Tournal of Engineering and Applied Sciences 13 (8): 1947-1962, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Testing through In-Circuit Emulators, the RS485 based
Distributed Embedded System

I Sasi Bhanu, Y. Venkata Raghavarao and JKR Sastry
St. Martin Engineering College, KLLEF University, Vaddeswaram, Hyderabad, India

Abstract: Many distributed embedded systems are being used for implementing different kinds of applications.
The trend in embedded systems design m recent years has been towards hlighly distributed architectures with
support for concurrency, data and control flow and scalable distributed computations. Many methods have
been proposed in the past for testing a standalone embedded system and not many methods have been
proposed for testing distributed embedded systems. Methods such as scaffolding, assert macros, m-circuit
emulators, monitors, logic analyzers are used i addition to third party tools for undertaking the testing of
standalone systems. However, using of the same for testing a distributed embedded system 1s complicated. In
the case of distributed embedded systems, a test case must be tested considering the related processes which
are distributed across severa lembedded systems that are connected within the same network. Some testing has
also to be carried for proper messaging/communication taking place between the embedded systems that get
comected to the network. Messaging as such 13 dependent on the type of networking such as 12C, CAN and
RS485 is used for establishing the distributed embedded system. Tt is not possible to undertake testing when
any part of the network fails during testing. In this study, a method has been proposed for testing
distributed embedded system that gets commected through R3485 based commumnication system through use
of in-circwt-emulators that are capable of 1solating the processes related to the test cases that must be tested
to ensure that the distributed embedded system has been functioning as per the design.

Key words: In-circuit emulators, distributed embedded systems, RS485 based networking, functiomng,

processes, embedde

INTRODUCTION

Embedded systems are a different class of systems
which throw several challenges, especially, related to
testing. The testing process to test the embedded
applications 1nvolves testing individually hardware,
software and both the hardware and software together.
The process of testing an embedded application 1s rather
complex. Development and testing of embedded software
is especially, difficult because it typically consists of a
large number of concurrently executing and interacting
tasks. Hach task in embedded software 1s executed at
different intervals under different conditions and with
different timing requirements. Furthermore, time available
to develop and test embedded software is usually qute
limited due to relatively short lifetime of the products.

Cost effective testing of embedded software is of
critical concern in maintaining competitive edge. Testing
an embedded system manually 1s quite time taking and
also will be a costly preposition. Tool based testing of an
embedded system has to be considered and put into use
to reduce the cost of testing and also complete the testing

of the system rather quickly. Testing and debugging
embedded systems is difficult and time consuming for
simple reason that the embedded systems have neither
storage nor adequate user interface. The users are
extremely intolerable of buggy embedded systems.
Embedded systems deal with external environment by way
of sensing the physical parameters and also must provide
outputs that control the external enviromment.

In embedded systems, the issue
must consider both hardware and
mall-functiomng of hardware is detected through software
failures. The target embedded system does not support
the required hardware and software platform needed for
development and testing the software, hardware and both.
The software development cannot be done on the target
machine. The software is developed on host machine and
then installed in the target machine which is then
executed.

Comprehensive testing of embedded systems
requires the identification of various test methods, the
location of carrying testing and the kind of testing that
can be conducted using specific method. Comprehensive

of testing
software. The

Corresponding Author: J. Sasi Bhanu, St. Martin Engineering College, KLLEF University, Vaddeswaram, Hyderabad, India
1947

J. Eng. Applied Sci., 13 (8): 1947-1962, 2018

testing includes testing hardware, software and both. The
comprehensive testing includes various types of testing
to be camried at different locations using different
methods.

The entire embedded system application code can
be divided primarily into components namely hardware
independent code and hardware dependent code.
Hardware independent codes are tasks that carmry
mundane housekeeping and data processing whereas the
hardware dependent codes are either interrupt service
routines or the drivers that control the operation of the
device. It 13 necessary to identify different types of test
cases that tests both hardware independent code and
hardware dependent code. The testing techniques and the
testing locations where testing must be carried should
address the requirements of testing both the hardware
independent and hardware dependent code.

