Tournal of Engineering and Applied Sciences 11 (3): 671-677, 2016

ISSN: 1816-949%
© Medwell Journals, 2016

A Pairwise Test Suite Generator Based on Melody Search Algorithm

Toh 8. Yuen, Ala’a A. Al-Omoush, Foo W. Wen, Goh G. Hau,
Abdul Rahman and A. Alsewari
Department of Software Engineering, Faculty of Computer Systems and

Software Engineering, Universiti Malaysia Pahang, Gambang, Malaysia

Abstract: Melody Search Algorithm (MS) has been adopted to solve many optimization problems such as
combinatorial testing. This paper aims to introduce MS as a pairwise testing strategy called a Pairwise Test suite
generator based Melody Search Algorithm (PTMS). A pairwise testing is an operative approach in the
combinatorial test suite construction. Tt will minimize the constructed test suite size to save the testing time with
effective defects being detected. The proposed strategy generates the test suite with real-valued variables. A
comparative evaluation revealed that the PTMS 1s efficient in constructing a mimmum test suite with the

existing strategies.

Key words: Pairwise testing, Melody Search (MS) algorithm, test data generation, combinatorial testing,

variables

INTRODUCTION

In this mformation technology era, there i1s a huge
mfluence of high technology and artificial mtelligence
when creating new software products. This new method
provides an effective way of bringing high-quality
software products to the end user. Many fields also rely
on this method, especially in the Research and
Development (R and D) area. Evidently, many manual
processes are being performed by certain software
products or artificial mtelligence.
product created 1s operated by the combination of
hardware and software to implement each feature
(Perrouin et al., 2012). There is a close relationship
between hardware and software; both play important roles
to avold failure.

Failure of products will occur when a human action
produces some error or bug in the software and this will
lead to the defects which will cause a malfunction when
executed. This problem can cause serious damage to
system function, loss of time especially for a critical
system and higher cost of maintenance. Therefore,
software testing takes first priority in any Software
Development Life Cycle (SDLC) in order to ensure high
quality software and to minimize the occurrence of failure
of the software.

Software testing 1s defined as the process of
executing a program on finding possible errors and
validating the software or system against its specification

Basically, every

(Myers et al., 1979). Tt is known from the studies of seven
principles that exhaustive testing is impossible to execute
all the test cases for a real software product (Wang ef al.,
2013). A complete testing 1s umpossible because there are
many possible combinations of inputs and pre-condition
test case for software.

Pairwise testing 18 an effective combinatorial method
of software testing used to minimize the number of test
case that is needed for input parameters to a system and
the interactions between two input parameters values
(McCaffrey, 2010). Thus strategy generates test cases that
cover all the possible input combinations m order to
include the test data and to reduce the possibilities of
faults due to mteraction (Perrouin et al., 2012). There are
many pairwise testing strategies that are available such as
Simulated Anmmealing (SA) (Cohen ef al., 2007), Automatic
Efficient Test Generator (AETG) (Cohen et al, 1997),
Genetic Algorithm (GA) (Flores and Cheon, 2011;
McCaffrey, 2010) Ant Colony Algorithm (ACA)
(Shiba et al., 2004), Bat Pairwise Test Strategy (BPTS)
(Alsariera et al., 201 5), Harmony Search Strategy (PHSS)
(Alsewari and Zamli, 2012), In-Parameter-Order (TPO)
(Lei et al., 2007, 2008) and Intersection Residual Pair Set
(IRPS) (Yourus ef al., 2008, 2009). Although, the listed
strategies are useful, none of them can give assurance in
producing optimum results for every case study. It
should be noted that some of the existing pawrwise
testing strategies are based on optimization algorithms
such as GA, HSS, ACA, BPTS and SA. Therefore,

Corresponding Author: Toh S. Yuen, Department of Software Engineering, Faculty of Computer Systems and
Software Engineering, Universiti Malaysia Pahang, Gambang, Malaysia

J. Eng. Applied Sci., 11 (3): 671-677, 2016

Table 1: Parameters and values of laptop features values

Parameters Values Features
08 Windows Limnc
Processors Tritel AMD
Systemn type 64 bits 32 bits
RAM 2GB 4 GB
Graphics card Yes No
BRattery Built Tn External
UsB 2.0 3.0

Hard drives 500 GB 1TB
Screen resolution 1024=768 1280800
Keyboard With Number Pad Without Nurmber Pad

this study will introduce a new pairwise testing strategy
based on a new optimization algorithm call Melody Search
Algorithm.

