Isolation and Drug Resistance Patterns of *Escherichia coli* from Cases of Colibacillosis in Tabriz

A. Zakeri and P. Kashefi

1Poultry Section, Department of Animal Science, Faculty of Agriculture, Tabriz Branch, Islamic Azad University, P.C. 5157944533, Tabriz, Iran
2Young Researchers Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract: Antimicrobial agents are used extremely in order to reducing the enormous losses caused by *Escherichia coli* infections (Colibacillosis) in Iran poultry industry. In this investigation, 200 Avian Pathogenic *Escherichia coli* (APEC) strains isolated from broiler chickens with Colisepticemia and examined for susceptibility to antimicrobials of veterinary and human significance. Multiple resistances to antibiotics were observed in all the isolates. The highest rate of resistance was against Nalidixic acid (98), Lincomycin (97.5), Erythromycin (97), Oxytetracycline (92), Chloramphenicol (92), Fumexine (90), Doxycycline (80), Difloxacin (80), Neomycin (62), Streptomycin (62), Trimethoprim-Sulphamethoxazole (60), Kanamycin (60), Enrofloxacin (60), Norfloxacin (55), Ciprofloxacin (50), Chloramphenicol (49), Furazolidone (45.5) and Nitrofurantoin (45%). Resistance to Gentamicin, Ceftriaxone and Fosfomycin were not observed and to Amikacin, Cefazolin, Colistin, Linospectin and also Florfenicol were low. This study showed resistance rate against the antibiotics that are commonly used in poultry is very high but against them that are only used in human or less frequently used in poultry is significantly low. This study also showed that the prevalence of Quinolone Resistant *Escherichia coli* (QREC) are very high in broiler farms in Tabriz province. The high presence of OREC from broiler chickens probably id due to overuse of enrofloxacin in these farms for therapeutic purposes.

Key words: Antibiotics susceptibility, *Escherichia coli*, Colibacillosis, Nalidixic acid, Tabriz

INTRODUCTION

Bacterial infections are of worldwide importance in commercially product poultry and their costs exceed $100 million annually (Barnes *et al.*, 2003). *Escherichia coli* that caused disease in chickens are collectively known as Avian Pathogenic *Escherichia coli* (APEC) (Kariuki *et al.*, 2002) and have been mainly associated with extraintestinal infections such as air sacculitis, pericarditis, peritonitis, salpingitis, synovitis, osteomyelitis, cellulitis and Yolk Sac Infection (YSI) (Kariuki *et al.*, 2002; Dias da Silveria *et al.*, 2002; Gross, 1994).

Antimicrobial therapy is an important tool in reducing both the incidence and mortality associated with avian colibacillosis (Freed *et al.*, 1993; Watts *et al.*, 1993). *E. coli* may be sensitive to many antibiotics. However, isolates of *E. coli* from poultry are frequently resistance to one or more antibiotics, especially if they have been widely used in poultry industry over a long period (e.g., tetracyclines) (Watts *et al.*, 1993; Allan *et al.*, 1993). Antibiotics once effects at controlling *E. coli* infections are now ineffective due to the bacterium’s acquired resistance to these compounds. Resistance to two or more classes of antibiotics is now commonplace in both veterinary (La-Ragione *et al.*, 2004) and human (Dennnesen *et al.*, 1998) medicine.

Resistance generally occurs following response to prior contact with the antimicrobial but can occur naturally in the absence of previous exposure. Resistance to florfenicol, an antibiotic related to chloramphenicol that has never been used in poultry in the United States was found in *E. coli* isolates from chickens (Keyes *et al.*, 2000).