Embedded systems software development is done on
a host as the target machme will not have sufficient
resources to undertake the software development. ES
software development process is undertaken on a host
and on completing the development and undertaking the
testing to certain extent, the code 1s then copied on to the
ROM or flash memory of the target and then the hardware
is again tested along with the host. The embedded system
is connected to the production system and the testing is
carried again. Testing the embedded system after
connecting to the production system 1s absolutely
necessary as any amount of testing carried simulating the
events initiated by the production system will not clearly
depict the working of production system. The real
production system may iutiate many mforeseen and
uncommon events which are considered as part the
development of the system.

If an analysis is carried on the entire code of an ES
application it will reveal that 80% of code 1s hardware
Independent code and the rest is hardware dependent
code. Tt makes it easy, faster and cost effective to
complete testing of the hardware independent code on the
host machine itself. The testing of the hardware
independent code can be carried at the host by carrying
any of techniques that includes Scaffolding, Assert
Macros and m-circuit emulators. Using scaffolding,
testing of hardware mdependent code can be carried on
the host machine.

In-circuit emulators will be handy to test the response
time, throughput and portability 1ssues. An emulator 1s
software that runs on host and simulates the behavior of
micro processor and the memory on the target machine.
The emulator has the knowledge of locator output,
architecture and m-circuit of the target micro processor.
Emulators do the simulation by way of using the memory

for registers, program counters and address registers and
data buffers. The instructions are read from the memory
and converted to instructions equivalent to the target
machine. Emulators also support a macro language using
which testing scenarios are submitted as input to the
emulators. Emulator can report response time in terms of
the number of target machine instructions executed. The
count of instructions executed or number of bus cycles
used. The average response time can be computed by
multiplying with average in-circuit execution time.
Emulators can also execute the startup code and interrupt
service routines written in assembly language. Most of
the testing related to portability issues can be tested
using the emulators as the simulation of instructions of
the target machine 15 done by the emulators. Emulators
also help in testing the built-in peripherals such as timer,
DMA, UART, etc., as the simulation of such built in
emulators is quite possible. Emulators have the prior
knowledge
Built-ins.

At the host, several types of testing can be
conducted considering the quality of the embedded
applications, especially, when bugs are to be investigated
whenever the emrors are traced while running the
application on the host. The test cases are submitted to a
third party tool and the third party tool conducts the
testing using the image of embedded application and
produces the test results back to test process which
maintains the test results in the secondary stage using
which the audit trail can be conducted.

A Microcontroller which 1s part of an embedded
system 1s replaced by an in-circuit emulator mn the target
machine. The emulation software is stored in a separate
memory different from application memory and the
emulation software maintains execution status of the
application in its memory. The execution of the application
is controlled by the emulation software. The emulation
have communication software
component to commumicate with the host. Host can
nitiate series of test cases to in circuit emulator and the
test execution results are sent back to the host. The
emulator software provides the support to test the
software along with the hardware: emulator software
supports debugging of the application through
commands sent from host. Figure 1 shows the system
architecture for undertaking testing considering the target
{(Embedded system) and the host (PC)

The emulator software provides the support to test
the software along with the hardware: emulator
software supports debugging of the application through
commands sent {rom the host. In the case when an
embedded system fails, the de-bugging of the failure can

of the target processors and related

software also will

1948

J. Eng. Applied Sci., 13 (8): 1947-1962, 2018

Overla
memory

N—

Test casses

Regular

memory
related
seript

Application HOSt based
testing software,
Test
& results
Target

communication
interface

In-circuit

Host
communication
interface

Fig. 1: Block diagram connecting the individual

embedded systems

be undertaken by using the functions supported by
m-circuit emulator which meclude setting break points,
examine the contents of memory and registers, setup
through sources code, exercise control on execution of
the code through stopping the execution of the code and
then resuming the execution as required.

