Tournal of Engineering and Applied Sciences 12 (Special Issue 2): 6308-6312, 2017

ISSN: 1816-949%
© Medwell Journals, 2017

TaintDroid’s Ability Test and Remedy for Tainting SMS, Bookmark,
Accelerometer and Call Log Information

Han-Jae Yoon and Man-Hee Lee
Department of Computer Engineering, Hannam University, 70, Hannam-ro, Daedeok-gu,

Deajoen, Republic of Korea

Abstract: As Android malware continues to grow, automated analysis using the virtual environment 1s very

necessary. TamtDroid 1s an efficient tool that allows tainting analysis to monitor whether key information 1s
leaked to the outside. TaintDroid is expected to detect apps that leak SMS, phone logs and contact information
but in our tests it failed to do so. In this study, we explained the reason and proposed a simple solution.

Key words: Malware Android, tainting analysis, TamtDroid, simple, reason, SM3

INTRODUCTION

As the number of mobile devices increases rapidly,
malicious codes become more interested m stealing
business and personal information stored in the devices.
A common process to cope with malicious apps will be
collecting apps, analyzing them statically or dynamically
and generating signatures for vaccines. Throughout the
process, analyzing the maliciousness of app is the most
important and difficult. Static analysis on source codes or
packaged Android Application Packages (APKs) looks at
various static aspects such as permissions, strings and
Android manifest. In dynamic analysis, an Android
application runs on a virtual or physical system and its
behaviors like file and network accesses are monitored
and analyzed.

Among various dynamic analysis tools, TaintDroid
1s famous for its ability of tracking interested information
throughout execution which 1s called tainting analysis. In
particular, TamtDroid has predetermined data for tainting.
If the analyzed application writes this data to a file or leaks
it to the internet, a data leak event occurs and a log about
the event 1s stored. The strength of TamntDroid 1s that it
can detect the leakage of even one bit tainted data. This
enables TaintDroid to detect any malicious codes
that leak confidential or private data after encoding,
slicing or encrypting.

In our previous study, we found that TamntDroid was
unable to detect a malicious code that leaked contact
information. We figured out that a clean Android system
does not have contact information at all and this caused
the detection failure of the malicious code. In addition, we
proposed a method to solve the problem by inserting

contact information before the start of analysis. This
research expanded the previous study by exploring other
tamnting sources. That 1s, we tested more tainting
information such as SMS, bookmark, call log and
accelerometer. TaintDroid is able to detect malware
leaking bookmark and accelerometer information but not
able to do on malware leaking SMS and call log for the
same reason. We also found a simple bug of TaintDroid
for tainting call log information and fixed it. This study
elaborated on our tests and solutions.

Literature review: Current CPU architectures do not
provide detailed information on how data is processed.
For example, it is possible to monitor what data in a file is
read but not possible to see how the data 1s changed and
stored in memory which file it is stored in and which hosts
it 1s transferred to. This means it 1s very difficult to
perform tamting analysis on real computers. To make this
possible in virtual Android system, TamntDroid was
proposed (Enck et al., 2010). It 13 almost the first practical
tainting analysis tools for Android (Enck et al., 2010). Tt is
developed to expand the Android platform. The main
difference from previous techniques 1s that TaintDroid
utilizes virtual machine-based architecture of Android.
Similar to Java virtual machine running byte codes for
normal Java applications, Dalvik VM Interpreter runs
Dalvik EXecutable (DEX) byte codes for Android
applications. Each Android application operates within an
instance of Dalvik VM interpreter. By modifying the
interpreter, TaintDroid tracks variable level information
tracking. In addition to wvariable level mformation
tracking, TamtDroid suggested method-level, file-level
and message-level tracking. Method-level tracking is

Corresponding Author: Han-Jac Yoon, Department of Computer Engineering, Hannam University, 70, Hannam-ro, Dacdeok-gu,

Deajoen, Republic of Korea

6308

J. Eng. Applied Sci., 12 {Special Issue 2): 6308-6312, 2017

implemented in native system library which is out of VM
interpreter. Network interface and secondary storage are
also out of VM interpreter, so, TaintDroid provides a
patch for information tracking. Finally, TamtDroid tracks
data transferred between VM instances via. IPC
(interprocess communications). By using the four levels
of tracking, TamtDroid successfully tracks information
with marginal performance overhead.

