The Effect of an Attenuated Rabies Virus SRV\textsubscript{v} on Suckling Mouse Growth After Intracerebral Inoculation

1,2Xiaohu Wang, 1,2Yuzhu Jin, 1,2Chenglong Sun, 1Shoufeng Zhang, 1Ziguo Yuan, 1Zhuang Ding and 1Rongliang Hu

1College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi’an Road, 130062 Changchun, China
2Veterinary Research Institute, Academy of Military Medical Sciences, 1068 Qinglong Road, 130062 Changchun, China
3College of Veterinary Medicine, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, Guangdong Province, P.R. China

Abstract: Rabies virus is a kind of virus having strict neurotropic property. Intracerebral inoculation method was commonly used to RV-related research. SRV\textsubscript{v} is an attenuated RV vaccine strain. In the present study, we inoculated intracerebrally on suckling mouse with SRV\textsubscript{v} strain. The results showed that SRV\textsubscript{v} could cause a mortality rate of 100% on suckling mice below 13 day old. The mortality rates of 14-17 day old mice were 68, 33, 33 and 17%, respectively without incidence above 18 day old. Meanwhile, the results showed that the growth of survival suckling mice was inhibited remarkably after intracerebral inoculation SRV\textsubscript{v}. The 16 day old survival suckling mice were chosen to perform body weight test and the result showed that the weight growth was very slow with 14% less than normal growth rate. However, 2 weeks latter the weight of the mice began to recover gradually but slowly. It was suggested that the intracerebral RV reproduction could take a significant effect on the growth and development of the mice and with RV being eliminated by antibody, the weight of the mice which were inoculated with SRV\textsubscript{v} could gradually recover.

Key words: Rabies Virus (RV), SRV\textsubscript{v} strain, suckling mouse, growth, intracerebrally inoculation, vaccination

INTRODUCTION

Despite the fact that rabies is one of the oldest known human infections, the pathogenic mechanism by which Rabies Virus (RV) infection leads to the development of neurological diseases and death is not well understood (Dietzschold et al., 2005; Dhingra et al., 2007). RV causes a non-lytic infection of neurons leading to a fatal myeloencephalitis in mammals including humans (Baloul and Lafon, 2003).

Many results support the hypothesis that fatal rabies may result from neuronal dysfunction rather than from structural damage (Munzel and Koechel, 1981; Tiang, 1982; Dhingra et al., 2007; Weihe et al., 2008). When rabies virus is passaged in animals, chick embryos or cultured cells, the virulence of some strains may be gradually attenuated for example SAD B19, ERA, SAG, SRV\textsubscript{v} and so on.

The attenuated vaccine strains (Titoli et al., 1982; Lawson et al., 1987; Masson et al., 1996; Vos et al., 1999) are not lethal to adult animals however, the young ones may actually die. The survivals will be dysfunction. Experimental studies shown that the immune response and possible immune suppression are largely influenced by strain, dose and route of inoculation (Nandi and Kumar, 2011).

SRV\textsubscript{v}, is an attenuated RV vaccine strain. In the present study, we inoculated intracerebrally on suckling mouse with SRV\textsubscript{v} strain. The results showed that SRV\textsubscript{v} could cause a mortality rate of 100% on suckling mice below 13 day old but without incidence above 18 day old.

Meanwhile, the 16 day old survival suckling mice were chosen to perform body weight test and the result showed that the weight growth was very slow with 14% less than normal growth rate. However, 2 weeks latter the weight of the mice began to recover gradually but slowly.

It was suggested that the intracerebral RV reproduction could take a significant effect on the growth and development of the mice.

Corresponding Author: Zhuang Ding, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi’an Road, 30662 Changchun, China
MATERIALS AND METHODS

This research project was conducted from March 2009-June 2010.

Virus: SRV\textsubscript{v} is a plaque cloned vaccine strain that has been kept in the laboratory for over 20 years. It can cause suckling mice death by intracerebrally inoculating with a dose of 300 LD\textsubscript{50}/0.03 mL. The brain mixtures were homogenized, aliquoted and frozen at -80°C before using. The LD\textsubscript{50} of SRV\textsubscript{v} was tested in the suckling and 3 day mice, the virus aliquots followed the protocols described elsewhere (Meslin et al., 1996).

Animal and grouping: All Kunming strain mice used in the experiment were purchased from the Changchun H and N Animal Breeding Center for Medicine, Changchun, China. They were fed ad libitum and kept away from the healthy mice after being challenged with SRV\textsubscript{v}. Grouping refers to 2.3, 2.6 and 2.7.

The death age determination of suckling mice infected with SRV\textsubscript{v}: About 1-22 day old suckling mice divided into 22 groups with 12 per group were intracerebrally inoculated with 30 μL of 107 LD50 mL of the SRV\textsubscript{v}. The mice were checked twice daily and the mortality rate was recorded.

The direct Fluorescent Antibody Test (FAT): The dead and survived mice brain was tested by FAT which followed the protocols described elsewhere (Meslin et al., 1996).

The neutralizing antibodies detection by Fluorescent Antibody Virus Neutralization test (FAVN): The presences of rabies virus specific antibodies were detected by an OIE prescribed method described elsewhere (Cliquet et al., 1998). The neutralizing antibody titers were calculated by Spearman-Karber formula.