In-circuit emulator also allows seeing the contents of
the memory and registers even when the application is
crashed. Emulators captures trace of program execution
and in the event of any failure, emulators still help in
interacting with it through host machine. The entire dump
of overlay memory can be viewed and the reason for
failure can be investigated. The emulator software can be
read from a host and copied mto overlay memory.

Different types of testing can be done using the
m-circuit emulator which includes testing the mnbuwlt
peripheral devices, memory leakages, response time,
functional usage, un-used code, changes to the data at
specified locations, high used functions, mter-task
comimurmication, etc.

The process flow for undertaking testing at each of
the location using in-circuit emulator is shown in Fig. 2.
The test cases that should be tested using the in-circuit
emulator are generated and stored in a database at the
host. The micro controller in the target is replaced by an
mn-circuit emulator which emulates the execution of the
code as if the code is executed by the originally installed
micro controller. The in circuit emulator has a separate
overlay memory at which trace of the application
execution and the emulation software are stored which
can be used for debugging even if the rest of the
hardware is broken down.

The test cases meant for testing through in-circuit
emulator are read one after the other through a separate
process and a script file containing the commands and the

Generate test
casses
Test casses

Test case
discriptions

Location Generate Emulator
wise test test script proram on the
cases target

Test script Host based
program

‘
Audio
results

Fig. 2: Networking the embedded systems through R 5485
networking

command line arguments which are understandable by the
processes resident at the target and the in-circuit emulator
is created and stored in the database.

The test process imtiates the execution of the
commands contained in the script file and communicates
the same to a process resident at the host. The process at
the target execute the commands received from the host
in emulation mode and the results obtained due to
execution of the test cases through command execution
are sent through a communication interface implemented
at both ends of the target and the host. The test results
received at the host are stored in a audit trail database file.
The target machine can be made to research in emulation
or non-emulation mode by setting the mode switch
provided on the target board or the mode can also be set
by way of asserting the ALE signals of the controller.

The communication between the emulator and the
host based program can be achieved through RS232C
interface. Emulators are defined with specified address
range at the time of relocating the code. All the memory
variables, register and the CPU status and control
registers are mapped to the internal memory of the
emulator. Emulator can commumnicate with the host even
1n the case of failure of target.

A distributed system involves several embedded
systems which are mterconnected trough a networking
system such CAN, T'C, RS 485, UUSB, etc., using BUS like
topology using system. An
embedded application is broken down into several small
applications and each of the small application is

serial comimnunication

1949

J. Eng. Applied Sci., 13 (8): 1947-1962, 2018

implemented through an individual embedded system
which means both the hardware and software 1s
distributed. The communication between the embedded
systems is generally monitored and controlled through
central embedded systems or through effecting peer to
peer communication.

A distributed embedded system can be considered
as a set of functions (or tasks depending on the
vocabulary) interacting to realize system functionalities.
A common representation uses the notion of
communication channels in order to model asynchronous
communications. But, if such a model can be useful
because of its simplicity, it does not reject the way of
communicating when considering actual embedded
systems. Communication networks are composed of
shared resources (switches, gateways, routers, etc.)
accessed by every system participants.

A distributed embedded system involves use of
individual microcontroller based systems which are
generally heterogeneous in nature. Each microcontroller
based system will have built-in interfaces using which
communication with other microcontrollers can be
achieved. EHstablishing commumcation among various
microcontrollers is essential to implement a distributed
embedded application.

In a distributed embedded application both the
hardware and software that comprise entire application is
distributed. Communication is necessary among the
mndividual microcontroller based systems for exchanging
process information. Networking microcontroller based
systems becomes one of the most important criteria in
unplementing distributed embedded systems.
Heterogeneity is the most critical issue that must be
considered while designing a network of distributed
embedded systems. The heterogeneity is due to
mterfaces, protocols, implementation of protocols, etc.

Literature review: Several researcher have proposed
different approaches to conducting testing of embedded
systems. Jacobson et al. (1999) have suggested testing of
modules of embedded systems by 1solating the modules
at run time and improving the integration of testing. This
method has however failed to support the regression of
events. They have suggested testing of embedded
systems by simulating the hardware on the host and
combining the software with the emulators. This approach
however will not be able to deal with all kinds of test
scenarios related to hardware. The complete behavior of
hardware specially unforeseen behavior cannot be
simulated on a host machine.

