Interferon-Gamma Enhance Immune Response and Efficacy of Recombinant Subunit Vaccine Against *Eimeria tenella* in Chickens

Jinjun Xu, Jinhao Peng and Jianping Tao
Key Lab for Avian Preventive Medicine, Ministry of Education, Yangzhou University, Yangzhou, 225009 Jiangsu Province, P.R. China

Abstract: To effectively control coccidiosis with a subunit vaccine, the refractile body antigen SO7 adjuvanted with Chicken Interferon-gamma (ChIFN-gamma) was administrated to chickens and its ability to protect against virulent challenge by *E. tenella* was evaluated. About 5 days old chickens were subcutaneously immunized with SO7 antigen (100 μg per chick) mixed with various doses of ChIFN-gamma or without adjuvant. A boost of the same dose was given at 12 and 19 days of age. The specific antibody response and lymphocyte proliferation response to SO7 antigen were measured at 5, 12, 19 and 26 days of age. Chickens in all groups were orally challenged with 1×10⁵ homologous sporulated oocysts of *E. tenella* at 26 days of age and killed at 8 days postchallenge. Results showed that when immunized by antigen adjuvanted with ChIFN-gamma, specific lymphocyte proliferation in chickens was obviously observed at 19 and 26 days of age and specific antibody response was obviously observed at 12, 19 and 26 days of age. All groups administered with antigen mixed in adjuvant showed higher protective immunity compared to PBS control, non-adjuvanted antigen control in which the group given adjuvanted antigen with 5,000 units ChIFN-gamma showed significantly stronger adjuvant effects in terms of lower mortality, oocyst output, lesion score and higher weight gain (p<0.05). Protective immunity was affected by dose of the adjuvant, no linear dose relationship was observed. These results suggest that ChIFN-gamma has a strong adjuvant effect at a appropriate dose and may potentially serve as a vaccine adjuvant against avian coccidiosis.

Key words: *Eimeria tenella*, SO7 antigen, subunit vaccine, adjuvant, interferon-gamma

INTRODUCTION

Eimeria sp. are the causative agents of coccidiosis, a major disease affecting many intensively-reared livestock, especially poultry. The chicken is host to 7 species of *Eimeria* that develop within intestinal epithelial cells and produce varying degrees of morbidity and mortality (McDonald and Shirley, 2009). Control of coccidiosis in the poultry industry is dominated by prophylactic chemotherapy. However, drug resistance is a serious problem and along with public demand for chemical-free meat, these issues have led to the requirement for an effective vaccine strategy (Shanman et al., 2010). Live vaccines containing low doses of virulent or attenuated oocysts have been developed and used worldwide (Williams and Catchpole, 2000; Lillehoj and Choi, 1998) but live vaccines also have disadvantages: production of live vaccines is relatively expensive; attenuated vaccines have the potential to revert to the pathogenic wild type; low dose of virulent oocysts also have the risk of causing disease. Therefore, with the progress of molecular biology, non-infectious vaccines such as recombinant subunit vaccines and/or DNA vaccines may be good alternatives (Dalloul and Lillehoj, 2005).

The SO7 protein which was described to be located in the refractile body of *E. tenella* sporozoites (Miller et al., 1989) has been found to be highly immunogenic with both B and T-cell epitopes. SO7 is a good candidate antigen for a subunit vaccine (Tennyson, 1994), an it has also been successfully used to construct live vector vaccines (Pogonka et al., 2003; Konjufta et al., 2008; Yang et al., 2010). A single dose of the recombinant fusion protein CheY-SO7 not only partially protected against severe coccidiosis induced by *E. tenella* but also protected chickens challenged with the heterologous species *E. acervulina*, *E. maxima* and *E. necatrix* however, this therapy was still not sufficient to compete with prophylactic chemotherapy (Crane et al., 1991). In addition, when SO7 protein was mixed in Freund's Incomplete Adjuvant, an almost nonprotective antibody response was observed (Kopko et al., 2000). Difference in

Corresponding Author: Jianping Tao, Veterinary College of Yangzhou University, No.12 Wenhui Road, Yangzhou, 225009 Jiangsu Province, P.R. China
antigen delivery, especially in the adjuvant that was used may explain the differences between these two experiments that have used the same recombinant antigen (Kopko et al., 2000). Therefore, it is important to select appropriate adjuvants to maximize the efficacy of coccidial subunit vaccines.

