Prevalence of the Small Ruminant's Oestrosis in Benin

S. Attindehou, S. Salifou, A.B. Gbangboche and F.A. Abiola
Department of Animal Production, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01 P.O. Box 526, Cotonou, Benin
Laboratory of Research in Applied Biology (LARBA), University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin

Abstract: The prevalence of Oestrus ovis infection in Benin small ruminants was investigated from March to August 2011. A total of 480 heads of randomly selected sheep (256) and goats (224) were examined and larvae of any instars (L1-L3) were recovered from the nasal-sinus cavities. Results indicated an overall prevalence of 27.7% and a mean larval burden of 3.8±0.2 larvae with the predominance of the two first Larval instars (L1 and L2). The infection has been diagnosed each month with almost constant rate. Three major factors (host's species, age and health) were identified to have been associated with the prevalence. The prevalence of infections was significantly (p<0.001) higher in sheep (35.2%) than in goats (19.2%) in adult animals (33.8%) than in young (9.8%). Both the prevalence and larval burden have been higher with animals kept in the Northern area (31.7%). On the other hand no significant difference was noted between infection rates in Southern animals comparatively to central animals. The report also showed that oestrosis and it intensity were strongly correlated with the presence of respiratory pathologies. The infection prevalence was significantly (p<0.001) higher in animals suffering from sneeze, catarrh and dyspnoea (59.7%) than in others (15.32%).

Key words: Oestrus ovis, prevalence, small ruminants, significantly, sneeze, Benin

INTRODUCTION

In tropical and subtropical areas, parasitic infections represent one of the most important causes of reduced productivity in small ruminants. They often decrease food intake and provoke lower weight gains, lower milk production. Out of helminths, Oestrus ovis is reported through several studies as a substantial health problem in goats, sheep and other mammals. The presence and the development of this insect in the animal's nasal cavity and adjoining sinuses can cause acute rhinitis. In some parts of Africa, epidemiological studies have confirmed its high prevalence about 86.3% by serodiagnosis in Burkina Faso (Guattara and Dorchies, 1996), 79% by serodiagnosis in Togo (Bastiaensen et al., 2003) and 59.9% in Ambo and Ethiopia (Gebremedhin, 2011).

From place to place, the prevalence of small ruminant’s oestrosis varies in ratio to climatic conditions and breeding system. In Benin, no investigation was undertaken in order to evaluate O. ovis infection. It is sure and well acknowledged that important epidemiological information lacks on sanitary prophylaxis regarding animal and human health. This study aimed at contributing to fill these gaps.

MATERIALS AND METHODS

Study area: The investigation was conducted in three agro-ecologic areas of Benin (Table 1).

Study animals: Between March and August 2011, 480 post weaning small ruminants (256 sheep and 224 goats) destined to Benin livestock’s markets were selected randomly, bought and slaughtered at Cotonou abattoir. Total 80 heads of sheep or goats were examined monthly. Origin, species, breed, sex, age (estimated by teeth examination) and pathological symptoms were recorded for each animal.

Parasitological methods: The animals were slaughtered in the abattoir of Cotonou and the diagnostic based on heads autopsy. First, the heads were marked with ear tags and then cut off from the body. Afterward, skulls were longitudinally split along the forehead into two symmetric parts. A careful search inside the nasal cavities and sinuses has permitted to collect whole stages of O. ovis larvae in respect with the recommendations of Yilma and Dorchies (1991). The larvae were preserved in 10% formalin and then identified. The diagnosis criteria were
Table 1: Study areas and climatic characteristics

<table>
<thead>
<tr>
<th>Study areas</th>
<th>Seasons and covered months</th>
<th>Pluviometry (mm year⁻¹)</th>
<th>Selected animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern (5 departments)</td>
<td>A dry season (September to March)</td>
<td>700-1300</td>
<td>137 goats and 257 sheep</td>
</tr>
<tr>
<td>Albori-Borgou</td>
<td>A rainy season (April to August)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atacora-Dogra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central (2 departments)</td>
<td>A dry season (September to March)</td>
<td>1000-1200</td>
<td>253 goats and 109 sheep</td>
</tr>
<tr>
<td>Collines</td>
<td>A rainy season (April to August)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zou (Northern)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern (7 departments)</td>
<td>A short rainy season (September to November)</td>
<td>800-1400</td>
<td>137 goats and 257 sheep</td>
</tr>
<tr>
<td>Zou-Moro-Coutié</td>
<td>A long dry season (December to March)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantique-Littoral</td>
<td>A long rainy season (April to July)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oueme-plateau</td>
<td>A short dry season (August to September)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data analysis: The Prevalence (P) of *O. ovis* infections was calculated by using the following equation:

\[P (\%) = \frac{\text{Number of positive subjects}}{\text{Number of examined animals}} \times 100 \]

Data were entered into a Microsoft Excel spreadsheet. Statistical analysis was performed using STATA 11 Software. Descriptive statistics was used to summarize the data. The model was fitted with suspected risk factors like species, age, sex, respiratory symptoms (catarrhal, purulent inflammations and sneeze) and origin.