Nancy Van Schooenderwoert have suggested an
approach of carrying unit testing of the embedded
systems using agile methods and usmg multiple
strategies. Testing of embedded software is bound up

with test of hardware, crossing professional and
organizational boundaries. Even with evolving hardware
in the picture, agile methods work well provided multiple
test strategies are used. This has powerful
implications for improving the quality of high reliability
systems which commonly have embedded software at
their heart.

Regression testing (Tsai et af, 2001) has been a
popular quality testing technique. Most regression
testing’s are based on code or software design, Tsai and
others have suggested regression testing based on Test
scenarios and the testing approach suggested is
functicnal regression testing. Tsai and others have even
suggested a WEB based tool to undertake the regression
testing.

Tsai et al. (2003) have suggested END-TO-END
Integration testing of embedded system by specifying
test scenarios as thin threads; each thread
representing a single function. They have even developed
a WEB based tool for carrying end-to-end integration
testing. They have suggested a testing approach based
on verification patterns, the key concept of this being
recogmizing the scenarios to patterns and applying
the testing approach whenever similar patterns are
recognized in any embedded application. But the lkey
to this approach 1s the ability to identify all test
scenarios that occur across all types of embedded
applications.

Lee suggested a different approach for
conducting integration testing by considering interaction
scenarios, since, the integration testing must consider
sequence of external input events and internal
interactions

In-circuit emulator is an important support tool in
development and integration of hardware and software
related to microprocessor based systems. Generally, an
in-circuit emulator is implemented as a module of a
development station. For this reason, it depends
completely on the architecture and the bus structure of
the host system and it cannot be moved from system to
system, since, 1t carmot be used on its own. Therefore, 1t
represents an expensive investment as it must be acquired
with the development system itself (Ergincan and Satic,
1986). Fahir Ergincan and Ali Saa presented stand-alone,
in-expensive in-circuit emulator which is suitable for a
particular microprocessor.

Armengaud et al. (2005) presented embedded
electronic communication systems which connect all the
embedded systems that are fitted into an automobile
system. For successful application of development new
test and diagnosis solutions for these distributed systems
are required. They have presented a stimulus generation
of test systems based on a remote test under the stringent
constraints of the automotive industry. They have

1930

J. Eng. Applied Sci., 13 (8): 1947-1962, 2018

elaborated a flexible and accurate method that enables a
systematic and comprehensive test of data link layer
related communication services. Furthermore, they have
discussed how the solution can be applied for various
different test purposes (which include verification,
testing for robustness, interoperability and also to carry
maintenance tests and demonstrated its application for
testing a data lnk layer related protocol called
“Flex Ray”.

In-Circuit Test (ICT) has been used for more than
30 years to test for correct assembly of components on to
a Printed Circuit Board (PCB). The premise beluind the
in-cireuit test philosophy was based on gaining net level
access to a circuit and driving and sensing signals
through the components of that circuit to determine 1if the
compoenents were placed correctly and soldered correctly
to the board. Given today’s board density and speed
requirements, it is becoming more and more challenging to
gain access to all of the nets on a given Printed Circuit
Assemble (PCA). Even with 100% access, the tester may
not be capable of testing all of the nets on a large, high
density PCA (due to the sheer number of nets on the
board). In addition as more and more logic 1s integrated
mto devices and signal mtegrity begins to dommate
interconnect as the primary board level concern; the
“relevance” of in circuit test seems to be diminishing. An
advanced in-circuit test techmques that help improve the
effectiveness of the mn-cirewit test on large, fast and
complex PCAs with limited test point access has been

presented by JTohn Malian.
Effective validation Quality-of-Service (QoS)
properties {(e.g., event prioritization, latency and

throughput) of a Distributed Real-time Embedded system
(DRE) require testing system capabilities i representative
execution environments. Unfortunately, evaluating the
correctness of such tests 1s hard, smce, it requires
validating many states dispersed across many hardware
and software components. To address this problem
(Hill et al, 2011) have presented a method called Test
Execution (TE) Score for validating execution correctness
of DRE system tests and empirically evaluated TE score
in the context of a representative DRE system. Results
from this evaluation show that TE Score can determine the
percentage correctness m test execution and facilitate
trade-off analysis of execution states, thereby, increasing
confidence in QoS assurance and improving test
quality.

