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Abstract: In the study, researchers discuss the methodology and computational algorithm for determining the

parameters of control function in the energy-saving control problem. The algorithm implementation mvolves

the use of GRID-computing.
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INTRODUCTION

When solving problems of energy-saving control for
multidimensional objects, it is a big challenge to determine
all possible types of optimal control functions, find
correlations for the computation of their d; parameters and
make sure that the conditions for the solutions of the
control problem for the specific numeric input data really
exist.

As shown by Yu et al. (2008), the determination of
vector D parameters d ¢i=1 n) where n is the number of
parameters) for the optimal control of an object,
characterized by given constant matrices Ala, )., and
B = diag(b,, ..., b,), in some cases is reduced to solving a
system of linear equations of the form:

dl:E:biq%J,1+:"47dn:E:b1q%J,n = L
1=1 1=1

dlzbi(p2,1,1+"'+dn2b1(p2,i,n =1, (1)
i=1 i=l

dl}atanml+:';+dn§;t%q%ﬁm :ln
i=1 i=1
Where:

(p.l:l,k = ‘Z[fj,l (A(2-T))f1k (_ATT)dT

e" = (£ ,(M)),., is a matrix exponential (M is a matrix
argument), L = colon(l;, ..., 1)) is a vector of synthesizing
variables whose components are determined by the
equation:

L =z4-3 £, (24)z,;
i=1

where, Z, = colon(z,,, ..., ) 18 a predetermined vector of
the initial state of an object, 7, = colon(z,, .., z.) is

pre-determined vector of the fmite state of an
object.

It should be noted that vector D generally comprises
two types of parameters: coefficients preceding time
functions and values of switching time moments. At these
moments, control functions come to the boundary.
Dimensionality of the vector D and its composition
depends on the form of the optimal control.

As seen from the system (Hq. 1), determination of
vector D for the specific data 15 related to sigmificant
to solve this

computational difficulties. Therefore,

problem it 1s advisable to use GRID-computing.
COMPUTING THE MATRIX EXPONENTIAL

As shown above, one of the key steps m determining
the parameters of the control function is to compute the
matrix exponential thus minimizing the amount of
computation. Computation of an approximate value is as
follows:

& o (ALY S (AD

Where:

E = A unitmatrix

t = Time related to the need to compute the high
powers of the matrix A

We obtain a formula to compute the matrix
exponential using the n-1 power of the matrix A. Let,
the characteristic equation of the matrix A has the
form:
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By the Cayley-Hamilton thecrem (Gantmaher, 1959) where, s, = Sp A¥ is the trace of the matrix A* (the sum of
the matrix A satisfies the matrix equation similar to Eq. 2: the elements on the main diagonal), p, = Sp A, k=1 n.
Next, we mntroduce the notation. If m = 0 then q, , = py.

A"p AT p,AY- L p E=0 Otherwise (if meN, N is a set of natural numbers):
from which:
A" =pA*p A L B 3) Qone = Pt Yt k15 Qmagner = O
Following the method of Faddeev (1959), the We multiply the both sides of the relation (Eq. 3) by
coefficients of the characteristic equation are determined ~ the matrix A given the intreduced notations. We
by the following recurrence relation: obtam:

AM = qu,lAn"'qu,zAnrl+=---=+qu,nA = (p1qu,1+qu,2)Anrl+(p2qu,1+qu,3)An72+(p3qu,1+qu,4)An73+=---=+(pn—1qu,1+qu,n)A+pnqu,1E
(4

Equation 4 can be rewritten as:
A™ =q AT+ A"+, B 3
Next, we multiply both sides of Eq. 5 by the matrix A, inserting (Eq. 3) into the obtained relation:
AT = 9, A" g, AT LA = (P, 1, A P, T s AT (D3 T AT o (Pl T JATP, g B

(6)
Then, from the Eq. 6 using sequential multiplication of both sides by the matrix A, it follows that:

-1
A" =q, AV g, AT g E=Y A¥g,

k=0
Now, we consider the matrix exponential as:
n-l tk = n+m n+m
At k k k
et =) A" — A + A
S i e e =S B B e

Hence, we obtain:

eAt_nZ-lAk k+2 qmnk m+n :iAk i+ir tm+n
B k! =1 =t

k=0 m=0 (m+n)’

MATRIX NOTATION OF THE ORIGINAL SYSTEM OF LINEAR EQUATIONS

The system (Eq. 1) can be rewritten as:

2
e

1]

or using the Eq. 2 shown by Bellman (1997) as:

2
{eZAIeAmBeAT(”dﬂc} D=L

0

To reduce the amount of computation in the future, we remove the integral. We assume that w = -T1. We denote
coefficients corresponding to the matrix A" by 1, . We obtain:

34
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We remove the parentheses:

k o o ket
o 2 o 2 . m

+ rm 1((,‘)mhq - + I_m 10‘)m+n — - -

k! = il = kht il

T -
I e, L, o™ | _ﬁJrEr;lm’“*" do D =1
2 k! = [

7

1< m+n+i IR m+n+k In 3 m o m
+= 3 1,0 — N ot e Y > o
m=0 k.m:n m=10 m=10

The Cauchy product of the exponential series (Fikhtengolts, 1966) takes the form:

m=0

Then, the integral:

s om
* _ * mtan
Efm, 0" = 2 Erj,krm-j,iw
m=0j=0

L 2 2 rJ,kr;J,i

1] k oo i O _Aylet LR = (2R _Ayatk e 2y .
‘I. 34, T, k(Dern (.97+ E T, 1mnﬂn dm= 2 ( 2) . +( 2) 2 ( ) rr.n,k +( 2) 2 ( rm,1 +(_2)2n i=0
Al kb oam il = klit{k+i+1) il AZhmtntitl k! Zimtntk+l = mt+2ntl
(8)
COMPUTATION OF THE LINEAR EQUATIONS L=7, -ezAZU

COEFFICIENTS IN A DISTRIBUTED
COMPUTING ENVIRONMENT

To obtain the coefficient values of the system (Eq. 1)
following Eq. 7, we need to find n-1 of the power of the
matrices A and AT (A' = A and (AT = AT shall not be
determined). We note that the computational procedure
for the powers of the matrix A does not depend on those
for the matrix A" Therefore, at the first computational
phase such computations can be implemented n a
distributed computing environment. The results of
GRID-computing {matrix powers, coefficients p, and p,)
are recorded in an online database that is accessible
to all computing processes. A parallel algorithm for
computation of the matrix powers can be constructed by
the doubling scheme described by Voevodin and
Voevodin (2002)

It follows from Eq. 8 that the next phase mvolves
independent approximate computation of n.n.3 = 3n* (by
k and 1) of the sums of numerical series. We use the data
obtained in the previous computational phase
(coefficients p, and p, determining 1., and 1, ;
respectively).

FINDING THE CONTROL PARAMETERS
Rewrite the system (Eq. 1) in the general form:
HD=L 9)

wherein the matrix H is computed as described above:

35

As seen from the Eq. 5, computation of the matrix e**
occurs in the formation of the matrix H. We assume that
the determinant |H|#0. Otherwise, the system (Eq. 9) may
have no solutions or have an infinite number of solutions.
The latter can permit selecting the control parameters so
as to satisfy the conditions for the existence of the
solution of the control problem. In this case, it 1s
advisable to use symbolic computation for constructing
a set of solutions of the system (Eq. 9). However, the
existence of the matrices A and B and the vector L, under
which the given fact holds 1s highly questionable (this is
confirmed by the fact that the matrix exponential is always
non-degenerate (Bellman, 1997) and 1is computed
approximately). In this study, we consider the case when
the system (Eq. 9) has a umque solution.

In the numerical solution of the system (Eq. 9) by the
exact methods, there are several sources of inaccuracy of
the obtained solution. The first source 1s related to
rounding of real numbers in the computing process.

The second source 1s that the matrix H and the vector
L. are computed approximately, causing errors in the
solution. They can lead to the fact that the determmant of
the matrix H will be close to zero that is the matrix H is
ill-conditioned (small changes m the elements of the matrix
correspond to significant changes in its inverse matrix). In
this case, mn order to achieve a given accuracy of
computation of the control parameters, after finding the
solution of the system (Eq. 9) it is necessary to mcrease
the accuracy of computation of the matrix H and re-malke
computations. After that, it 1s necessary compare how
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different the newly obtained solution of the system
(Eq. 9) 15 from the one used before the accuracy was
increased. In this case, it may be necessary to use libraries
for high-computing with virtually unlimited range of real
numbers (MPFR C library, 2015). To characterize the matrix
m terms of its conditionality several researchers proposed
various quantitative characteristics, for example, the Todd
number (Faddeev, 1959).

We will apply the exact method the inverse matrix
method for finding solutions of the system (Eq. 9) using
GRID-computing wherein the amount of divisions by a
number 1s much smaller than that m the Gauss Method
where the amount of multiplication and division
operations is close to (Samarskiy and Gulin, 1989). In
some cases, this may reduce systematic error of the
resulting solution. The mverse matrix will be calculated by
the following algorithm.

We write the following equation for the matrix H,
similar to Eq. 3:

H*ay H* e, HY -, u E =0 (10
where, the coefficients u, are determined by the traces of
powers of the matrix H. By multiplying both sides of the
Eq. 10 by the matrix H™', we obtain:

1 n-1 n-2 1-3
u H* =H" qH" " H"-.  ,u Hu E

from which:
n-1 1n-2
:H -uH"-..,-u, ;Hu, E
u

n

H! (1)

Thus, the parallel algorithm for determining the matrix
H™ also includes finding the powers of the matrix H using
the doubling scheme.

As it follows from the Eq. 11 the existence of the
mverse matrix 18 determined not only by |H|#0 but also
by u,#0.

Thus, the applied method of computation in a
distributed computing environment can significantly
reduce the time of determining the control parameters and
improve the accuracy of the results through, the use of
high-precision computing.
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CONCLUSION

The aim of the study is to develop methods of
numerical computing to determine parameters d; of a
control function in a distributed computing environment.
We note that the control process can be measured against
the computational time. Therefore, it i1s necessary to
determine control fimction parameters within a reasonable
time limit. Then, following the system (Eq. 1), the
numerical computing method will be as follows: the
optimal way to compute the matrix exponential which
determines the coefficients of the system (Eq. 1), the
removal of the mtegral sign in the coefficients ¢, , , and
solution of the system (Eq. 1) taking into account the
conditionality of matrix coefficients.
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