Antibiotic usage is possibly the most important factor that promotes the emergence, selection and dissemination of antibiotic-resistant microorganisms in both veterinary and human medicine (Neu, 1992; Witte, 1998). Antibiotic usage selects for resistance not only in pathogenic bacteria but also in the endogenous flora of exposed individuals (animals and humans) or populations (Piddock, 1996). Concern has been expressed about possible harmful effects on humans through the use of drugs in agriculture as follows:

Corresponding Author: A. Zaken, Poultry Section, Department of Animal Science, Faculty of Agriculture, Islamic Azad University, Tabriz Branch, P.C. 5157944533 Tabriz, Iran
MATERIALS AND METHODS

Bacterial strains: The 200 E. coli isolates were recovered from clinically affected broiler chickens grown on commercial farms diagnosed with colibacillosis in Tabriz. Bacteria were originally recovered from a variety of tissues including the air sac, pericardioc sac, heart, liver, trachea and blood and plated on blood agar plates and MacConkey agar. Presumptive E. coli isolates were confirmed using VITEK Gram-negative identification cards (BioMerieux Inc., Hazelwood, MO) following the manufacturer’s instruction. Isolates were stored as 20% glycerol stocks at -70°C.

Antimicrobial susceptibility determination: Antimicrobial susceptibility determination was routinely tested by the Single-Disc Diffusion Method. The E. coli strains were tested against the antibiotics of human and veterinary significance. The following antibiotic discs on Mueller-Hilton agar were applied: Amikacin (AN/30 μg), Cefazolin (CZ/30 μg), Chloramphenicol (C/30 μg), Chlorotetracycline (C/Te/30 μg), Ciprofloxacin (CP/5 μg), Colistin (Cl/10 μg), Difloxacin (DIF/25 μg), Doxycline (D/30 μg), Erythromycin (E/15 μg), Flornofenicol (FFc/30 μg), Flumequine (FIIu/30 μg), Furfazolidone (FR/100 μg), Gentamicin (GM/10 μg), Kanamycin (K/30 μg), Lincomycin (L/2 μg), Lincospectin (LIN/SE), Nalidixic Acid (NA/30 μg), Neomycin (N/30 μg), Nitrofurantoin (FM/300 μg), Norfloxacin (NOR/10 μg), Oxytetracycline (T/30 μg), Streptomycin (S/10 μg) and Trimethoprim-Sulphamethoxazole (SXT/25 μg).

The diameters of the zones of inhibition were determined by interpreting the table which represents the NCCLS subcommittee’s recommendation.

RESULTS

The highest rate of resistance was against Nalidixic acid (58%), Lincomycin (97.5%), Erythromycin (97%), Oxytetracycline (92%), Chloramphenicol (92%), Flumequine (98%), Doxycline (80%), Difloxacin (80%), Neomycin (62%), Streptomycin (62%), Trimethoprim-Sulphamethoxazole (60%), Karamycin (60%), Erythromycin (60%), Norfloxacin (55%), Ciprofloxacin (50%), Chloramphenicol (49%), Furfazolidone (45.5%) and Nitrofurantoin (45%). Low levels of resistance were against Flornofenicol (27%), Lincospectin (16%), Colistin (6%), Cefazolin (21%), Amikacin (2%), Cefitlur (0%), Fosbac (0%) and Gentamicin (0%). Susceptible (S), Intermediate (I) and Resistant (R) percentages of the isolates to the antimicrobial agents were shown in Table 1. Multiple resistances were observed in all of the isolates.
Table 1: Percentages of antibiotic susceptibility of isolated *E. coli* from broiler with colibacillosis in Tabriz province. Susceptible (S), Intermediate (I) and Resistant (R) to antimicrobial agents by Disc Diffusion Method.

