Expression Patterns of the Cannabinoid Receptor 1 Gene in Pig Skeletal Muscle and Skeletal Satellite Muscle Cells

1,2 E. Xu, 1 Linna Zhu, 1 Ren Lai, 1 Jia Guo, 1 Yanna Huang, 1 Ting Wu and 1 Yizhen Wang
1 Institute of Feed Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, The Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, 310058 Hangzhou, China

2 College of Animal Sciences, Guizhou University, 550025 Guiyang, China
3 Biotoxin Units of Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences, Kunming Institute of Zoology, 650223 Kunming, Yunnan, China

Abstract: The Cannabinoid Receptor type 1 (CNR1) is a key component of the endocannabinoid system which has been reported to play a pivotal role in modulating feeding behavior and energy balance. While a large number of researches have showed clearly that CNR1 is expressed in skeletal muscle of mice and human beings, detailed analysis of CNR1 gene expression in pig muscles and muscle cells has not been reported. Here, quantitative PCR were used to characterize the CNR1 in different muscles of pig and isolation of porcine myogenic satellite cells. Results showed that the expression of CNR1 mRNA was greatest in longissimus dorsi muscle (p<0.01) among that in the gastrocnemius (mix), soleus muscle (slow-type) and longissimus dorsi muscle (fast-type). As to age-related changes of CNR1 gene in different pig muscles, the higher expression was found at the 30th day, then declined (p<0.05) in all three kinds of muscles to the 90th day. At the 150th day, the expression of CNR1 steadily decreased (p<0.05) in the gastrocnemius compared to the 90th day but not in longissimus dorsi muscle and soleus. Meanwhile the breed differences in the expression of CNR1 mRNA between Jinhu pig and Landrace were also identified. The mRNA abundance of CNR1 in Landrace was higher compared with that of Jinhu pigs and strong differences were observed in longissimus dorsi muscle (p<0.05) and soleus (p<0.01). In vitro with the differentiation of the satellite cells, the mRNA expression of the CNR1 was significantly down-regulated (p<0.05). The lowest mRNA expression was observed at the 9th day. These data provide a framework of CNR1 gene expression patterns and implicate a novel gene for regulating muscle fiber types.

Key words: Cannabinoid Receptor 1 (CNR1), skeletal muscle, skeletal satellite muscle cells, pig, isolation, gastrocnemius, China

INTRODUCTION

The endocannabinoids is an endogenous amide of long-chain fatty acids. As a signal substance, it has exerted diverse biological effects on regulating energy metabolism and many other biological functions through the cannabinoid receptor type 1 (CNR1) (Cavuoto et al., 2007a, b; Amoros et al., 2010). CNR1 belongs to the superfamily of G/PiGo protein-coupled receptors (Matsuda et al., 1990) and is mainly expressed within the central nervous system as well as peripheral tissues. In the central system, CNR1 is highly expressed in the hippocampus, cerebellum and substantia nigra (Glass et al., 1997). About peripherally tissue, CNR1 also is found in adipocytes, the gastrointestinal tract, liver and skeletal muscle (Pertwee, 2001; Cota et al., 2003; Osei-Hyman et al., 2005; Silvestri et al., 2011).

A larger number studies have shown that the CNR1 could regulate energy metabolism and have some relationship with obesity and other metabolic diseases (Benzinou et al., 2008; Di Marzo, 2008, Schleinitz et al., 2010; Milewicz et al., 2011). CNR1 specific antagonists have not only been shown to inhibit appetite but also to increase peripheral energy utilization (Pagotto et al., 2011).

Corresponding Author: Yizhen Wang, Institute of Feed Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, The Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, 310058 Hangzhou, China

4297
Skeletal muscle is a contractile tissue which plays an important role in energy homeostasis and metabolic regulation (Cote et al., 2007; Tedesco et al., 2010). Although, CNR1 have been detected in skeletal muscle (Matias et al., 2006), most of the research focused on the rodents and human beings (Cavuoto et al., 2007a, b; Gustafsson et al., 2008). Up to now, little was known about the expression of CNR1 in pig.

The Jinhu pig (a fatty breed) is one of the most famous local breed in China. The breed is especially noted for its superior quality in meat including high Intramuscular Fat (IMF), redder and tender meat and good taste flavor (Miao et al., 2009; Yao et al., 2011). Landrace pig (a leaner breed) is believed to grow faster and lower fat content (Lefaucheur et al., 2002). Therefore, these two different breeds can serve as good models for studying gene expression of energy metabolism and meat quality. Moreover, skeletal satellite cells are thought to be the precursors that provide a reserve capacity to replace the differentiated in skeletal muscle (Zammit and Beauchamp, 2001). The standard approach has been established to isolate skeletal satellite cells from adult skeletal muscle by enzymatic disaggregation (Bischoff, 1974; Blau and Webster, 1981; Yablonska-Reuveni et al., 1987; Qu-Petersen et al., 2002; Matt et al., 2008).