By utilizing tracking capability, TaintDroid monitors
various information to see when and how the data is
written to a file or sent via. a network interface. In
addition, TamtDroid with DroidBox as a dynamic
behavior analysis tool gives out the following
information: incoming/ outgoing network data, file
read/write operation, started services and so on
(Enck et al, 2010).

Since, TaintDroid was proposed, many researchers
tried to utilize it for better Android malware analysis.
Especially, static analysis tools are mtegrated with
TaintDroid to provide both dynamic and static analysis
by Lindorfer et al (2014), Yuan et «l (2014) and
Spreitzenbarth et al. (2013). In the separate previous
study, we constructed an automatic app analysis system
utilizing TaintDroid to mvestigate how 1t is to use apps
downloaded from 3rd-party app stores (Jang et al,
2016). There have been other researchers to enhance
detectability of TamtDroid. Many apps require user
mteractions m the installation process. Otherwise,
malware will not be installed, so malicious behaviors
cannot be detected, either. To solve this problem, several
techmques generating user mterface events to emulate
user interactions have been proposed by Rastogi ef al.
(2013), Zheng et al. (2014), Michelle and Lie (2016) and
Hao et al. (2014). However, to our best knowledge, we do
not know any research to test the tainting ability of
TamntDroid except our previous research by Yoon and Lee
(2017).

MATERIALS AND METHODS

Detection failure of TaintDroid: In previous study, we
found that a ¢lean Android image that TaintDroid uses
does not have contact information (Yoon and Lee, 201 7).
Because of this, malware that leaks contact mformation
cannot be detected. As a real example, we tested a
malware called Alsalah. Tt was advertised that it informs
five Salah (prayer in Islam) timings but 1 fact it 1s a Trojan
horse app that sends spam SMS messages to contacts in
the compromised device. With no contact information
created, TaintDroid does not detect anything suspicious
on Alsalah So, we proposed to modify Android system
to have at least one contact mformation.

The next question that we are curious about is
whether the detection failure problem can occur in other
tainting sources. So, in this study, we would like to
expand our previous research by testing if TaintDroid
detects malware leaking other tainting sources. Instead
of testing all the remaimng sources, we chose four
additional tainting sources: SMS, bookmark, call log and
accelerometer. We expected SMS, call log and browser
bookmark information would not be detected because a
clean Android image might not have such information.
Instead, malware leaking acceleration data from an
accelerometer 13 predicted to be detected because the
accelerometer would keep generating new data.

For test, we developed a sample malware that
accesses and write the data to a file. When we ran the
sample app on TaintDroid, it reported data leakage of the
accelerometer and the browser bookmark information only
as shown in Algorithm 1. It 1s reasonable to see a
Taint_Accelerometer event but the Taint Browser event
was unexpected because we assumed that there was no
bookmark information. Base on the test result, we can say
that 1t 13 not straightforward to predict whether TaintDroid
detects all the advertised sink sources and it is not clear
either why this happens. In the following study, we
continue to answer why and how TaintDroid is able or
unable to detect some sink sources and propose how to
fix the problem.

Algorithm 1; Original Taint analysis result of
TaintDroid for SMS, bookmark, call log and

accelerometer:
“dataleaks™: {
“2.169749021 5301514 {

“Method™: “None”

“Package”: “None”

“data”:
“3d3d3d3d3d2043616c60204c6f67203d3d3d3d3d0ade756c6c0a3d3d3d3d
3d3d3d3d3d3d3d3d3d3d3d3d3d0a3d3d3d3d3d20486973746£7279203d3d
3d3d3d0aseT 36¢6c426f6f6b 6d61 7260 T30ad 766167 6065025 0696361 73610
a5961686f6121 0add”

“id”: “1238985775”

“operation’: “write”

“path™: *“/mnt/sdcard/taintTest.txt”

“sink™: “File”

“tag’: [

“TAINT ACCELEROMETER”
“TAINT BROWSER”
1
“type”: “file write™
}
}

RESULTS AND DISCUSSION

Tainting enalbing techniques for TaintDroid: Tlus study
explains the reason why TamtDroid succeeded or failed
to detect the browser bookmark, call log and SMS and

effective tainting enabling techniques.