<table>
<thead>
<tr>
<th>Class and antibiotic (abbreviation)</th>
<th>Disc content (μg)</th>
<th>Diffusion zone breakpoint (mm)</th>
<th>(NCCLS breakpoint)</th>
<th>S (%)</th>
<th>I (%)</th>
<th>R (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosbac</td>
<td>10</td>
<td>≤15</td>
<td>198</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amoxicillin (AMX)</td>
<td>30</td>
<td>≤14</td>
<td>9</td>
<td>38</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefazolin (CZ)</td>
<td>30</td>
<td>≤14</td>
<td>82</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>30</td>
<td>≤14</td>
<td>100</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Polymyxins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colistin (C)</td>
<td>10</td>
<td>8</td>
<td>190</td>
<td>68</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amikacin (AN)</td>
<td>30</td>
<td>≤14</td>
<td>170</td>
<td>26</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Gentamicin (GN)</td>
<td>10</td>
<td>≤12</td>
<td>194</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Kanamycin (K)</td>
<td>30</td>
<td>≤13</td>
<td>60</td>
<td>20</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Neomycin (N)</td>
<td>30</td>
<td>≤12</td>
<td>50</td>
<td>26</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Streptomycin (S)</td>
<td>10</td>
<td>≤11</td>
<td>66</td>
<td>10</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxycycline (D)</td>
<td>30</td>
<td>≤12</td>
<td>35</td>
<td>5</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Chlorotetracycline (Cte)</td>
<td>30</td>
<td>≤14*</td>
<td>12</td>
<td>4</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Oxytetracycline (T)</td>
<td>30</td>
<td>≤14</td>
<td>6</td>
<td>10</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Nitrofurans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrofurantone (FM)</td>
<td>300</td>
<td>≤14</td>
<td>85</td>
<td>25</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Furazolidone (FR)</td>
<td>100</td>
<td>≤14</td>
<td>90</td>
<td>20</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Chloramphenicol (C)</td>
<td>30</td>
<td>≤12</td>
<td>90</td>
<td>12</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Florfenicol (FC)</td>
<td>30</td>
<td>≤19*</td>
<td>132</td>
<td>14</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Lincomamides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lincomycin (L)</td>
<td>2</td>
<td>≤14</td>
<td>1</td>
<td>4</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Lincomycin (LIN/NE)</td>
<td>150</td>
<td>≤19*</td>
<td>111</td>
<td>9</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Macrolides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythromycin (E)</td>
<td>15</td>
<td>≤13</td>
<td>0</td>
<td>6</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>Quinolones and Fluoroquinolones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flumequine (Flx)</td>
<td>30</td>
<td>≤19*</td>
<td>5</td>
<td>15</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Nalidixic Acid (NA)</td>
<td>30</td>
<td>≤13</td>
<td>6</td>
<td>4</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciprofloxicin (CF)</td>
<td>5</td>
<td>≤15</td>
<td>82</td>
<td>18</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Difloxacin (DFP)</td>
<td>10</td>
<td>≤17</td>
<td>40</td>
<td>3</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Enrofloxicin (NFX)</td>
<td>5</td>
<td>≤16</td>
<td>68</td>
<td>12</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Norfloxicin (NOR)</td>
<td>10</td>
<td>≤12</td>
<td>90</td>
<td>10</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides and potentiad sulfonamides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim-Sulphanfamethoxazole (SXT)</td>
<td>25</td>
<td>≤10</td>
<td>50</td>
<td>30</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

N No NCCLS breakpoint

DISCUSSION

The most prevalent serogroups identified among the APEC isolates were O78 (12%), O15 (5%) and O53 (4%). This is consistent with other reports that these serogroups are commonly associated with avian colibacillosis on a worldwide scale and confirms their role as particularly adapted pathogens that permit involvement in extra intestinal infections (Dho-Mainil and Fairbrother, 1999; Ewers et al., 2004; La-Ragione and Woodward, 2002).

Colibacillosis is the primary cause of morbidity, mortality and condemnation of carcasses in the poultry industry worldwide (Witte, 1998) and colisepticemia is the most usual form of colibacillosis and is responsible for significant economic losses in poultry industry (Ewers et al., 2003). To control and prevent poultry diseases especially colibacillosis, sultherapeutic and therapeutic levels of antimicrobial agents are administered to chickens via food and water. This practice also improves feed efficiency and accelerates weight gain (Bower and Daeschel, 1999). The treatment of whole flock with antimicrobials for disease prevention and growth promotion has become a controversial practice (Amara et al., 1995). However, administration of antimicrobial agents provides a selective pressure which causes detection of resistant bacteria. Therefore, the antibiotic selection pressure for resistance in bacteria in poultry is high and consequently their faecal flora contains a relatively high proportion of resistant bacteria and resistance to existing antimicrobials is widespread and of concern to poultry veterinarians (Peighambari et al., 1995).