Problem statement: The main outcome of the software
testing 18 the determination of defects for the existing
software product (Myers ef af., 1979). Table 1 shows the
features on a laptop which consist of different Operating

System (O83), Processors, System Type, Random
Access Memory (RAM), Graphics Card, Battery,
Universal Serial Bus (USB), Hard Drives, Screen

Resolutions and Keyboard. From Table 1, there are 10
parameters where each parameter has two values.
Therefore, exhaustive testing which is equivalent to
2HDHHZH DRI D% 22 =21 = 1 (124 possible combinations
need to be tested mn order to cover all the test cases. IT
one test case needs 5 minutes to be tested, the total
minutes to complete the test will be 5120 minutes or
approximately using 3 days to complete all test cases. In
practice, it 13 unpossible to test all combinations due to
the time and cost constrants (Wang et al., 2013).
Therefore, it is necessary to minimize the test suite
system’s parameters
combinations based on each of the two parameters
(McCaffrey, 2010). Subsequently, the test suite that can
be produced by a pairwise strategy will contain 10 test
cases instead of 1024 test cases.

without mussing any of the

Existing pairwise strategies: The surveys m this study
will be based on existing research on pairwise testing. The
existing pairwise testing strategies can be differentiated
mnto two approaches namely; one test at a time (OTAT),
and one parameter at a time (OPAT).

One test at a time (OTAT): OTAT is an approach that
uses several existing pairwise testing strategies. OTAT is
meant to generate a test case for each time iteration is
performed. The rule of OTAT involves the generation of
entire test cases one after the other until every test cases
have been covered by all possible mnteraction. There are
many existing strategies mn this approach. Some of these

672

strategies adopt the computational approach such as
such as AETG and its family AETGZ and mAETG SAT
(Cohen et al., 1997), AllPairs (Bach, 2001), GZWay
(Klaib et al., 2008}, Pairwise Independent Combinatorial
Testing (PICT) (Czerwonka, 2006) while others adopt
the optimization algorithms approach such as SA
and its variant SA SAT (Cohen et al, 2007), GA
(Flores and Cheon, 2011, McCaffrey, 2010), ACA
(Shiba et al, 2004), LAHC (Zamli et al., 2015), PHSS
(Alsewari and Zamli, 2012) and BPTS (Alsariera et al.,
2015).

One parameter at a time (OPAT): OPAT 15 another
approach used m generating all test cases by starting
from the first pairs after which each parameter’s values 1s
added to every iteration performed until all pairs are
covered. In this way, we have selected one of the pure
computational techniques which 1s ITPO (Lei ef al., 2007,
2008) and one of the mmprovements of computational
techniques like TRPS (Younis et al., 2008, 2009).

From the above, it is known that most of the OTAT
approach strategies are classified as a non-deterministic
approach since the generated test cases cannot be
determined. As such, the same input parameter may
appear in the different test cases for OTAT. Unlike the
OTAT, OPAT approach strategies are classified as
deterministic approaches which are always generating
same test cases result by using a specific mnput parameter.

From the aforementioned strategies and from one of
the seven testing principles, there is a need to generate
different test cases in order to increase the percentage of
defects detection. Based on that, this research will
introduce a new non-deterministic test cases generation
strategy based on Optimization algorithm called Melody
Search algorithm (MS).

MS has been successfully applied to solve many
optimizations problems (Ashrafl and Dariane, 2011, 2013).
MS is an advanced improved version of Harmony Search
algorithm. MS process is like HS process but MS has a
number of memories while HS has only single memory.
Furthermore, MS has two type of improvisation which will
be discussed in the next section.