Veterinary adjuvants which are mostly mineral oil or aluminum-based have been successfully applied to enhance antigen-specific immune responses for >80 years (Newman and Powell, 1995). However, side effects especially local reactions such as swellings, inductions, erythemas and cutaneous nodules of these adjuvants (which may persist for up to 8 weeks or sometimes longer) have been reported (Leenaars et al., 1998). Moreover, government clearance for oil-based adjuvants used in food animals is absent so other novel adjuvants with greater safety and efficacy are needed.

In a earlier study, researchers have expressed S07 protein in E. coli and its immune efficacy adjuvanted with Freund’s adjuvant, ginsenosides and Chicken Interferon-gamma (ChIFN-gamma) was preliminary evaluated (Xu et al., 2007). In the present study, chickens were subcutaneously injected with the protein mixed with various doses of ChIFN-gamma, the immune response was evaluated by measuring specific antibody response and lymphocyte proliferation, the immune efficacy was further evaluated by measuring survival rate, Body Weight Gain (BWG), lesion score and oocyst output after a challenge with E. tenella oocysts. The data lay a foundation for the improvement of subunit vaccine against coccidiosis in chickens.

MATERIALS AND METHODS

Animals and parasites: About 1 day old, newly hatched AA broilers were obtained from Jiangsu Institute of Poultry Science (Yangzhou, Jiangsu, China). Chickens were raised in a coccidium-free environment in wire cages and feed and water were supplied ad libitum. Animal breeding, care and all experiments were performed according to the rules of the Animal Experiment Ethic Committee of Yangzhou University. E. tenella Yangzhou strain with high virulence was originally isolated from Yangzhou, Jiangsu Province. Parasites were maintained and propagated in chickens free of infection with Eimeria sp.

Chicken interferon-gamma: Recombinant ChIFN-gama was purified from the supernatant of recombinant baculovirus infected SF9 cells. Its biological activity was assayed by its ability to inhibit the cytopathic effects of Vesicular Stomatitis Virus on chicken embryo fibroblast cells by Methylthiazoletetrazolium (MTT) assay (Kong et al., 2005).

Recombinant S07 protein: Recombinant S07 protein was produced and purified as described by Xu et al. (2007). Briefly, the cDNA of the E. tenella gene S07 of Yangzhou strain were obtained by Reverse Transcriptional Polymerase Chain Reaction (RT-PCR) of total RNA of sporocysts. PCR products were cloned into the plasmid vector pGEM-T-easy (Promega) and then subcloned into the expression vector pJEX-6F-1 (Pharmacia). After induced by isopropyl-β-D-thiogalactopyranoside (IPTG, AMRESCO), recombinant S07 protein was expressed in E. coli. The solubilized GST-S07 protein was purified by affinity chromatography using a Glutathione Sepharose 4B column and 10 mM glutathione elution buffer according to the manufacturer’s instructions (Amersham Biosciences) followed by cleavage with PreScission™ protease (Amersham Biosciences) by a bath method. The protein concentration was spectrophotometrically estimated at A280 and A260 nm then the purified protein was stored in aliquots at -20°C until further use.

