Detection and Cloning of Alpha Glucosidase Inhibitor Gene
Streptomyces sp. IPBCC. B. 15.1539 and Potential as an
Anti Hyperglycemic in Education Science

Deden Makbuloh and Yessy Velina
IAIN Raden Intan Lampung, Bandar Lampung, Indonesia

Abstract: Diabetes mellitus is a metabolic disorder characterized by the presence of hyperglycemia due to defective insulin secretion, defective insulin action or both. One therapeutic approach for treating diabetes is to decrease the post-prandial hyperglycemia. This is done by preventing the absorption of glucose through the inhibition of the carbohydrate-hydrolysing enzymes α-glucosidase and α-amylase in the digestive tract. Actinomycetes have been known as source of commercialized acarbose, an α-glucosidase inhibitor. Acarbose is keto analog moieties of the C7N aminocyclitol. Sedoheptulose 7-phosphosphate is converted into 2,5 epi-valiolone via the activity of sedoheptulose 7-phosphate cyclase at the first step of the biosynthesis of C7N aminocyclitol. This research was aimed to detect and cloning sedoheptulose 7-phosphate cyclase gene. Detection gene was done by using Polymerase Chain Reaction (PCR) with with design primers C7N aminocyclitol. The primer used was designed on the basis of the comparison of the sequence of known sedoheptulose 7-phosphate cyclase (ACBC) from that of *Actinoplanes* sp. SE50/100 which was then cloned by T-Vector pMD20. The result show that there was similarity of nucleotide series sedoheptulose 7-phosphate cyclase of *Streptomyces* sp. IPBCC. B. 15.1539 with GenBank database analysis through blast program. The result indicated that the designed primer was able to amplify the sedoheptulose 7-phosphate cyclase acarbose although the accomplishment in amplifying the gene is still up to 300 bp and have 100% sequence similarity with DNA fragment of sedoheptulose 7-phosphate cyclase *Actinoplanes* sp. complete acarbose (ACB) gene cluster, strain SE50/110, acces number Y18523.4 reported in GenBank.

Key words: *Diabetes mellitus*, *Streptomyces* sp. IPBCC. B. 15.1539, inhibitor α-glucosidase sedoheptulose 7-phosphate cyclase, nucleotide, aminocyclitols

INTRODUCTION

Global Diabetes Mellitus (DM) prevalence data shows serious increases. The total number of diabetics worldwide is projected to rise from 171 million in 2000 to 366 million in 2030 (Wild et al., 2004) and become the growing global problem of overweight, obesity and physical inactivity. Both modern and traditional antidiabetic therapies have been used to treat people with type 2 DM which is the most common form of DM. Type 2 DM comprises 90% of people with diabetes around the world (WHO, 2014). One of the modern antidiabetic drug treatment mechanisms is based on α-glucosidase inhibitor activity which inhibits the absorption of glucose from the intestine to the blood.

Acarbose is a pseudo-oligosaccharides which acts as a competitor for α-glucosidase, non-digestible and non-toxic. *Tinospora crispa* has been studied for its potential antidiabetic treatment mechanism. Water extract of *T. crispa* significantly lowered blood glucose levels and increased plasma insulin levels in diabetic rats (Noor and Ashcroft, 1998). This effect may be due to the α-glucosidase inhibitor of acarbose is used in the therapy of type 2 DM (non-insulin-dependent) (Wehmeyer and Piepersberg, 2004; Morshed et al., 2011). On the other hand, various medicinal plants have been traditionally used to treat diabetes. Recent scientific evidence supports the use of the medicinal plants in DM therapy, e.g., *Terminalia arjuna*, *Tinospora crispa*, *T. cordifolia*, *Lagerstroemia speciosa*, *Andrographis paniculata*, *Phaleria macrocarpa*, *Curcuma aromatica*, *C. xanthoriza*, *Centella asiatica*, *Xoncus arvensis*, *Caesalpinia sappan*, *Allo vera*, *Parica speciosa*, *Gymura procumbens*, *Physalis peruviana*, *Hibiscus sabdariffa*, *Berberis aristata* (Morshed et al., 2011; Bondham et al., 2006).