In the current experiment, we wished to demonstrate the expression patterns of CNR1 gene including age-related changes and breed difference in different muscles in vivo. Furthermore, the developmental CNR1 expression in isolated skeletal satellite cells was also studied. This research has the potential to increase the understanding of the role of CNR1 in skeletal muscle and provide a potential target for regulating energy metabolism and meat quality.

MATERIALS AND METHODS

All of the experiments were completed according to the guidelines for animal experiments at the National Institute of Animal Health.

Animals and sample collection: Jinhu pigs and Landrace were purchased from Zhejiang Jinhu Pig Breeding Co., Ltd. The animals were raised under same conditions and were fed on commercial diet. Six Landrace (90th days) and 18 Jinhu males at the 30th, 90th and 150th day (6 individuals per stage each breed) were used to determine the CNR1 expression patterns. All pigs were selected randomly and killed after a 12 h fasting period. Three different skeletal muscles such as longissimus muscle, gastrocnemius and soleus were selected for mRNA abundance: the longissimus muscle adjacent to the last rib were removed, gastrocnemius and soleus samples were taken from the left-half carcasses immediately after postmortem and packed into plastic bags then frozen in liquid N and stored at -80°C until further analysis.

Isolation and culture of pig skeletal satellite muscle cells: The method for isolation of pig skeletal muscle cells has earlier been described by Redshaw et al. (2010). Briefly, three Landrace pigs from 5-7 days of age were overdosed with sodium thiopental and exsanguinated. Longissimus muscle was removed and washed with Phosphate Buffered Saline (PBS) which was then minced and cells were dissociated by digestion with 1 g L⁻¹ Pronase (Gibico) in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibico) for 1 h at 37°C with continuous agitation. Digestion was halted by DMEM containing 20% Fetal Bovine Serum (FBS, invitrogen), followed by filtration through 74 um nylon mesh filtration and centrifuged for 20 min at 1200 rpm. Cells were resuspended in Growth Media (GM invitrogen) with 20% FBS, 100 IU mL⁻¹ penicillin, 100 mg mL⁻¹ streptomycin. Then, the satellite cells were isolated using a preplating method. Initially cells were seeded on plastic for 6 h and then non-adherent cells were transferred to a new plastic. Cells were cultured at 37°C under a humidified atmosphere of 95 air: 5% CO₂. Media was changed every day. When the cells had grown to near 80-90% confluence they were passaged by trypsinization (0.5% trypsin in 0.25% mM EDTA). Differentiation Medium (DM) contained 2% horse serum instead of 20% fetal bovine serum. After cultured in DM for 0, 1, 3, 5, 7, 9 and 11, the cells were harvested, respectively.

RNA isolation and cDNA synthesis: The total RNA was extracted from different skeletal muscles and isolation of porcine myogenic satellite cells by Trizol reagent (Invitrogen) according to the manufacturer’s protocols, then treated with RNase-free DNase I (Biolabs) to remove contaminating genomic DNA, after that RNA was further purified by RNA clean kit (Aidlab). The concentration and purity of the RNA were determined by Nano Drop 2000 Spectrophotometer (Thermo Fisher Scientific, USA). The first cDNA was synthesized from total 0.5 μg RNA using PrimeScript Master Mix (Takara) as described in the manufacturer’s protocol. The prepared cDNA was stored at -20°C.

Identification of pig skeletal satellite muscle cells: Desmin immunocytochemistry and mark genes-MyoD, MyoG gene expression were used to identify pig skeletal satellite muscle cells. Cells were seeded at a density of 1 × 10⁶ cells/well in 24 well plate then cells were fixed in 4%
paraformaldehyde at 24 h of growing cell. BAD staining and characterization of satellite cells were performed by Diamino benzidine (DAB) kit (Keygen, China) and SABC Mouse IgG/1/2 kit (Boster, China). The desmin antibody used was pig monoclonal antibody (1:300, Boster). Primary antibody incubations were 2 h and secondary antibody incubation was 20 min as per manufacturer's guidelines. Additional MyoD and MyoG gene expression studies used differentiated cells. Cells seeded at the same plating density in 6 well plate, once cells became 80% confluence, DM was used and cells cultured for up to 7 days with media changes every 48 h. Then the cells were collected for RNA extraction. Expression of MyoD and MyoG were determined by conventional PCR and gel electrophoresis. The following primers were used: 18S (accession AY265350) CCCCAGGATCGGAAAAAAAAAG (sense) and TGGACGGAAAGGCACCA (antisense), MyoD (accession U12574) TGGTATTCTCAACCCCTTC (sense) and AGTATGCAAGGGTGAGGTGG (antisense), MyoG (accession NM_0010124061) CTCTTACCCAAGGATCCCCACTTCTC (sense) and GTCCCAGGCCCTTTATCTTC (antisense). PCR reactions were prepared using (Sanqon, China) and the cycling parameters were: 95°C 2 min, 30-35 cycles of 95°C 10 sec, 60°C 30 sec and final elongation at 72°C for 10 min and then all products were resolved on 1.5% gel.