Immunization and challenge: About 5 days old AA broilers were divided into eight groups (n = 40, 20 for immunization and challenge, 20 for immunization and detection of lymphocyte proliferation and antibody responses) and subcutaneously (s/c) immunized with S07 antigen (100 µg per chick) with various adjuvants or without adjuvant. Chickens in group I were each injected with 200 µL PBS; chickens in group II were given antigen without adjuvant; chickens in groups III-V were given antigen mixed with 1,000, 5,000 and 10,000 units ChIFN-gamma, respectively. All chickens were boosted at 12 and 19 days of age. About 7 days after the third boost immunization, all chickens were weighted and challenged orally with 100,000 E. tenella sporulated oocysts. The clinical signs and mortality of each group were observed and documented daily post challenge. Feces of each group were collected separately on days 5-8 post infection (dpi). Chickens in all groups were weighted and euthanized on day 8 post challenge. The experimental design and immunization protocol are outlined in Table 1.

Lymphocyte proliferation assay: Peripheral blood was collected from five chickens in each group at 5, 12, 19 and 26 days. Lymphocytes were isolated adjusted to 1.0×10⁷ cells mL⁻¹ in RPMI-1640 medium (Gibco) containing 10% fetal calf serum, 100 mL⁻¹ penicillin and 100 µg mL⁻¹
Table 1: Experimental design and immune program

<table>
<thead>
<tr>
<th>Groups</th>
<th>Number of chickens</th>
<th>SO7 protein (µg/chick)</th>
<th>Adjuvant and dose per chick</th>
<th>Days of immunization</th>
<th>Days of challenge</th>
<th>Challenge dose for sporulated oocysts per chick</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>40</td>
<td>PBS</td>
<td>None</td>
<td>5</td>
<td>26</td>
<td>1×10^9</td>
</tr>
<tr>
<td>II</td>
<td>40</td>
<td>100</td>
<td>None</td>
<td>5</td>
<td>26</td>
<td>1×10^9</td>
</tr>
<tr>
<td>III</td>
<td>40</td>
<td>100</td>
<td>10000 units ChiFN-gamma</td>
<td>5</td>
<td>26</td>
<td>1×10^5</td>
</tr>
<tr>
<td>IV</td>
<td>40</td>
<td>100</td>
<td>5000 units ChiFN-gamma</td>
<td>5</td>
<td>26</td>
<td>1×10^5</td>
</tr>
<tr>
<td>V</td>
<td>40</td>
<td>100</td>
<td>10000 units ChiFN-gamma</td>
<td>5</td>
<td>26</td>
<td>1×10^5</td>
</tr>
</tbody>
</table>

streptomyicin. For lymphocyte proliferation assay, 100 µL/well lymphocyte suspension was added to 96 well flat-bottomed plates (Costar, USA) and cultured at 37°C in 5% CO₂ with 20 µL SO7 protein (final concentration: 10 µg mL⁻¹) for 56 h. About 10 µL of MTT (5 mg mL⁻¹, AMRESCO) solution was added to each well and incubated for 4 h. The reaction was stopped by addition of 100 µL Dimethyl Sulfoxide (DMSO) and the optical density was measured in an enzyme-linked immunosorbent reader (Tecan) at 570 nm. Each sample was analyzed in triplicate.

Enzyme linked immunosorbent assay: Sera from chickens used in lymphocyte proliferation were collected and tested for the SO7-specific antibody response with Enzyme-Linked Immunosorbent Assay (ELISA). In brief, 96 well plates were coated with 1 µg/well of purified recombinant SO7 protein. Plates were blocked with PBS buffer containing 10% fetal calf serum for 1 h at 37°C. The 100 µL of serum sample diluted 1:200 was added per well and incubated for 1.5 h at 37°C. After washing three times with PBS containing 0.05% Tween, 100 µL peroxidase-conjugated goat anti-chicken IgG (Sigma) diluted 1:10,000 was added per well and incubated for 1 h at 37°C. After washing, 100 µL orthophenylenediamine (Sigma) (0.4 mg mL⁻¹ in 0.05 M phosphate citrate buffer, pH 5.0) was added per well and incubated for 15 min at 37°C to detect peroxidase activity. When the reaction was stopped by the addition of 50 µL of 2 M sulfuric acid, optical density at 490 nm (OD₄₉₀) was measured with an automated microplate reader. All samples were analyzed in triplicate.