Test case creation activities consume an increasing
amount of resources allocated to software development
projects. There is a dire need for automating the testing
task as much as possible. In this study, we report on the
application of academic test case generation tools m an

industrial context. Chimisliu and Wotawa (2012) have
presented an approach to generate test cases from
reactive distributed systems specified as asynchronously
commumicating UML state charts. They have employed
two approaches for the generation process. The first one
is fully automated and generates test cases aimed at
transition coverage. The second one requires the
mntervention of the tester m order to ammotate states
and/or transitions partially describing a test scenario. Tt is
the job of the tool to compute test cases pertaining to the
specified test scenario.

Quality 1s the life of embedded software and the
software testing is a basic guarantee for stable and
reliable operation of the embedded system. Locking at the
difference in target and development environment for
embedded software, to increase the consistency of
embedded software reliability testing, it becomes
much more necessary to construct embedded software
testing environment. After analysing the Basic Structure,
functionalities and characteristics of distributed
embedded software test environment, instead of adopting
the conventional developing pattern, a three-layer
development pattern is put forward that cean fulfil
distributed special purpose testing system for specific
embedded software testing application (Tian et al.,
2009)

L et al (2010) presented a testing tool for
distributed embedded software. They have used
Distributed Embedded System Simulating Environment
(DESSE) could simulate a highly configurable hardware
environment for software testing. The DESSE method
could simulate real-time network using regular full-duplex
fast ethernet. To support software testing, the DESSE has
the ability to monitor the system and take all kinds
of tests with scripts. Using the tool, some difficult
distributed embedded software testing such as “probe
effect”, non-repeatability, can be undertaken even when
certain resources like synchronized global clock is
non-existent. This study examines the fundamental
problems that one faces when testing a distributed, hard
real-time (Schutz, 1994) examined fundamental problems
that one face when testing a distributed, hard real-time
system. It specifically identifies the mfluences of the
distributed ness and of the real-time requirements of the
systems considered. He has shown that the usual
problems of testing become more difficult and also more
additional problems are mtroduced when it comes testing
of distributed embedded systems due to the addition of
more system characteristics. He has identified six
fundamental problems: organization, observability,
reproducibility, host/target approach,
simulation and representativetity. These as well as their

environmernt

1951

J. Eng. Applied Sci., 13 (8): 1947-1962, 2018

interrelations are presented in a general framework that is
mndependent of a particular system architecture or
application. This framework could serve as a starting
point for all activities geared towards particular system
arclutecture or a specific application. They have
presented how test problems have been handled when
developing a test methodology for the distributed
real-ime systemn MARS.

In the recent years, embedded systems have become,
so, complex that the development and testing time is
becoming extremely time comsuming. As embedded
systems include more and more functions for new
services, embedded systems are presenting challenges
with respect to the attributes of security, scalability
availability and performance with deterministic behaviour.
Saini (2012) has presented various issues that affect
testing process and technologies which can be
ameliorated by Rational Test Real-Time (RT-RT). All the
architectural specification is analysed through adapting
object oriented approach while desigmung the embedded
systems.

