The Effect of Rotational Speed on Wear Rate of Friction Stir Welding for Joining Aluminium Composite ALSi-SiC

Septian Sigit Setiawan, Rifky Ismail and Sulardjaka
Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University,
Jl. Prof. Sudharto, SH., 50275 Tembalang-Semarang, Semarang, Indonesia

Abstract: The purpose of this investigation is to study the effect of contact between tool and composite on wear rate of the tool shoulder in friction stir welding process. Wear rate was investigated from a weight loss of the tool shoulder after the welding process for each composites. Elevated temperature was measured to reveal the relationship between temperature and wear phenomena. Visual and microstructure studies are utilized to observe the topography in the each tool surface wear phenomenon. FSW process was done at 1080 RPM rotational speed with translational velocity of 5.652 cm sec\(^{-1}\) produces a low wear rate that has good wear resistance. The elevated temperature showed 269.9°C at 5 wt.% SiC, 212°C at 7.5 wt.% SiC and 258.3°C at 10 wt.% SiC at 1080 RPM rotational speed with the translational speed 5.652 cm sec\(^{-1}\) on advancing side. Higher elevated temperature decreases the wear rate. This study explains that butt joint process produced high temperature at advancing side than retreating side in each SiC particle composition. Visual and microstructure study mention that at operating speed of 1080 RPM fewer adhesive layer is found and the measurement for the thickness shows value of 0.2331 mm.

Key words: Friction stir welding, metal matrix composite, wear, shoulder, value

INTRODUCTION

In 1991, Friction Stir Welding (FSW), a new joining technique was developed by The Welding Institute (TWI) of Cambridge, England (Thomas and Nicholas, 1997). FSW is an kind of solid-state joining technique that has popularity in wide variety of industries including the aerospace, railway, land transportation and marine industries. This method often used on low melting point metal alloys such as aluminium (RajKumar et al., 2014; Suri, 2014; Masaki et al., 2008; Sato et al., 1999; Fujimoto et al., 2008), copper, titanium (Zhang et al., 2008; Mironov et al., 2008) and even iron (Sato et al., 2007, 2013; Ohashi et al., 2009; Ceschini et al., 2007; Kumar and Murugan, 2014; Liu et al., 2004) and its alloys.

The FSW process composed three phenomena: heating process, deformation process and forging process. A non consumable rotating tool was used, consisting of a pin and shoulder. The shoulder of the tool is forced against the specimen to take action. The rotating tool causes friction and heats the plates so the mechanical strength decreases. Friction stir weld has fine microstructure, unlike the fusion weld there is no solidification products and the grains in the weld region are equiaxed and highly refined (Dumpala and Lokanadham, 2014).

Only few researches explained tool wear (Wang et al., 2014; Park et al., 2009) but that occurs in the FSW process to join the metal matrix composite materials is rarely found (Dumpala and Lokanadham, 2014; Lee et al., 2006; Bahrami et al., 2014; Prado et al., 2001, 2003), especially, today where the FSW process for composites more widely used.

To improve the productivity and efficiency a study is needed to determine the wear rate of the tool shoulder in the FSW process of MMC. Wear of the tool shoulder reduced the quality of FSW joining. Controlling wear is done by determining the efficient parameters and the suitable tool material to join the composite material. This study is investigating the effect of rotational speed on the wear rate of the tool shoulder in the FSW process for AlSi-wt.% SiC composite. This written report also observed effect of the gain in heat (elevated temperature) generated during the procedure.

MATERIALS AND METHODS

Experimental: The FSW process moved the x-axis as the translational speed of the welding parameters. Rotational speed was varied with translational velocity that works effectively on each of them. The parameter is used to determine the effective translational speed of the welding
parameters on every variation each the rotational speed: 808 RPM (7.065 cm sec⁻¹), 1080 RPM (5.642 cm sec⁻¹), and 1540 RPM (4.329 cm sec⁻¹).

AlSi-SiC composites are joined in this study with variations of SiC percentage 5, 7.5 and 10 wt.%. This composites were produced by stir casting method in the previous research. The composite material used is plate-shaped with dimensions (p = 5.4 cm; l = 4 cm and t = 5 mm). Tool material is AISI D2. Tool specifications with a pin-shaped conical with dimension (l₀tot) = 50 mm, (lₚ₀ₚ₀) = 16 mm, (lₚₙₙ) = 4 mm and the diameter of specimens (d₀₀₀₀) = 20 mm, (dₚₚₚₚ) = 2 mm and (dₚₙₙₙₙ) = 4.14 mm.

The method used in this research is the process of joining AlSi-SiC composites with appropriate parameters already mentioned above. After each completed welding process was performed some tests include weight loss, temperature measurement on the surface of the plate and visual observations and microstructure to observe adhesive layer that sticks to the surface of the tool at any rotational speed parameter. After welding process, the weight of each tool was evaluated to calculate the wear rate of tool shoulder.

Welding temperatures were measured on each side of every composites, 2 sensor were placed on the advancing side (T2,T4), another 2 were placed on the retreating side (T1,T3). T1, T2 sensor was placed at a distance 1.8 cm from the initial welds. T3, T4 were placed at a distance 3.6 cm from the initial welds as shown on Fig. 1. Visual (macro) study show which tool was the thickest one. Microstructure study to support the macro study and to show the topography of the surface in every surface of the tool. The microstudy were also used for showing the microstructure of the tool after the welding process then calculating the thickness of adhesive layer.