Evaluation of immune protection: Efficacy of immunization was evaluated on the basis of survival rate, BWG, lesion score and oocyst output. Survival rate was estimated by the number of surviving chickens divided by the number of initial chickens. BWG was determined at the beginning of the challenge and at the end of the challenge. The lesion score of caecum in each group was investigated according to Johnson and Reid (1970) by double-blind examination (minimum score 0, maximum score 4). Total oocysts in faeces of each group were counted using the McMaster Method modified by Talebi and Mulcahy (1995) and each sample was counted three times. The reduction in oocyst output was calculated as follows: (The average number of oocysts from challenge control group – The average number of oocysts from vaccinated group)/The average number of oocysts from challenge control group ×100%.

Statistical analysis: Data were analyzed by SPSS Software (SPSS 15.0K for Windows). The ANOVA test was used to test for differences between the groups. Duncan's multiple range test was used to analyze differences between the mean values and differences were considered statistically significant at p<0.05.

RESULTS AND DISCUSSION

Proliferation of blood lymphocytes: The cell-mediated proliferation patterns to SO7 protein as indicated by MTT in immunized and control chickens are described in Fig. 1. There was no significant difference among the five groups at 5 and 12 days of age (p>0.05). At 19 days of age, the cellular proliferation response to SO7 in groups immunized with antigen added with adjuvant were significantly higher than that in the PBS control group or the group immunized with antigen alone (p<0.05) however, there was no significant difference among groups immunized with antigen plus adjuvant (p>0.05). At 26 days of age, the cellular proliferation response in groups immunized with antigen plus adjuvant increased and the values in chickens immunized with antigen mixed with the middle dose of ChiFN-gamma (5000 units) were significantly higher than other immunized groups (p<0.05).

Serum antibody responses: Eimeria-specific antibody responses to SO7 antigen in immunized and control chickens are depicted in Fig. 2. There was no significant difference among the five groups at 5 days of age (p>0.05). At 12 days of age, antibody responses were significantly higher in groups immunized with antigen added with adjuvant than in PBS control group or group immunized with antigen alone (p<0.05) however, there was no significant difference among groups immunized with antigen plus adjuvant (p>0.05). Compared with the PBS control group, significant increases in mean absorbance
Fig. 1: Lymphocyte proliferation in response to recombinant SO7 protein immunization. Shown are mean OD$_{570}$ of stimulated lymphocyte cultures was measured by MTT (n = 5). Result was detected at 570 nm using an ELISA reader. Values with different letters differ within the same time point at \(p<0.05 \)

Fig. 2: Antibody response in chickens immunized with recombinant SO7 protein. Values with different letters differ within the same time point at \(p<0.05 \).

Values of immunized chickens were noted at 19 or 21 days of age (\(p<0.05 \)). Among chickens immunized with antigen with adjuvant, a significantly higher level in mean absorbance values was observed in chickens immunized with antigen mixed with middle dose ChIFN-gamma (5,000 units) \((p<0.05) \) at 21 days of age.

Immunizing efficacy: Chickens immunized with antigen alone had a 50% mortality which was the same as the PBS control group. In the chickens immunized with antigen mixed with various dose of ChIFN-gamma, there was a 40, 20 and 40% mortality in the 1,000, 5,000, 10,000 units ChIFN-gamma groups, respectively. Among the immunized groups, the mortality in chickens immunized with antigen mixed with the middle dose of ChIFN-gamma (5,000 units) was the lowest.

Fig. 3: Mean body weight gains of chickens immunized with recombinant SO7 protein following *Eimeria tenella* challenge infection. Values with different letters differ significantly at \(p<0.05 \).