Embedded control systems such as automotive form
large scale distributed ones which consist of numerous
CPUs and devise including plants and various hardware
components. The complexity of such systems has
mcreased for sophisticated control using numerous types
of sensor data. Meanwhile, market pressures lead to
reducing development periods for the large scale
distributed embedded control systems. A model based
design becomes popular (Nakamoto ef al., 2014) to solve
the above problems, especially, automotive industries.
Nakamoto er al. (2014) have described a wide-area
distributed integrated test environment based on the
model based design. The key features are communication
middleware to enable wide-area distributed test with
integrating the programs in widely distributed sites and
control program execution with models of multiple
abstraction levels m the model based design. Furthermore,
they have developed a model agent simulation. Instead of
a plant model that might be located and simulated by
MATLAB/Simulink in a remote site, a model agent
behaves like the model in a local computer. The model
agent simulation significantly reduces the test execution
time 1n a prototype evaluation.

Reproducible and deterministic testing of sequential
programs can in most cases be achieved by controlling
the sequence of inputs to the program (Thane and
Hansson, 1999). The behaviour of a distributed real-time
system, on the other hand, not only depends on the
mputs but also on the order and timing of the concurrent
tasks that execute and communicate with each other and
the environment. Hence, sequential test techniques are
not directly applicable, since, they disregard the
significance of order and timing of the tasks. Thane and

Hansson (1999) have presented a method for identifying
all possible orderings of task starts, pre-emptions and
completions for tasks executing in a distributed real-time
system. Together with an accompanying testing strategy,
this method allows test methods for sequential programs
to be applied, since, each identified ordering can be
regarded as a sequential program. In the presented
analysis and testing strategy, they have considered task
sets with recurring release patterns and take into
account the effects of clock synchronization and
variations in start and execution times of the mvolved
tasks.

Distributed embedded system for experimentation:
Monitoring the temperatures within nuclear reactor tubes
is one of the most important issues when it comes to
uranium enrichment. Sensors are mounted on to the
nuclear reactor tubes which are distantly situated. Many
temperatures at various points within each of the Nuclear
reactor tube must be sensed and it 1s also necessary to
maintain proper gradients across various points at which
the temperatures are measured. Coolants have to be
iyjected into the tubes to bring the temperatire down
when temperatures raises above some pre-defined levels,.
Pumps are used for injecting the coolants into the tubes.
The temperature sensing and implementing the actuating
mechanisms that control the process of pumping is
achieved through various embedded systems. The
operators must be alerted when the temperature gradients
go beyond uncontrollable levels through asserting a
buzzer and lighting a pattern of LEDs as the case
may be.

A historical database of temperatures sensed,
pumping levels implemented, temperature gradients,
status of triggering buzzer, etc. are written on to a PC into
a database for providing the historical evidences. Each
part of sensing and actuating requires a kind of response
time and therefore needs to be sensed, monitored and
controlled individually through a separate embedded
system. There is a need for coordinating the functions
between the individual embedded systems for achieving
the sensing and actuating in real time. This leads to the
need for interconnecting the individual embedded
systems that help in establishing the communication
between the embedded systems which are individually
responsible for either sensing, actuating or monitoring
the process taking place within the nuclear reactor
system.

The block diagram showing the connectivity
between the embedded systems which forms the
distributed embedded system is shown in Fig. 3 and
4, the way the embedded systems have bheen
networked using RS 485 based networking system has
been shown.

1952

J. Eng. Applied Sci., 13 (8): 1947-1962, 2018

LCD LCD

| Temp 1 |—>| 89C 51 |4—l £>|PICISF4550|—>

Pump 1 |

|LPC 2148|

e .
| Temp 2 |—>|ATRO S 52|J |_>|ATmega 328|—>| Pump 2 |

Buzzer|

Fig. 3: Block diagram connecting the individual
embedded systems
Rs232G &
[RS232C %
Pump 2 = =
- N [RS 232C
vy
[SEsTs E: - S L RS232G
> L=
RS 2370 < Pump 2
Central processor — (3]
- = {RS232(]
£ — S —Rs23g
®
|RS 232C ﬁ L= Pump 1
RS 232CI =
Pump 1 —

RS 485

Fig. 4: Environment setup for generation of test cases to
be tested at each of the locations