MATERIALS AND METHODS

Pairwise test cases melody search strategy: This
research is to develop a pairwise test case generation
strategy based on Melody Search Algorithm (PTMS).
This study 1s going to discuss the flow of framework,
design approach, implementations of PTMS that are
involved in this research.

J. Eng. Applied Sci., 11 (3): 671-677, 2016

Melody search algorithm (MS) for pairwise test strategy:
Melody Search Algorithm is an improved optimization
algonthm from Harmony Search Algorithm (HS) which 1s
mspired by its basic concepts (Ashrafi and Dariane, 2011,
2013). Thus algorithm 1s derived from musical interactions
within a group of musicians with different style and ideas
to find the best version of melodies in a horizontal line
which consists of a series of pitches. Every member from
the group of the musicians will perform a smooth and nice
melody consisting of series of pitches and store into their
own Player Memory (PM). The structure of MS Algorithm
is quite different from HS Algorithim, although the basic
concepts of HS which are based on music improvisation
process are applied. A melody memory will be made up
from several PM which is owned by every musician and
each will be compared to Harmony Memory (HM) wlich
has only a single HM. The mam steps of PTMS strategy
can be described as following:

Step 1 (initializing of problem): This step will initialize the
optimization problem and adopts several parameters that
need to be determined. The parameters that need to be
determined mclude the number of parameters, nmumber of
values for each parameter, mnteraction tuples based on
each two parameters (IT), Final Test List (FTL)
number of player memories (PMN), Player Memory
Size (PMS), maximum number of Tterations for
Tnitial/first phase (NIT), Band Width (bw), Player Memory
Congidering Rate (PMCR) and Pitch Adjusting Rate
(PAR) (Fig. 1-3).

Step 2 (initial/first phase): Based on the PMS size,
iitializing of PM with random melodies (test cases).

Step 3 (improvisation I): Then improvising a new melody
from each PM. The new melodic line will be generated
based on PMCR, PAR or randomization.

=

A

Read Inputs (No of Parameters,
No of Values for Each Parameter
Interaction Strength (t)

A

Convert no of values for each parameter
interaction strength (t) number

A

Generate parameters interaction list

A

Generate parameter values interaction list

Step 2

Fig. 1: Flow chart of step 1 imtialization of problem

J. Eng. Applied Sci., 11 (3): 671-677, 2016

Initiglize every Player Memory
»| (PM) by random generate test case|
based on interaction list generated

!

Evaluate coverage of test case
(number of interaction pairs
covered)

Remove tuples covered by

thetest case
No
Random pick atest Ranm ggwerae
case from PM anPMCR
Random generate Evaluate coverage of test case
PAR, Lbi{ ;i ?aidxgg > (number of interaction pairs
saveranPAR covered

Improvise anew test case

Random generate by shifting test casetoits
new test case neighbouring values with
specified bandwidth (+1)

Fig. 2: Flowchart of step 2 initial/first phase

Update coverage of
every test casein PM

'

Select best test case with
highest coverage from
both PM

v

Improvise anew test case through
differences of values between the
two test cases selected

'

Evaluate coverage of test case
(number of interaction pairs
covered)

NO | select & Add the best test
case with most coverage
into Final Test List

NO | print test cases of
Fina Test List

interaction pairs
left1=07?

coverage of test casein
PM?

Random generate test case|

Update & Replace the tofill up the place of best
least coverage test case test case removed in PM
from PM i
Update coverage of

every test casein PM

Step 2
Fig. 3: Repeating the improvisation and the updating steps until the iteration number reach the maximum number of NTT

Updating every test case i each PM. The existing replaced if the new melody has a better fitness function

test case with worst fitness function value will be value.

674

J. Eng. Applied Sci., 11 (3): 671-677, 2016

Step 4 (improvisation TI): A possible range of best
arrangement of pitches in a test case which can be varied
through iterations is initiated between music players.
Improvising a new test case from each PM according to
the range of pitches determined. The existing test case
with worst fitness function value in each PM will be
replaced by the new test case if the new test case has a
better fitness function value. Identify any possible range
of pitches in melody for next improvisation.