Tinospora crispa has been studied for its potential antidiabetic treatment mechanism. Water extract of *T. crispa* significantly lowered blood glucose levels and increased plasma insulin levels in diabetic rats (Noor and
Ashcroft, 1998). This effect may be due to the modulation of Ca²⁺ concentration in pancreatic beta cells (Sriyapai et al., 2009). Other data showed that T. crista treatment reduced plasma glucose levels as much as 43% for 40 days in rats induced by streptozotocin (Grover et al., 2003).

Actinomyces are known to produce bioactive compounds with various biological functions, including α-glucosidase inhibition. Published data on Actinomyces which function as α-glucosidase inhibitors have been mainly on non-endophytic Actinomyces. Supporting evidence is available for Actinoplanes sp. SE50/110 (Stratmann et al., 1999; Zhang et al., 2003) Actinoplanes sp. CKD485-16 (Choi and Shin, 2003). Micromonospora sp. VITSDK3 (EU55138) and Actinoplanes sp. A56 (Iyuno et al., 2005; Lamba et al., 2011). Now days, acarbose which was originally isolated from Actinoplanes sp. from Africa has been successfully commercialized as an antidiabetic drug Streptomyces glaucescens.

Based on the research that has been done by Pujiyanto et al. (2012) has obtained 1 isolate Actinomyces IPBCC. B. 15.1539 endophytic brotowali were isolated from the roots brotowali that isolates can reduce blood glucose but so far there have not done a study on the detection of gene-producing inhibitor of alpha-glucosidase in this case is Sedo heptulosa 7 phosphate cyclase as well as the ability to lower glucose levels. The results of this study can provide information to the field of science education particularly information relating to health especially in the study of metabolism in hormone regulation (Heiner, 2002).

MATERIALS AND METHODS

Growth and production of metabolites: Streptomyces sp. IPBCC. B.15.1539 (1% volume) was grown in a bioreactor filled with ISP 2 medium for 10 days and assayed for its α-glucosidase inhibition. The optimum time for the production of α-glucosidase inhibitor was determined based on α-glucosidase inhibitory activity produced by crude extract the in vitro α.

Detection of gene sedo heptulosa 7 phosphate cyclase: Detection of gene Sedo heptulosa 7 phosphate cyclase reaction performed by Polymerase Chain (PCR). Primers used are the result of design at ACBC gene in Actinoplanes sp. SE50/110 (11, 12). PCR amplification (Takara PCR Thermal Cycler, Japan) was conducted in 50 mL reaction mixture containing 10 pmol of each primer by 5 mL, 200 ng mold genomic DNA, 2.5 mM deoxynucleotide Triphosphate (dNTP) as much as 4 mL, 10x Ex taq Buffer as much as 5 mL and 5 units/mL Takara Ex TaqTM much as 1 mL (Takara Japan) and ddH₂O up to volume 25 mL.

Oligonucleotide primer sedo heptulosa 7 phosphate cyclase: Forward primer: 5'-ACCTACGAGTGCGCT TCCGGCGACGCT-3’and Reverse: 5’-GGCGGCTGCACGACTG-3’ is used to detect gene Sedo heptulosa 7 phosphate cyclase. Target gene PCR product using this primer is 1068 bp. PCR cycles were performed consisting of 94°C initial denaturation for 2 min, followed by 25 cycles of denaturation 94°C for 15 sec, annealing 55°C for 15 sec, elongation of 72°C for 45 sec and a final elongation for 5 min.

DNA purification and cloning DNA with t-vector pmd 20: Gel containing the target DNA and then purified from gel using GeneClean II® kit (Qbiogene, Japan). DNA was quantified using a NanoDrop ND-2000 spectrophotometer (Thermo scientific, Japan). DNA fragments are then subsequently cloned cloning is done with T-vector pmD20 by ligation reaction using 2X Ligation Mix (Wako Nippon Gene).