Quantitative Real time PCR (RT-PCR): RT-PCR was performed using Applied Biosystem 7500 Fast real time PCR system (Applied Biosystems, Foster city, CA) and SYBR premix ExTaq™ (Tli RNaseH Plus) (Takara). CNR1 gene was selected to analyze the RNA abundance and 18S was used as the reference gene. The primers were designed and synthesized by Takara Co., Ltd and primers sequences are shown as follow. About 18S (accession AY265350) CCCCAGGATCGGAAAAAG (sense) and TGGACGGAAAGGCACCA (antisense), CNR1 (accession XM_003121922) TACAAGGAGAATGACAGAA (sense) and TGGAGGATAACGCACAGT (antisense). The PCR System was composed of 1 µL cDNA sample, 0.4 µL sense primer (10 µM), 0.4 µL anti-sense primer (10 µM), 0.4 µL Rox, 10 µL SYBR premix and 7.8 µL water (Rnase, Dnase-free) to a total volume of 20 µL. The PCR was run for 2 min at 95°C, followed by 40 cycles of 95°C for 5 sec and 60°C for 34 sec. The melting curve was analysed to verify the specificity of the reactions. The relative target gene expression was evaluated according to previous publications of the research group (Guo et al., 2011). About 2^ΔΔCt Method was used to determine mRNA expression levels and the target gene expressions were normalized to reference 18S rRNA gene expression.

Statistics: All data are expressed as the mean±SEM and mean values were compared by unpaired 2-tailed student’s t-tests or ANOVA using SPSS16.0 as appropriateness. Differences were considered to be significant at p<0.05. All experiments were repeated in three times.

RESULTS AND DISCUSSION

CNR1 mRNA expression is greatest in longissimus muscle: The different skeletal muscles such as longissimus dorsi muscle (primarily fast-type) and gastrocnemius (mixed) as well as soleus (primarily slow-type) were dissected from 90 days old male Jinhua pigs. All of these muscles were used for RT-PCR. The levels of CNR1 mRNA were significantly greater in the longissimus dorsi muscle than in the gastrocnemius which was significantly greater than that analyzed in the soleus (Fig. 1).

Developmental expression patterns of CNR1 in different muscles: The developmental expression pattern of CNR1 gene in different muscles of Jinhua pig at age of 30, 60 and 150 days were evaluated and the results of relative expression of CNR1 were shown in Fig. 2. The expression levels of CNR1 gene showed decreasing trend in different muscles with growing. In details, the expression of CNR1 gene was at a high level at 30 days in three kinds of muscles. At the 90th day, the levels of CNR1 mRNA were significantly lower than that of 30 days in different

Fig. 1: Expression of CNR1 in pig different skeletal muscle. Longissimus dorsi muscle, gastrocnemius and soleus were taken from 90 days old Jinhua pig. These muscles will be used for RT-PCR analysis of CNR1 gene expression. About 6 mRNA samples of each type of muscle were conducted for 3 times and normalized to 18S rRNA expression. The data represented the change in mRNA expression relative to the LM which was arbitrarily defined as 1. Means with different superscripts differ (p<0.01)
Fig. 2: The patterns of CNR1 gene mRNA levels in different muscles of Jinhu pig at 30, 90 and 150 days. Longissimus dorsi muscle, gastrocnemius and soleus were gathered from 30, 90, 150 day olds Jinhu pig. RT-PCR was performed to analysis of gene expression. The result of developmental expression patterns in a) longissimus dorsi muscle; b) in gastrocnemius and c) in soleus. Six mRNA samples each type of muscle per stage were conducted 3 times and normalized to 18S rRNA expression. The data represented the change in mRNA expression relative to the 30 days which was arbitrarily defined as 1. Means with different superscripts differ (p<0.05)

Fig. 3: Effect of breed on the gene expression of CNR1; a) in longissimus dorsi muscle; b) in gastrocnemius and c) in soleus) six Landrace (90 days) and 6 Jinhu pig (90 days) pigs were selected for analysis of gene expression using real time quantitative PCR. Relative gene expression was normalized to 18S rRNA. The data represented the change in mRNA expression relative to the Landrace which was arbitrarily defined as 1.*p<0.05, **p<0.01

muscles and then steadily declined at the 150th days. But there were not significant differences between that of 90 and 150 days in longissimus dorsi muscle and soleus.