Step 5 (add to final test list): The best test case overall
PMs will be added to FTL. Then step 2 to step 5 will be
repeated until all interaction tuples in IT.

RESULTS AND DISCUSSION

The performance of the proposed strategy is
discussed m terms of generating and mimmizing the
test cases list size.

Two experiments were conducted to evaluate the
performance of PTMS. The proposed strategy was
conducted m the environment of Windows 7 Home
Premium 64-bits Operating System, Laptop with Intel Core
15, 2.5GHz CPU, 4.00GB RAM and the application of
NetBeans IDE 8.0.2, Oracle JDK 8.0 and JRE 8.0 installed.

The various attributes that define PTMS were
applied in every experiment. The number of PMN is two,
PMS 1s ten for each player memory, NI for improvisation
step is ten, bw for pitch adjustment is £1, PMCR is 0.9 and
PAR 15 0.2. Results in terms of test list size generated are
derived from average test list size of 20 times execution.
The results of comparing strategies are expressed as the
average result of the 20 times execution while the results
of PTMS are shown in both the average result (row 1 =rl)
and the best result (row 2 =12).

Experiment 1: The data specifications and the result for
existing strategies are collected from publication by
Alsariera et al. (2015). There are 6 case studies with
different mput data specifications mvolved n this
experiment as shown in Table 2. The results of experiment
1 are presented m Table 3.

Based on Table 3, PTMS generated the most
optimized result of 9 test cases in S1 which 18 similar to
Jenny and TPRS but better than 10 test cases generated in
All-Pairs and G2Way. In S2, PTMS generated an
optimized result with 10 test cases which is similar to
All-Pairs and GZWay. Its result 13 better than Jermy with
13 test case and AETG2 with 11 test cases. Most of the
tools might generate better result than PTMS which are 9
and 10 test cases. However, it can be proved that all the
strategies successfully generated satisfactory tests listed
in 82.

Table 2: Tnput data specifications for experiment 1
Covering array

Case study representation Tnput specification

$1 CAN, 2,3 Three 3-valued parameters
32 CAN, 2 39 Four 3-valued parameters
83 CA(N, 2,39 13 3-valued parameters
84 CA (N, 2, 1019 10 10-valued parameters
85 CA N, 2, 10°% 20 10-valued parameters
36 CA(N, 2 59 Ten 5-valued parameters

Table 3: Experiment 1 results in terms of test list size generated

Strategies S1 82 83 84 83 56
AETG NA 9 15 NA 180 NA
AETG2 NA 11 17 NA 198 NA
PO NA 9 17 169 212 47
SA NA 9 16 NA 183 NA
GA NA 9 17 157 227 NA
ACA NA 9 17 159 225 NA
BPTS NA NA NA 162 NA NA
PHSS NA NA NA 155 NA NA
AllPairs 10 10 22 177 230 49
G2Way 10 10 19 160 200 46
Jenny 9 13 20 157 194 45
IPRS 9 9 17 149 210 45
PTMS 193 11.2 232 259.40 361.10 59.70
r2 9 10 22 254 357 58

Table 4: Input data specifications for experiment 2
Covering array

Case studies representation Input specification

81 CAMN, 2,3 Three 3-valued parameters
82 CAMN, 2,4 Three 4-valued parameters
33 CAN, 25 Three 5-valued parameters
84 CAN, 2, 6) Three 6-valued parameters
35 CAMN2 7 Three 7- valued parameters

It was observed that some strategies did not show
certain case studies. For mstance, strategies AETG,
AETG2, IPO, SA, GA and ACA did not display any
results of S1 with three 3-valued parameters while
strategies AETG, AETG2, SA, GA and ACA did not reveal
the results for 36 with 10 5-valued parameters.

Experiment 2: The data specifications and the result
for existing strategies are collected from publications
(Zamli et al., 2015; Al-Sewari et al., 2014; Longshu and
Yun, 2012). The conditions for experiment 2 are as follows.