There is also concern that antimicrobial use in food animals can lead to the selection of antimicrobial resistant zoonotic enteric pathogens which may then be transferred to people by the consumption of contaminated food or by direct animal contact. At slaughter, resistant strains from
the gut readily soil poultry carcases and as a result poultry meats are often contaminated with multi-resistant
E. coli (Turtura et al., 1990), likewise eggs become contaminated during laying. Hence, resistant faecal *E. coli*
from poultry can infect humans both directly and via food. These resistant bacteria may colonize the human intestinal
tract and may also contribute resistance genes to human endogenous flora. It was conclusively shown by Linton
that antibiotic-resistant *E. coli* could be transferred from poultry to a food-handler’s hands during food preparation
and finally to the foodstuff. The transmission of enteric bacteria to consumers via this route has been established
and prevention of food poisoning is the basis for food hygiene and public health regulations in many countries
(Piddock, 1996).

In this study, multiple antibiotic resistance was observed in all of the examined strains similar to the
findings of earlier studies has done in Iran and other countries (Bass et al., 1999; Bazile-Pham-Khac et al., 1996;
Guerra et al., 2003; Miles et al., 2006; Saenz et al., 2003; Salehi, 2005). Almost all the *E. coli* isolates showed high
percentage of resistance to the antibiotics. High levels of resistance were against Nalidixic acid (98%), Lincomycin
(99.5%), Erythromycin (97%), Oxytetracycline (92%), Chloramphenicol (95%), Erythromycin (95%), Doxycycline
(95%), Flumequine (98%), Dirofloxacin (90%), Neomycin (92%), Streptomycin (62%), Trimethoprim-Sulfamethoxazole
(62%), Kanamycin (60%), Enrofloxacin (60%), Norfloxacin (55%), Ciprofloxacin (50%), Chloramphenicol (49%), Furazolidone
(45.5%) and Nitrofurantoin (45%). Low levels of resistance were against Florfenicol (27%), Lincopectin (10%),
Colistin (6%), Cefazolin (21%), Amikacin (2%), Ceftin (4%), Fosbloc (0%) and Gentamicin (0%). So far, Tetracyclines,
Enrofloxacin, Streptomycin, Neomycin, Trimethoprim-Sulfamethoxazole and Trimethoprim-Sulfamethoxazole were extremely used in Tabriz poultry industries. For this reason, these antibiotics are inactive
against avian pathogenic *E. coli* strains at the present time. Despite the fact that administration of
Chloramphenicol and Furazolidone is forbidden in veterinary, resistance to this antibiotics was high. This is
probably because of persistence of earlier resistances or illegal use of these agents. At the beginning of this study,
resistance rate against Florfenicol (fluorinated analogue of chloramphenicol) that has been used in Tabriz poultry
industries only 1 year ago was low but at the end (only 4 months later); isolation of resistant *E. coli* strains
were significantly high. This event was due to extremely use of Florfenicol for treatment of the disease in poultry
because of its very good effect against *E. coli*. Cefazolin and Amikacin commonly used in human but are not used
in Tabriz poultry industries, also only available drug
composition for Lincospectin and Gentamicin is injectable
solution and they are not used as mass medication in poultry. This subject can explain the high susceptibility
rate of the *E. coli* strains for these agents. Kanamycin is
also used only in human but high level resistance against
it is probably due to cross resistance. Kanamycin is
susceptible to the largest number of enzymes but conversely, resistance to Gentamicin is mediated by
modifications at few sites on the molecule. These findings
confirm significant increase in the incidence of antimicrobial resistance in the *E. coli* strains is most
probably due to increased use of antibiotics as feed
additives for growth promotion and prevention of
diseases, use of inappropriate antibiotics for treatment of
disease, resistance transfer among different bacteria and
possible cross resistance between antibiotics used in
poultry.