6300

J. Eng. Applied Sci., 12 {Special Issue 2): 6308-6312, 2017

Browser bookmark: Tn order to see why TaintDroid was Sy o

able to detect bookmark information leaking apps, we
developed an app to extract bookmark mformation from a
clean Android image as shown m Algorithm 2. We
implemented a method, get History(), to get the bookmark
information using Cursor class and BOOKMARKS URI.
When we checked mCur, it contams 14 bockmarks:
Google, Picasa, Yahoo!, MSN, Twitter, Facebook,
Wikipedia, eBay, CNN, NY Times, ESPN, Amazon,
Weather Channel and BBC. Based on this test, we can say
any malware that extracts bookmark mformation will be
detected by TamtDroid.

= Messaging

01036165366

Injected Message

Algorithm 2; Source code for extracting bookmark

information:
public String getHistory() {
String retum_str =l
Cursor mCur = this.managedQuery(BOOKMARKS_URI,
HISTORY PROJECTION, null, null, null)
if (mCur.moveToFirst()) {
while (mCur.isAfterTast() = false) {
return_str += m Cur. getString (HISTORY _
PROJECTION_ TITLE_INDEX)+n”
mCur.moveToNext()

}
¥ else {

return_str =*No data” .
y Fig. 1: Inserted SMS
return return_ str

}

5554:Galaxy_Mexus API_16_2

Short message service: As we already noted early,
TaintDroid did not detect our sample malware leaking
SMS. Based on our previous research, we expect this was ' ®©
caused by no initial SMS stored in Android image. By e
using the same approach we used before, we implemented
a method, putSMS() in TelephonyProvider.java shown in
Algorithm 3 to insert an SMS having a message, “Injected
Message”, from a phone number, 01036165366. By using
content values class, we set the phone number at address
column and the message at body column Fmally, we
inserted the content values instance at content://sms/
inbox. After recompilation of Android system, we can
check that an SMS message with “Injected Message”
from 01036165366 was generated as shown in Fig. 1.

Algorithm 3; Source code of TelephonyProvider.java for
inserting SMS:
public void putSMS() {

ContentValues values = new ContentWValues()

values.put(“address™, “01036165366™)

values.put{body”, “Injected Message’™)
getContext().getContentR esolver().insert(Uri.parse(*“content.//sms/inb 0x™),
values)

}

Fig. 2: Inserted call log
We took the same approach as used m the SMS

Call history: The sample malware extracting call history ~ injection to insert a call log having a 60 sec-long incoming
shown in Algorithm 4 was not detected by TaintDroid. call from a phone number, 01036165366, shown in Fig. 2.

6310

J. Eng. Applied Sci., 12 {Special Issue 2): 6308-6312, 2017

Differences compared to SMS injection are injected
data and URI and we found the call log was inserted well
as shown in Algorithm 5. However, even after inserting
call logs, TamtDroid was still unable to detect the
malware.

Algorithm 4; Call history extracting code:

public String getCallLog() {

String retum_str = null

ContentValues ¢ = new ContentValues()

try {

StringBuffer sb =new StringButter();

Cursor managed Cursor = managedCuery (android. provider. Calll.og. Calls.
CONTENT _URI,null, null,null, null)

int number = managedCursor. getColumnIndex (android.provider.CallLog.
Calls. NUMBER)

int type = managedCursor.getColumnindex (android.provider.CallLog.
Calls. TYPE)

int duration = managedCursor.getColumnIndex (android.provider. Calll.og.
Calls. DURATION)

sh.append (*Call Details’™)

while (managedCursor.moveToNext()) {

String phNumber = managedCursor.getString(number)

String callType = managedCursor.getString(type)

String callDuration = managedCursor.get

String(duration)

String dir=null

int dircode = Tnteger. parselnt(call Ty pe)

if (callType.equals(“1™)) {

—

callType =*incoming”

