to the knowledge of the
biology of Mullus barbatu (L.) in the Adriatic.