Perhaps the most striking finding from this study was the widespread resistance to quinolones and
fluoroquinolones. This study showed that the prevalence of Quinolone-Resistant *Escherichia coli* (QREC) is very
high in the area farms. Resistance to Nalidixic acid,
Flumequine, Dirofloxacin, Enrofloxacin, Norfloxacin and
Ciprofloxacin were 98, 98, 80, 60, 55 and 50%, respectively.
Although, identification of fluoroquinolone-resistant avian
E. coli isolates has been reported in other places for example in Saudi Arabia, Spain, the United States and
China (Allam et al., 1993; Saenz et al., 2003; White et al.,
2000; Yang et al., 2004). To the knowledge, this is the
highest prevalence of resistance to quinolones in *E. coli*
that has ever been reported. This high presence of QREC
from the broiler chickens probably is due to overuse of
enrofloxacin in this animal population for therapeutic
purposes in the area. Consequently, fluoroquinolones have become infective in treatment of colibacillosis in
Tabriz poultry flocks. Resistance to fluoroquinolones in
these isolates, coupled with the observation of widespread multiple-antimicrobial resistance in all of the
isolates.

There is mounting evidence that antimicrobial use in veterinary medicine may select for
antimicrobial-resistant zoonotic bacterial pathogens
(e.g., Salmonella and Campylobacter). This has led to
increased pressure to limit fluoroquinolones in animals to
preserve the value of these drugs in the treatment of human infections but unfortunately, there is no any
program to restriction antibiotic administration in veterinary in Iran and other under developing countries
(Glynn et al., 1998; Smith et al., 1999). In addition to
the human health concerns, antimicrobial-resistant pathogens also pose a severe and costly animal health problem in that they may prolong illness and decrease productivity.
through higher morbidity and mortality (Xu, 2001). Therefore, the introduction of surveillance programs to monitor antimicrobial resistance in pathogenic bacteria strongly is needed.

The major factor selecting for antimicrobial resistance in bacteria is antibiotic use and additionally, crowding and poor sanitation. These three factors are typical of intensive poultry farming and explain the high prevalence and degree of resistance to faecal E. coli of poultry in this and other studies (Van den Bogaard and Stobberingh, 1999).

Other than antimicrobials, other approaches to prevent and control APEC infections in the poultry industry include improved hygienic methods, vaccination use of competitive exclusion products and the introduction of novel immunopotentiators. However, each of these practices have had limited success (Gomis et al., 2003; La Ragione et al., 2001) and it has necessitated the use of antimicrobial chemotherapy to control outbreaks of colibacillosis. In vitro antimicrobial susceptibility testing of veterinary pathogens can provide valuable guidance to the veterinarian in the choice of appropriate chemotherapy. Also, research to identify new ways to minimize antimicrobial use in poultry farms is essential.

CONCLUSION

This study shows that multiple-antimicrobial-resistant E. coli isolates including fluoroquinolone-resistant variants are commonly present among diseased broiler chickens in Tabriz, Iran. Resistance to existing antimicrobials is widespread and of concern to poultry veterinarians. The significant increase in the incidence of resistance against antibiotics in the E. coli strains isolated from broiler chickens is probably due to increased use of antibiotics as feed additives for growth promotion and prevention of diseases use of inappropriate antibiotics for treatment of diseases, resistance transfer among different bacteria and possible cross resistance between antibiotics used in poultry. Thus, introduction of surveillance programs to monitor antimicrobial resistance in pathogenic bacteria is strongly needed in Iran and other under developing countries because in addition to animal health problems, transmission of resistant clones and resistance plasmids of E. coli from food animals (especially poultry) to humans can occur. Since, the use of Cotrimoxazole and fluoroquinolones in poultry may cause cross-resistance with human enteric pathogens (especially with Salmonella and Campylobacter sp.), prudent use of these antimicrobial agents in avian species is highly recommended. To deal with multi-drug resistant organisms, it is usually recommended that potentially synergistic antimicrobial combinations be used, preventive strategies such as appropriate husbandry and hygiene, routine health monitoring and immunization should be emphasized, poultry producers should approach the treatment of diseases with antibiotics very cautiously. The producer and veterinarian should research closely when antibiotic therapy is needed in a flock and both must continue to work toward ensuring a safe food supply for consumers.

ACKNOWLEDGEMENT

Researchers would like to acknowledge the Islamic Azad University, Tabriz Branch for Financial Support of this project.

REFERENCES