The immunizing efficacy of recombinant SO7 protein in terms of BWG is shown in Fig. 3. There was no significant difference in BWG among the PBS control group and the group immunized with antigen alone. However, BWG in the group with adjuvant was higher than the challenged control group or the group immunized with antigen alone \((p<0.05) \). Among groups immunized with antigen plus adjuvant, BWG of chickens immunized with antigen mixed with the middle dose of ChIFN-gamma was significantly higher than in the other groups \((p<0.05) \). The immunizing efficacy of recombinant SO7 protein in terms of mean caecal lesion score is shown in Fig. 4. The lesion score in the control group and the group immunized with antigen alone was significantly higher than in other immunized groups \((p<0.05) \). Among groups immunized with antigen plus adjuvant, lesion scores of chickens immunized with antigen mixed with the middle dose of ChIFN-gamma was significantly lower than other groups \((p<0.05) \).

Compared with the PBS control group, immunized chickens showed varied reduction in the number of oocysts in feces after infection with *E. tenella*. There was only 1.66% reduction in the number of oocysts in the group immunized with antigen alone which was the lowest among the immunized groups. Among groups immunized with antigen plus adjuvant, the highest reduction in the number of oocysts was seen in the chickens immunized with antigen mixed with the middle dose of ChIFN-gamma which was up to 50.06%. Other two groups had reductions of 43.07 (1,000 units ChIFN-gamma) and 48.98% (10,000 units ChIFN-gamma).

Both cellular immunity and humoral immunity are involved in the protective immunity in chickens against...
alone, injecting chickens with middle dose of ChiIFN-gamma alone did not show any protection and specific immune response. These results confirmed the effect of the adjuvant in increasing antibody level and enhancing cellular immune response against S07 antigen in chickens. The survival rate, BWG, reduction in oocyst output and reduction of coccidial lesion score all showed a greater level of improvement. However, ChiIFN-gamma adjuvant did not exhibit linear dose-immune-response relationship, instead the greatest impact was observed at the medium dosage level (5,000 units). Results from this study confirmed the dual effects of cytokines which have been reported previously (Heriveau et al., 2000).

Since, the gene encoding for ChiIFN-gamma was firstly cloned and then recombinant ChiIFN-gamma has been expressed in vitro (Digby and Lowenthal, 1995), developing ChiIFN-gamma into a vaccine adjuvant or using it as a pharmaceutical reagent to treat avian diseases have received great attention. Muscle injection of 5,000 units recombinant ChiIFN-gamma raised greatly the antibody level against antigen of sheep red blood cells in chicken and abdomen injection also increased chicken body weight albeit the amount of difference was not statistically significant (Lowenthal et al., 1998). Recombinant ChiIFN-gamma also exhibited an inhibitory effect against Eimeria in vitro (Lillehoj and Choi, 1998). In this study, the ChiIFN-gamma was used as an adjuvant for the subunit vaccine to protect against coccidiosis in chickens and the results have confirmed the function of the adjuvant effect of ChiIFN-gamma. The immune enhancement function of ChiIFN-gamma was likely achieved through the following mechanisms. Firstly, cytokines induce expression of MHC I and MHC II molecules whereby promoting the efficiency of presentation of S07 antigen. Secondly, cytokines induce the activation of macrophages which then release NO and other effector molecules (Song et al., 1997; Heriveau et al., 2000). The future research will focus on identification of those effective mechanisms.

CONCLUSION

The studies suggest that ChiIFN-gamma has strong adjuvant effects when mixed with E. tenella recombinant S07 antigen at a dose of 5000 units and has potential as a vaccine adjuvant. Therefore, it is necessary to continue large scale laboratory tests as well as in the field to determine the appropriate dosage and procedure of this adjuvant in the prevention of avian coccidiosis.
ACKNOWLEDGEMENTS

This research was funded by the Key Lab for Avian Preventive Medicine of Jiangsu Province (Grant No. K100014), the Natural Science Foundation of Jiangsu Province (Grant No. BK2009701), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0978), the new century talent project of Yangzhou University (Grant No. 2012) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. Researchers thank Dr. Hongquan Wan at US Food and Drug Administration and Dr. Huiyang Shen at Kansas State University for their help in the writing of the manuscript.

REFERENCES