Transformation: Transformation was conducted by heat shock. A total of 5 mL ligation reaction was added to the cell suspension of E. coli DH5α that had been competent. This mixture is placed for 3 min dies, then do heat shock treatment (heat shock) at a temperature of 42°C for 45 sec. After the tube containing the reaction mixture ligation and E. coli DH5α competent rapidly incubated on ice for 3 min. After incubation on ice, the addition of 200 mL of SOC media treatment liquid on the tube and incubated at 37°C for 45 min. Then the mixture was spread on LB medium containing ampicillin 100 mg/mL, Isopropyl beta-D-Thiogalactopyranoside (IPTG) 100 mL and 100 mL X-Gal in two bowls. Then incubated for 24 h at a temperature of 37°C. After 24 h was observed color of the colony grows. White colonies containing inserts.

PCR colonies: Colony PCR performed to select a recombinant plasmid containing the insert of white colonies E.coli DH5α. Colonies that were taken were white colonies with a sterile toothpick tip then moved to cup replica LB containing ampicillin. Furthermore, the tip of a toothpick in the input and shake vigorously for 10 mL ddH₂O as template DNA for PCR. Positive colony containing the correct inserts subsequent isolation of plasmid. Then measured the concentration of plasmid DNA inserts in the NanoDrop.

Cutting with restriction enzyme: This technique is used as a step to verify whether the DNA insert in plasmid DNA is the desired target. This plasmid was cut with two kinds of enzyme composition includes enzymes Xba I, Bam HI-HF. Each combination is done on a micro tube with a reaction volume of 20 mL.
DNA sequencing: Plasmids have been positively contained DNA fragment sequenced using applied biosystems big dye terminator cycle sequencing kits (v3.1) using M13 primer RV as a forward primer and M13 primer 14 as reverse primer.

RESULTS AND DISCUSSION

Alpha glucosidase inhibitory activity: The data showed that alpha glucosidase inhibitory activity of extracts and the average weight of biomass increased at 5-10 days of the production time and decreased in 15-20 days. The crude extract containing α-glucosidase inhibitor showed 98.5% of alpha glucosidase inhibitory activity after 10 production with 15.6 mg produced biomass the crude (Fig. 1).

Amplification gene of sedo heptulosa 7 phosphate cyclase: Primers used to amplify the gene Sedo Heptulosa 7 Phosphate cyclase managed to amplify the specific gene by 300 bp. Furthermore, the colony PCR to confirm the size of the DNA inserts in several colonies were taken. This can be seen in Fig. 2.

Then the recombinant plasmid verified using restriction enzymes Bam Hf-HI, Bam HI+HF-XBA I. Verification showed one band measuring approximately 3000 bp for the restriction enzyme Bam HIII and the HF-2 tape sized 2700 and 300 bp for the restriction enzyme HF-Bam HI and XBA I. This suggests that the insert DNA fragments have been cloned (Fig. 3).

Analysis of gene fragments sedo heptulosa 7 phosphate cyclase with a database in gen bank: Nucleotide sequence alignment analysis of gene Sedo heptulosa 7 phosphate cyclase with a database in Gen Bank conducted with BLAST program. The result of nucleotide sequence similarity of gene fragments sedo heptulosa 7 phosphate cyclase with Gen Bank data center shown in Table 1.

Fig. 1: The α-glucosidase inhibitory activity and biomass production of Streptomyces sp. JPCC. B. 151539 grown at ISP2-medium for 5-20 days at room temperature.

Fig. 2: The colony PCR: DNA Amplification Inserts Sedoheptulosa 7 phosphate cyclase gene with a size of 300 bp in lane 1. M = Marker 1 kb (Invitrogen)

Fig. 3: Verification DNA insert with the rate v1. Recombinant plasmid Hf-Bam-HI, 2. Plasmid rekombinun-HF-XBA I, M1 = Marker 1 kb, M2 = Marker 100 bp.
Alignment through BlastN results showed that the Sedo heptulosa 7 phosphate cyclase shows similarity 100% identity with ACBC gene in Actinoplanes sp. SES50/110 complete acarbose (ACB) gene cluster, strain SES50/110. This suggests that genes involved in the biosynthesis of acarbose detected in Streptomyces IPBC. B. 15.1539.

REFERENCES