The breed differences of CNR1 mRNA levels in different muscles: We analyzed the expression of CNR1 in longissimus dorsi muscle, gastrocnemius and soleus of Landrace and Jinhu pig. In short, the mRNA abundance of CNR1 in Landrace was higher compared with that of Jinhu pigs. In addition, notable differences were observed in longissimus dorsi muscle and soleus (Fig. 3a and c). But the CNR1 expression in gastrocnemius did not differ significantly between the 2 breeds.

Myogenic characterization of pig skeletal satellite muscle cells: Satellite cells were isolated from longissimus dorsi muscle based on their adhesion properties. These cells were subsequently used for Myogenic characterization. Characterization via Desmin immunocytochemistry confirmed myogenic origin. In addition, expression of marker gene (both MyoD and MyoG) was used for characterization. Cells isolated were capable of fusing and forming myotubes which stained positive for Desmin (Fig. 4a) and detected MyoD, MyoG expression (Fig. 4b and c). This indicated that the cells were pig skeletal satellite muscle cells.

Developmental expression patterns of CNR1 in pig skeletal satellite muscle cells: Pig skeletal satellite muscle cells were isolated and cultured in GM and induced to differentiate by switching to DM. Total RNA was extracted from proliferating (0 day) or differentiated cells at 1, 3, 5, 7, 9 and 11 days after switching to DM and assayed by RT-PCR. The mRNA expression of the CNR1 was significantly down-regulated in cells differentiated. The lowest mRNA expression was observed at the
pigs. As is known, the different muscles are composed of different skeletal muscle fibers and have different biochemical and biophysical characteristics (Kim et al., 2008). Earlier studies suggested that expression of CNR1 was significantly higher in fast muscle compared with slow muscle (Eckardt et al., 2009). In current study, researchers compared the CNR1 expressions in longissimus dorsi muscle, gastrocnemius and soleus, the results also showed CNR1 mRNA expression was greatest in fast-type (longissimus dorsi muscle). The developmental expression patterns of CNR1 in different muscles in general, showed the down trend with age-increasing. These results were consistent with who found that the CNR1 mRNA expression was significantly down-regulated with age-increasing in mice gastrocnemius. Interestingly, we observed that after 90 days, the expression of CNR1 mRNA declined slower both in fast-type and slow-type muscle. But in mixed-type (gastrocnemius), expression of CNR1 mRNA decreased steadily.

The local Jinhua pig which is noted for its high-quality of meat, scarlet muscle and higher IMF contents. By contrast, the Landrace pig is a lean breed with greater growth but lower meat quality. The earlier studies had shown obvious differences in the intramuscular fat content, drip loss, redness, muscle metabolic enzymes and muscle fiber types between Jinhua and Landrace (Shan et al., 2009; Guo et al., 2011). The breed differences of CNR1 gene was not reported in earlier study. This study found the strong differences in longissimus dorsi muscle and soleus. But no difference was significant between the 2 breeds in gastrocnemius. The data of this study may suggest that CNR1 take part in controlling muscle fiber types.
Pig skeletal satellite muscle cells, a kind of adult muscle stem cells which reside outside the fibre plasmalemma but within the basal lamina and mediate capacity for skeletal muscle fibers hypertrophic growth and regeneration in the post-natal animal (Redshaw et al., 2010). Zhao have investigated the CNR1 mRNA during differentiation of C2C12 skeletal muscle cells. The results showed that significantly up-regulated 24, 72 and 96 h post differentiation. In contrast, this study found CNR1 mRNA expression was significantly down-regulated after cultured in DM. The differences may be due to different cells. In addition, during differentiation, CNR1 mRNA expression were significantly greater at 3 and 11 days compared with that of 1, 5, 7 and 9 days. These results suggested that CNR1 might play a role in the functional of proliferating and differentiation in pig skeletal muscle cells.

CONCLUSION

In this study, researchers have demonstrated clear expression patterns of CNR1 gene in different muscles of pig. In vitro, how did the CNR1 gene expression change with skeletal satellite muscle cells differentiation was also evident. These results revealed new insights into the CNR1 gene in pigs. In addition, the results suggested that CNR1 might be involved in regulating muscle fiber types and differentiation of skeletal muscle cells in pig.

ACKNOWLEDGEMENTS

This study was supported financially by the Special Fund for Cultivation and Breeding of New Transgenic Organism (Grant No. 2009Z2X08009-144B). Researchers thank Dr. Ming Huang and Dr. Yanhua Gao for their technical support in the experiment.

REFERENCES

Schleinitz, D., S. Carmienke, Y. Bottcher, A. Tonjes, J. Berndt and N. Kloeting et al., 2010. Role of genetic variation in the cannabinoid type 1 receptor gene (CN1R1) in the pathophysiology of human obesity. Pharmacogenomics, 11: 693-702.