} else {

callType = “outcoming”
}

return_str = “Num+phNumber+“duration:"+ callDuration+“type:"+
callType

1 catch (Exception €) {
e.printStack Trace();
retum_str =*“No data™;
}

retum return_str;

}

Algorithm 5; Source code of TelephonyProvider.java for

inserting call history:
Public void putCallLog() {
ContentValues values = new ContentValues()
values. put(android.provider. CallLog.Calls. CACHED _NUMBER_TYPE,
0
values.put{android.provider.Calll.og.Calls. TYPE
CallLog.Calls.INCOMING _TYPE)
values.put(android.provider.CallLog.Calls. DATE, Sy stem. current
TimeMillis())
values.put(android.provider.CallLog.Calls. DURATION, 60)
values.put{android.provider.CallLog. Calls NUMBER, “01036165366™)
try {
getContext().getContentResolver(). insert (android. provider. CallL og. Calls.
CONTENT_URI, values)
1 catch (Exception €) {
e.printStackTrace()

}
}

android. provider.

So, we tried to find what caused this symptom and
figured out a bug m TamtDroid. ContentResolver java 1s
originally included in Android system for providing

applications access to the content model. TaintDroid
modified 1t as a patch for putting a tag according to data
sources. As shown in Algorithm 6, we found that
TamtDroid programmers forgot to add codes for checking
the call log source, “ content://call log/calls”, so
TAINT CALL LOG was not added appropriately. After
modifying the TAINT CALL LOG part and building
TaintDroid again, we got correct taint analysis results that
include four types of tainting tags as shown in
Algorithm 7.

Algorithm 6; Modified source code of ContentResolver.

java for tagging call log information:

/begin WITH_TAINT TRACKING

int taint = Taint. TATNT CLEAR

if{uri.to8tring(). indexOf(*“com.android.contacts™) 1= -1) {
taint = Taint. TAINT_CONTACTS

}
else if{uri.toString().indexOf " browser/bookmarks™) 1=-1) {
taint = Taint TAINT HISTORY

else if{uri.toString().indexOf" content://sms™) 1= -1) {
taint = Taint. TAINT SMS

else if{uri.toString().indexOf(* content//mms™) 1= -1) {
taint = Taint. TAINT SMS

}

/{Added in this research

else if(uri.toString().indexOf(" content://call_log/calls™) 1= -1) {
taint = Taint TAINT _CALL LOG

}
{// end WITH_TAINT_TRACKING

Algorithm 7; Taint analysis result of modified
TaintDroid for SMS, bookmark, call log and

accelerometer:
“dataleaks™: {
“2.34438705444335947 {
“Method”: “None”
“Package™: “None”
“data”: “3d3d3d3d3d20416363656¢c65726f6d65 746572203d3d3d3d3d0
a58203a20302e30202£2059203a20392e3737363232202{205a203a20302e3
831333431370a3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3d0a3d3d3d3d3d
20534d53203d3d3d3d3d0ad1 64647
“id”: “778061256”
“operation”: “write”
“path”™: “/mnt/sdcard’ taint Test. txt™
“sink™: “File”
“tag™: [
“AINT ACCELEROMETER”
“TAINT SMS”
“TAINT CALL LOG”
“TAINT BROWSER”
1

“type’™: “file write”

CONCLUSION

TaintDroid 18 a very useful tool to run Android
applications for tainting analysis. Various data sources
are tracked m TaintDroid but we found that some of them

6311

J. Eng. Applied Sci., 12 {Special Issue 2): 6308-6312, 2017

have not been tracked properly due to no initial data or a
simple programming bug. In this study, we checked four
data sources accelerometer, bookmarl, SMS and call
log. TamtDroid keeps taggmg data from the
accelerometer, 0 its data is successfully tracked. Android
system has a list of boolanark, so, malicious applications
leaking the bookmark will be detected. However, a clean
Android system does not contain SMS data, so, SMS
data leaking application cannot be detected. We solved
this problem by mserting a sample SMS before start of
analysis. Finally, since, there is no call log information in
the clean Android system, we inserted a sample log as we
did for SMS. However, in call log case, we found a simple
bug that TaintDroid missed to attach a tag to call log data,
thus resulting in failure of call log leaking applications
even after inserting call log information. By modifymg a
TaintDroid souwrce code, we got correct tainting
results.