The effect of intracerebrally inoculating with SRV\textsubscript{v} to 26 day old on weight: The 26 day old mice were divided into three groups with 20 mice in each group. The doses were as follows: 300LD\textsubscript{50}/30 μL/pieces SRV\textsubscript{v} by intracerebrally inoculating with brain suspension group (D group); 2.30 μL/pieces by intracerebrally inoculating normal brain suspension group (E group); 3. The control group was not treated (F group). Then, all the mice were weighed each 2 day. The results were recorded and drawn the growth curves by SPSS 17.0.

RESULTS AND DISCUSSION

The death rate determination of suckling mice infected with SRV\textsubscript{v}: A number of 12 mice per group were intracerebrally inoculated with 30 μL of 105LD50 mL of the SRV\textsubscript{v}. The mortality rate was recorded (Table 1).

FAT: All the dead sucking mice brain were tested by FAT and the results were all positive. Rabies viruses were detected in the brain of the survival sucking mice 2 weeks after intracerebral inoculation with SRV\textsubscript{v} (Fig. 1).

FAVN: About 2 weeks after intracerebral inoculation with RV SRV\textsubscript{v} strain, all the survival mice sera were tested by FAVN and the titer centered at 23.38±30.77 IU. It confirmed that all of them were infected by the rabies virus and then the RVs were eliminated by antibody about 2 weeks latter.

The effect on weight of survival 16 day old sucking mice after intracerebral inoculation SRV\textsubscript{v}: Growth of the 16 day old survival sucking mice was significantly inhibited (Fig. 2). The mean weight of SRV\textsubscript{v} group increased 42 g, untreated group and normal brain tissue control increased 10.12, 9.55 g, respectively. The weight growths of the survivals within 2 weeks were very slow with less than normal growth rate of 14%.

Table 1: The death rate of 1-21 day old sucking mice infected with SRV\textsubscript{v}.

<table>
<thead>
<tr>
<th>Age (days)</th>
<th>1</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality (%)</td>
<td>100%</td>
<td>68%</td>
<td>33%</td>
<td>33%</td>
<td>17%</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The effect on weight of 26 day old mice after intracerebral inoculation SRV\textsubscript{v}: The effect of intracerebrally inoculating RV SRV\textsubscript{v} strain on 26 day old mice growth was without obvious variance (Fig. 3).

RV SRV\textsubscript{v} as the oral vaccine in China for many years is an attenuated vaccine strain from the SAD B\textsubscript{v} strain by plaque cloning and mouse inoculation test screening. This study showed that the growth of survival mice was significantly inhibited after being intracerebrally inoculated with RV SRV\textsubscript{v} strain (Fig. 2). However, the
Fig. 1: The results of FAT. All the dead sucking mice brain were positive tested by FAT (A); negative control (B)

Fig. 2: The growth curves of 16 days old sucking mice were drawn by SPSS 17.0; SRV_v 300 LD50/30 uL/pieces SRV_v by intracerebrally inoculating with brain suspension group; Ctrl 30 uL/pieces by intracerebrally inoculating normal brain suspension group and Blank: the control group was without any treatment.

The effect was not so obvious in adult mice (Fig. 3). The real reason for this phenomenon is unclear. Presumably, the RV could invade the brain tissue when sucking mice were in crucial phase of growth during the proliferation of the virus which affected or even terminated a variety of genes expression including genes related to growth.

Compared with virus reproduction effect, the pathological damage and physical damage are not the main factors in the affect to the growth of mice because the control groups are normal. As for SRV_v injection group, the reason for slower weight gain maybe is that with the virus existed and reproduced the antibody to SRV_v increased and neutralized the virus till the virus was cleaned up. The genes that controlled the growth had been expressed and even completely expressed during the growth when the mice developed to the adult so the affect of the virus reproduction to the growth was not significant.

The effects of virus reproduction in the brain are certainly multi-faceted. However, the inhibition to the growth is apparent phenomenon or most relatively obvious. This phenomenon is not the specific characters of attenuated RV but also refers to other neurotropic viruses such as the polio virus, encephalitis virus.
Fig. 3. The growth curves of 26 day old mice were drawn by SPSS 17.0; SRV, 300 LD_{50}/30 uL/pieces SRV by intracerebrally inoculating with brain suspension group; Ctrl: 30 uL/pieces by intracerebrally inoculating normal brain suspension group; Blank: the control group was without any treatment.

It was reported that cachexia, a severe loss of body weight often complicates the late stages of retroviral infections such as Human Immunodeficiency Virus (HIV), visna/maedi virus and Feline Leukemia Virus (FeLV). (Kotler et al., 1988; Hartke et al., 1995; Diao et al., 2001; Baricevic et al., 2004; Tremolada et al., 2008). Certainly, there is much theoretical and conflicting experimental evidence that retroviruses alter the cytokine milieu and in doing so alter metabolic rates and energy intake (Beutler and Cerami, 1989; Grunfeld et al., 1992; Grunfeld and Feingold, 1992).

It suggested that it should be pay more attention to the effect to young animals when using attenuated vaccine or living virus vector vaccine, especially neurotropic virus vaccine. In addition, the mouse model can performed related research to examine growth inhibition using this method.

CONCLUSION

It is concluded that normal brain suspension inoculation control group did not show any different. Meanwhile, the 26 day old mice treated with the same method could not observe abnormal of the weight.

ACKNOWLEDGEMENT

The research is funded by the Key Project of National Science Foundation of China (Approval No. 30630049) and the China National 973 Program (Approval No. 2005CB523000).

REFERENCES