The application meant for monitoring the
temperatures within nuclear reactors system 1s
implemented through uses of 5 Micro controller based
systems which include LPC21 48 (Central Processing Unit),
89C51 (Temp-1 sensing), AT89S52 (Temp2 sensing),
PIC18F4550 (Pump-1 Control) and ATmega228 (Pump 2
Control)

Designing, development and implementing the
networking of embedded systems becomes one of the
most crucial issues when it comes to designing,
development and implementing the distributed embedded
systems. One of the major issues that must be addressed
is heterogeneity that exists among different types of
Microcontroller based systems which are used for
developing and implementing different parts of a
distributed embedded system. These requirements leads
to implementation of distributed embedded systems, each
designated to monitor and control either the sensing or
actuating mechanisms with the need for the centralized
coordination between the distributed embedded
systems.

The individual embedded systems
networked using 485 protocols. Protocol conversions
have been used where ever no native support for the

have been

protocol exists. Figure 4 shows the block diagram of a
decentralized embedded system with built-in respective
interfaces along with individual embedded systems
that provides centralized coordination. Interfacing
distributed embedded systems through RS485 protocol
requires protocol conversion when no native support
exists within the respective individual embedded
systems.

RESULTS AND DISCUSSION

Mapping master test cases to various distributed
locations: Some of the major testing requirements that
must be tested across the entire distributed embedded
system (Pilot project) are shown in Table 1. It has been
noted 1in the table, the way the test case is realized
considering the method used for undertaking the testing
and the locations that are mvolved in undertaking the
testing.

Environment setting for testing distributed embedded
systems through in-circuit emulator method:
Environment 1s to be set to start-with for undertaking
testing through in-circuit emulator as the test cases are to
be presented as test scripts which are to be read and
executed by the in-circuit emulator. Figure 4 shows the
enviromment setting required for undertaking testing
through m-circuit emulator method. Every embedded
system that participates in a distributed embedded
network is a standalone system by itself having required
interfaces for comecting it into a network. The test cases
that can be used for undertaking the testng of a
standalone embedded system can be pre-identified and
mapped to Master test cases which must be tested
considering the entire distributed embedded system. This
process allows the splitting of master test cases into test
cases that must be tested at a specific location. Each of
the split test cases can be associated with a command and
the commands are associated with certain arguments.
Some of the commands may involve more than one
location, especially, when the testing of communication
between the distributed elements needs to be undertaken.
The test cases are then mapped to the commands through
which testing 1s undertaken. A split process 1s used to
separate the test cases that are to be used for testing at a
particular location.

The basic idea behind splitting the master test
cases into many individual test cases is to undertake
testing at different locations and merge the test results
obtained at each location to generate the test results for
entire distributed embedded systems. The locations, the
commands used for testing, the arguments that are related
to each of the commands are maintained individually by

1953

J. Eng. Applied Sci., 13 (8): 1947-1962, 2018

Table 1: Master test cases for testing the entire distributed embedded system

Master test case Testing methods Testing location
Read temp-1 and write to LCD Scaffolding Location-1

Test the R8485 based communication between the 89C51 (System-1) and Scaffolding location-3

the central micro controller system-5)

Read-temp-1 and send to central micro controller Scaffolding Location-1
Read temp-1 and measure throughput Scaffolding, simulator Location-1

Test the R8485 based communication between the 89C51 (System-3) and Scaffolding location-3

the central micro controller system-5)

Read temp-1 and make pump-1 on if temp-1=reference ternp-1 Scaffolding Location-1, 3, 5
Read temp-1 and make purnp-1 off if temp-1<reference temp-1 Scaffolding Location-1, 3, 5
Read temp-1 and make buzzer on if >temp-2 Scaffolding Location-1, 3, 5
Read temp-1 and make buzzer off if <temp-2 Scaffolding Location-1, 3, 5
Test response between the reading the temp-1 and starting the pump-1 Logic anatyzer, scaftolding, in-circuit emulator Location-1, 3, 5
Test response between the reading the temp-1 and stopping the pump-1 Logic analyzer, scaffolding, in-circuit emulator Location-1, 3, 5
Test response between the reading the temp-1 and starting the buzzer Logic anatyzer, scaftolding, in-circuit emulator Location-1, 5, 5
Test response between the reading the temp-1 and stopping the buzzer Logic anatyzer, scaffolding, in-circuit emulator Location-1, 5, 5
Test for RS485 based communication between 89C51 between system-2 Scaffolding Location-2