There are 5 case studies with different mput data
specifications involved in this experiment as shown in
Table 4. The results from experiment 2 are presented in
Table 5.

Based on Table 5, PTMS generates the most
minimum test cases such as O test cases in S7 which are
similar to most of the other strategies and it is better than
PICT which generates 10 test cases. S8, PTMS also
generates the most minimum test cases like the other
strategies except PICT. 39, 510, S11 and PTMS generate
acceptable test cases as compared to the existing
strategies results.

J. Eng. Applied Sci., 11 (3): 671-677, 2016

Table 5: Experiment 2 results in terms of test list size generated

Strategies 51 52 33 54 35
SA SAT 9 16 25 36 49
mAETG_SAT 9 16 25 37 52
PICT 10 17 26 39 55
TestCover 9 16 25 36 49
LAHC 9 16 25 38 51
PHSS 9 16 25 36 49
BPTS 9 16 25 36 49
PTMS 1l 9 18 29.5 43.7 594
2 9 16 29 42 57

Based on the overall result generated in experiment
1 and experiment 2, the overall view shows that results of
PTMS are better than some of the existing strategies’
results but the best results are not shown sometimes.
Although some of the strategies might generate better
results than PTMS m overall cases, the PTMS
successfully generate a satisfactory test list size.

CONCLUSION

This study illustrated the pairwise testing and its
different approaches. The capability of adopting the
Melody Search algorithm in pairwise testing has been
elaborated. PTMS 1s the first panrwise testing strategy
implemented in the Melody Search algorithm to produce
a test cases with mimmum size. Furthermore, some
experiments have been carried out to evaluate and prove
the effectiveness of PTMS. Future enhancement of PTMS
should be developed to support the constraints. While
there are many optimization algorithms which have been
raised to solve optimization problems, the research in the
test cases generation can adopt one of these algorithms.

ACKNOWLEDGEMENTS

This research is partially funded by UMP RDU130366
Short Term Grant: Development of a Pairwise Testing Tool
with Constraint and Seeding Support Based on and
Optimization Algorithm, UMP RDU150369: A new Hybrid
Variable Interaction Strength Test Data Generation
Strategy Based on Harmony Search Algorithm and
Cuckoo Search Algorithm, UMP RDU:Modified Greedy
Algorithm Strategy for Combinatorial Testing Problem
with Constraints Supports and FRGS RDU130119 Grant:
Tnput Output Relations Harmony Search T-way Testing
Strategy.

REFERENCES

Al-Sewari, A A, KZ. Zamli and B. Al-Kazemi, 2014.
Generating t-way test suite in the presence of
constraints. Proceedings of the 8th Malaysia
University Conference FEngineering Technology,
November 10-11, 2014, Melaka, Malaysia.

676

Alsariera, Y.A., AR A. Alsewari and K.Z. Zaml, 2015. A
bat-inspired strategy for pairwise testing with
constraints support. Adv. Sci. Lett., 21: 2281-2284.

Algsewari, A RA. and K.Z. Zamli, 2012. Design and
implementation of harmony-search-based
variable-strength t-way testing strategy with
constraints support. Inform. Software Technol.,
54: 553-568.

Ashrafi, SM. and AB. Dariane, 2011. A novel and
effective algorithm for numerical optinization:
Melody search (MS). Proceedings of the 11th
International Conference on Hybrid Intelligent
Systems (HIS), December 5-8, 2011, Melacca,
pp: 109-114.

Ashrafi, SM. and A.B. Dariane, 2013. Performance
evaluation of an improved harmony search algorithm
for numerical optimization: Melody Search (MS). Eng.
Applic. Artificial Intell., 26: 1301-1321.

Cohen, D.M., SR. Dalal, M.L. Fredman and G.C. Patton,
1997. The AETG system: An approach to testing
based on combinatorial design. IEEE Trans. Software
Eng., 23: 437-444,

Cohen, M.B., M.B. Dwyer and I. Shi, 2007. Interaction
testing of Ighly-configurable systems m the
presence of constraints. Proceedings of the
International Symposium on Software Testing and
Analysis, Tuly 9-12, 2007, London, UK., pp: 129-139.