Currently, we are investigating to see if there are
similar detection failures in other remaining tainting
sources. In the preliminary tests, some sources like
TAINT EMAIL, TAINT MIC and TAINT CAMERA
produce tainting failures, too. We expect that the
complete information about which tainting sources work
or not mn clean Android emulator will be useful to other
researchers.

REFERENCES

Enck, W., P. Gilbert, B.G. Chun, LP. Cox, I. Jung,
P. McDaniel and A N. Sheth, 2010. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. Proceedings of the 9th
USENIX Symposium on Operating Systems Design
and Implementation, Volume 10, October 4-6, 2010,
Vancouver, BC., Canada, pp: 255-270.

Hao, S., B. Ly, S. Nath, W.G. Halfond and R. Govindan,
2014. Puma: Programmable Ul-automation for
large-scale dynamic analysis of mobile apps.
Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications and
Services, June 16-19, 2014, ACM, Bretton Woods,
New Hampshire, USA., ISBN:978-1-4503-2793-0, pp:
204-217.

Jang, B., I. Lee and M. Lee, 2016. Automatic system for
measuring security risk of Android application from
third party app store. Secur. Commun. Netw., 9
3190-3196.

Lindorfer, M., M. Neugschwandtner, T.. Weichselbaum,
Y. Fratantomo and V.V.D. Veen et al, 2014.
Andrubis-1,000,000 apps later: A view on current
Android malware behaviors. Proceedings of the 3rd
International Workshop on Building Analysis
Datasets and Gathering Experience Returns for
Security (BADGERS 14), September, 11, 2014, TEEE,
Wroclaw, Poland, ISBN:978-1-4799-8308-7, pp:
3-17.

Michelle, Y W. and D. Lie, 2016. IntelliDroid: A targeted
input generator for the dynamic analysis of android
malware. Proceedings of the 2016 Symposium on
Network and Distributed System Security (NDSS’16),
February 21-24, 2016, Internet Society, San Diego,
California, pp: 1-15.

Rastogi, V., Y. Chen and W. Enck, 2013. Apps
playground: Automatic security analysis of
smartphone applications. Proceedings of the 3rd
ACM Conference on Data and Application Security
and Privacy, February 18-20, 2013, ACM, San
Antonio, Texas, ISBN:978-1-4503-1890-7, pp:
209-220.

Spreitzenbarth, M., F. Freiling, F. Echtler, T. Schreck and
J. Hoffmann, 2013. Mobile-sandbox: Having a deeper
look into android applications. Proceedings of the
28th Amnual ACM Symposium on Applied
Computing, March 18-22, 2013, ACM, Coimbra,
Portugal, ISBN:978-1-4503-1656-9, pp: 1808-1815.

Yoon, H.J. and M.H. Lee, 2017. A tip for enabling
taint analysis of contact information in
TamtDroid. Proceedings of the 2017 International
Conference on Inventive Commumication and
Computiational Technologies (ICTCCT 17), March
10-11, 2017, Hamam University, Daejeon, South
Korea, pp: 1-3.

Yuan, Z., Y. Lu, Z. Wang and Y. Xue, 2014. Droid-Sec:
Deep learning in android malware detection.
Proceedings of the ACM SIGCOMM Computer
Commumcation Review Vol. 44, August 17-22, 2014,
ACM, Chicago, lllinois, [SBN:978-1-4503-2836-4, pp:
371-372.

Zheng, M., M. Sun and I.C. Lui, 2014. DroidTrace: A
ptrace based Android dynamic analysis system with
forward execution capability. Proceedings of the 2014
International Conference on Wireless
Communications and Mobile Computing
(IWCMC’14), August 4-8, 2014, IEEE, Nicosia,
Cyprus, ISBN:978-1-4799-0959-9, pp: 128-133.

6312

	6308-6312_Page_1
	6308-6312_Page_2
	6308-6312_Page_3
	6308-6312_Page_4
	6308-6312_Page_5