RESULTS

Prevalence: During the study, 133 of 480 (27.7%) examined heads were infected by at least one of the three *O. ovis* larval stages. The infection was detected all months through with the highest rate (38.75%) in June (Fig. 1). The overall infection rate was 35.16% in sheep and 19.2% in goat. Infections rate relative to the different suspected risk factors are shown in Table 2. Northern region has presented the highest rate of infection (20.72% for goats and 40.43% for sheep) even if there was no significant difference between central and Southern areas. The oestrosis was more prevalent in Northern sheep than in other animals. The lowest prevalence was recorded with central goats. The infection rate was significantly (p<0.001) higher in animals suffering from respiratory symptoms (59.7%) than in other (15.32%). The host sex didn’t influence infection rate but their age was strongly (p<0.001) associated to their statute. Older animals risked more than the younger.

Larval burden: The larval burden is shown in Table 2. On average, 3.8±0.2 larvae were counted in infected heads. All stage of larva occurred throughout study months with the predominance of the two first larval instars (Fig. 2).

![Graph showing goat and sheep infection rate over months](image)

Fig. 1: Oestrosis prevalence relative to animal's species, months through

![Graph showing trend of larval burden over study months](image)

Fig. 2: Trend of larval burden months through

Statistically, no larval burden variation was noted according to origin, species or month. Nevertheless, a high intensity (6 larvae) was recorded in June with sheep from Northern and Southern. The lowest recorded intensity was of 2. The t-test (t-test under STATA 11)
showed that the presence of respiratory symptoms was strongly correlated (p=0.0001) with the larval burden. Subjects with catarhal, purulent inflammations and sneeze have presented higher burden in relation to healthy one (Table 2).

DISCUSSION

Throughout the study period, the prevalence of *O. ovis* infection in small ruminants was below 50% whatever the associated variables. The overall mean of 27.7% recorded is lower than the observations reported in literatures: 30.2% in Nigeria (Unsworth, 1949), 69.2% in Morocco (Pandey and Ouhelli, 1984) and 59.9% in Ambo, Ethiopia (Gebremedhin, 2011). But lowest infection rates were already recorded: 21.9% in Zimbabwe (Pandey, 1989). Nevertheless, the constancy of the infection throughout the study indicates that oestrosis must be considered as an endemic problem in Benin. This report is as much comprehensible that the breeding system is extensive. And in addition to the breeding system there are climatic influences. According to Yilma and Genet (2000), the flies flock's activities are permanent in tropical countries. Globally, northern sheep presented the most important infection rate. This research appears normal since, Northern areas are characterized by a saherian climate which seems to offer a favourable ecology to several flies such as *O. ovis*. Also, sheep's gregarious instinct described by Chhabra and Ruprah (1976) is an intensifier factor for flies infectious capacity. The high prevalence of the infection (59.7%) in animals suffering from respiratory symptoms is probably due to patient's posture. In fact sick sheep and goats with respiratory symptoms are inclined to stop and to crave, exposing their nostrils and then increasing the contact with flies. But one could inversely attribute the involved symptoms to the *O. ovis* larvae’s presence in respiratory routes since, larvae's activities have some inflammatory effects (Alcaide et al., 2005). Contrary to indications from Jagannath *et al.* (1989) the age has been an important risk factor. The infection prevalence was higher in older than younger animals. Part of this influence could be explained by the exposing duration to the flies. Otherwise, old animals are often suffering of some chronic respiratory pathology caught for a long time.

The larval burdens (3.8±0.2 on the average) were very lower comparatively with previous observations: 12.7±1.15 and 10.52±0.65 observed (in sheep and goats, respectively) in Central Ethiopia by Yilma and Genet (2000). All larval instars have occurred throughout study months and were often identified simultaneously. First and second larval instars predominated together in the larval burden notably in rainy months. These results indicate that several generations of *O. ovis* were produced (Taboreau *et al.*, 2001) but the life cycles have undergone a slowing down. The low proportion of the third larval stage is in agreement with recorded data in Senegal and in Niger and respects the parasite’s biology (L3 is always numeric inferiority relatively to L1). At last the larval burden was most important with animals suffering respiratory symptoms. This confirmed the high proportion of L1, major responsible of inflammation.

CONCLUSION

The present study has disclosed that Benin seems to be an endemic area of ovine and caprine oestrosis. Several generations of *O. ovis* develop, year through and maintain the infection. This, certainly contribute to the reduced productivity and economic losses. Borrowing the similar conditions elsewhere a strict plan of the parasitism control would be necessary using persistent drug every 3 months.
ACKNOWLEDGEMENTS

The researchers express their gratitude to the Ministry of Higher Education and Scientific Research of Benin who provided, to certain extent, support to undertake this study. They are also grateful to Dr. Minlahoue Tchoutchou and Dr. Germain Acheve (respectively Director and Veterinary Inspector of Cotonou abattoir). They finally thank Mr. Kossou Alain, Mr. Honnono Alphonse and Mr. Hounga Cyrille Dossa for their technical assistance.

REFERENCES