Crzerwonka, J., 2006. Pairwise testing in the real
world: Practical extensions to test-case scenarios.
Proceedings of the 24th Pacific Northwest Software
Quality Conference, October 2006, Tahun, pp: 419-
430.

Flores, P. and Y. Cheon, 2011. PWiseGen: Generating test
cases for pairwise testing using genetic algorithms.
Proceedings oof the IEEE International Conference

a

on Computer Science and Automation Engineering,
Volume 2, Tune 10-12, 2011, Shanghai, pp: 747-752.

Klab, MF., KZ. Zamli, NAM. Isa, M.I. Younis and
R. Abdullah, 2008. G2Way a backtracking strategy
for pairwise test data generation. Proceedings of the
15th Asia-Pacific Software Engineering Conference,
December 3-5, 2008, Beijing, pp: 463-470.

Le1, Y., R. Kacker, DR. Kuhn, V. Okun and J. Lawrence,
2007. IPOG: A general strategy for t-way software
testing. Proceedings of the 14th Ammual IEEE
International Conference and Workshops on the
Engmeering of Computer-Based Systems, March
26-29, 2007, Tucson, AZ., pp: 549-556.

Lei, Y., R. Kacker, D.R. Kuhn, V. Okun and J. Lawrence,
2008. TPOG/AIPOG-D: Efficient test generation for
multi-way combinatorial testing. Software Testing
Verification Reliability, 18: 125-148.

J. Eng. Applied Sci., 11 (3): 671-677, 2016

MecCaffrey, I.D., 2010. An empirical study of pairwise
test set generation using a genetic algorithm.
Proceedings of the 7th International Conference on
Information Technology: New Generations, April
12-14, 2010, Las Vegas, NV, pp: 992-997.

Myers, G.I., T. Badgett and C. Sandler, 1979. The Art of
Software Testing. 3rd Edn., JohmWiley and Sons,
Hoboken, New Jersey.

Perrouin, G., S. Oster, 5. Sen, I. Klein, B. Baudiyand Y. Le
Traon, 2012. Pairwise testing for software product
lines: Comparison of two approaches. Software
Quality J., 20: 605-643.

Shiba, T., T. Tsuchiya and T. Kikuno, 2004. Using artificial
life test
combinatorial testing. Proceedings of the 28th

techniques to generate cases for

Annual International Conference on Computer
Software and Applications, Sept. 28-30, IEEE
Computer Society, Washington DC., USA,
pp: 72-77.

677

Wang, S., 8. Ali and A. Gotlieb, 2013. Minimizing test
suites in software product lines using weight-based
genetic algorithms. Proceedings of the 15th Annual
Conference on Genetic and Evolutionary
Computation, July 6-10, 2013, New York, USA,
pp: 1493-1500.

Younis, M.I., K.Z. Zamli and N.A M. Isa, 2008. IRPS-an
efficient test data generation strategy for pairwise
testing. Proceedings of the 12th International
Conference on Knowledge-Based and Intelligent
Information and Engineering Systems, September 3-5,
2008, Croatia, pp: 493-500.

Younis, MJI, K.Z. Zamli, MF. Klaib, Z.H.C. Soh,
3. Abdullah and N. Isa, 2009. Assessing IRPS as an
efficient pairwise test data generation strategy. Int. I.
Adv. Intell. Paradigms, 2: 90-104.

Zamli, K.Z., AA. Alsewart and B. Al-Kazemi, 2015.
Comparative benchmarking of constraints t-way test
generation strategy based on late acceptance hill
climbing algorithm. Int. J. Software Eng. Comput.
Syst., 1: 15-27.

	671-677_Page_1
	671-677_Page_2
	671-677_Page_3
	671-677_Page_4
	671-677_Page_5
	671-677_Page_6
	671-677_Page_7