RESULTS AND DISCUSSION

Weight loss measurement: The data were obtained after the measurement, showed the relationship between wear rate and number of welds, also showed the relationship between wear rate and the rotational speed of the respective percentage of SiC. Figure 2a showed the wear rate on each number of weld. The rotational speed is increased then the wear rate decreased (Fernandez and Murr, 2004; Dwivedi, 2010). The different wear rate on each number of weld because of the different materials, those are AlSi-5 wt.% SiC, AlSi-7.5 wt.% SiC and AlSi-10 wt.% SiC. The different percentage of SiC is shown in Fig. 2b.

In the second weld process the wear rate has positive value. It can be concluded that at second weld, adhesive layer on the surface of tool decreased because it contacted with silicone carbides on every side of this material. The previous study was mentioned that the silicone carbide dispersed evenly. It caused friction in the adhesive layer after first weld and became abrasive wear. Best weld parameters were found at 1080 RPM of rotational speed with 5.652 cm sec⁻¹ of translational speed.

Elevated temperature measurement: The temperatures were measured during the welding process of AlSi-SiC composites with the arrangement on the plate T1, T2 at a distance 1.8 cm from the initial weld distance and T3, T4 at a distance of 3.6 cm from the initial weld distance. T1, T3 were placed on the retreating side and T2, T4 were placed on the advancing side.
Fig. 3: Relationship diagram between elevated temperature and distance of welding AlSi-5 wt.% SiC

Fig. 5: Relationship diagram between elevated temperature and distance of welding AlSi-7.5 wt.% SiC

Fig. 4: Elevated temperature vs. distance diagram composite AlSi-5 wt.% SiC on, a) retreating side and b) advancing side

Fig. 6: Elevated temperature vs distance diagram composite AlSi-7.5 wt.% SiC on, a) retreating side and b) advancing side

Fig. 7: Relationship diagram between elevated temperature and distance of welding AlSi-10 wt.% SiC

The highest peak temperature measured on each composite was at 1080 RPM of rotational speed with 5.652 cm sec⁻¹ translational speed. Higher temperatures decrease the yield strength of the material surface and improve the continuity and thickness of the protective oxidation layer on the surface, the friction occurred and reduced the direct contact between the metal (Dwivedi, 2010). Figure 3-8, the temperature showed at 0 cm weld distance, temperatures were in the range of 30-50°C.

At 1.8 cm from the initial weld position or tool position is in the center between the sensors T1 and T2. The high temperature was on T1(retreating side) and T2 (advancing side), than T3 and T4 were lower. T1 and T2
Fig. 8: Elevated temperature vs. distance diagram composite AlSi-10 wt.% SiC on, a) retreating side and b) advancing side.

Fig. 9: Microstructure of AISI D2 tool steel, a) before hardening and b) after hardening.

Fig. 10: Topography of surface at 808 RPM rotational speed.

The temperature at 1080 RPM of rotational speed has the highest temperature at advancing side for butt joint welding (Maeda et al., 2005).

Microstructure and topography study: Visual and microstructure test was conducted to determine the wear phenomenon as a result of adhesive layer on the tool surface. Figure 9 shows the microstructure of the tool steel (a) before hardening and (b) after hardening. Carbides have a larger size after hardening treatment. Tool material that didn’t harden the carbides were formed along the ferrite matrix (Yasavol et al., 2014) but after hardening visible light colored was a martensite structure. It made the improvement of hardness, when the hardness increase, the wear phenomenon decreases.

Figure 10 and 11 show the adhesive layer that sticks to the surface of the tool at 808 RPM rotational speed. Existing adhesive layer evenly spread over the entire surface of the tool such as in the shoulder, the angle between the pin and the shoulder and also at pin head.

Adhesive layer as shown in Fig. 12 and 13 attached to the tool with 1080 RPM rotational speed look thin on the surface of the tool. The wear rate on this tool was the thinnest compared with the other. Figure 14 and 15 showed the adhesive layers at some point which are thick on three areas: right and left angle between tool and pin and also at the pin head, there is a hollow at the adhesive layer on the left side of angle so the adhesive layers can not define by its look.

The thickness of adhesive layer on each cutting tool was shown in Fig. 16, there was less adhesive layer at 1080 RPM rotational speed with the value of 0.2231 mm decrease after passing half way as well as T3 and T4 increase, the tool was at distance 3.6 cm or tool position was on between T3 and T4, showed that T3 (retreating side) and T4 (advancing side) were higher than T1 and T2.
CONCLUSION

These study can be concluded that the smallest wear rate was in the tool at 1080 RPM of rotational speed.
with 7.065 cm sec⁻¹ of translational speed. Adhesive wear appeared in the first weld for the composition of 5 wt.% SiC showed the highest value of wear rate, then the second weld for the composition of 7.5 wt.% SiC wear rate decreases. The third weld for composition of 10 wt.% SiC wear rate rises back. At 1080 RPM rotational speed for 7.5 wt.% SiC composition has good mechanical properties. Then the tool weight decreased and adhesive layer reduced. The temperature measurement also showed higher at advancing side. The microstructure and topography image showed that 1080 RPM of rotational speed has less adhesive layer on every surface and the thickness was calculated, it showed less thickness.

ACKNOWLEDGEMENTS

The researchers would like to express their gratefulness to the Rector of Diponegoro University who funded this research. With number of research grants: 314-26/UN7.5.1/PG/2015.

REFERENCES