and the central processor System-5

Read temp?2 and write to .CD Scaffolding Location-2
Read temp2 and write central embedded systems Scaffolding Location-2
Read temp-2 and measure throughput Scaffolding Location-2
Test the R8485 based communication between the 89C51 (Systemn-4) and Scaffolding Location-2

the central micro controller sy stem-3)

Read termp-2 and make pump-2 on if temp-2>Reference temp-2 Scaffolding Location-2, 5, 4
Read temp-2 and make pump-2 oft if temp-2<Reference temp-2 Scaffolding Location-2, 4, 5
Read temp-2 and make buzzer on if >temp-1 Scaffolding Location-2
Read temp-2 and make buzzer oft’ if <temp-1 Scaffolding Location-2, 5, 5
Test response between the reading the temp-1 and starting the pump-1 Logic analyzer, scaffolding, in-circuit emulator Location-2, 4, 5
Test response between the reading the temp-2 and stopping the pump-2 Logic anatyzer, scaftolding, in-circuit emulator Location-2, 4, 5
Test response between the reading the temp-2 and starting the buzzer Logic analyzer, scaffolding, in-circuit emulator Location-2, 5, 5
Test response between the reading the temp-1 and stopping the buzzer Logic anatyzer, scaftolding, in-circuit emulator Location-2, 5, 5

Table 2: Repository of locations at developed for distributed embedded systemns

Location codes Location description

Location address

11 Microcontroller based location for sensing and monitoring temperature-1 20
L2 Microcontroller based location for sensing and monitoring temperature-2 30
1.3 Microcontroller based location for sensing and monitoring pump-1 A0
L4 Microcontroller based location for sensing and monitoring pump-2 50
L3 Microcontroller based location for sensing and monitoring central monitoring sy stem 60

different processes and the list of mapped commands with
arguments that should be used at each of the location for
carrying any type of testing 1s generated.

The individual embedded systems that are connected
mnto a network must be provided with an address, so as to
recognize the locations umquely. Table 2 shows the
addresses assigned to the individual computing
locations.

Test cases are to be presented as commands
to in-circuit emulator and the arguments that are
associated with the commands must be assigned with
range values that can be fed Table 3 shows the list of
arguments that can be mapped to test commands.
Arguments are to be mapped to commands. Table 4
shows the mapping of the arguments to the
commands.

A repository of test cases that can be used for
testing an embedded system comprehensively can be
identified based on test history and the same can be
maintained as a repository. The method that should be
used for undertaking the testing can also be recognized

Table 3: Maintain arguments

Narme of the argument Type of the argument Start values
Location-1 Char(2) L1
Location-2 Char(2) L2
Location-3 Char(2) L3
Location< Char(2) L4
Location-5 Char(2) Ls
Response Int 10
Throughput Int 10

Table 4: Mapping arguments to commands

Command Argument-1 Argument-2
RESTEMP1 10 Location-1
RESTEMP2 10 Location-2
THRUTEMP1 10 Location-1
THRUTEMP2 10 Location-2
RESPUMP10ON 10 Location-3
RESPUMP10FF 10 Location-3
RSEPUMP20N 10 Location-4
RSEPUMP20FF 10 Location-4
RESBUZZERON 10 Location-5
RESBUZZEROFF 10 Location-5

and stored along with the test case. Tt is also possible to
map the application level test cases to the comprehensive

19354

J. Eng. Applied Sci., 13 (8): 1947-1962, 2018

test cases. The mapping of comprehensive test cases
with application specific test cases is shown in
Table 5.

This simple mapping of application level test cases to
comprehensive test case and master test cases to

Table 5: Mapping standard test cases to master test cases and testing methods

commands provide total environment required for
undertaking the testing at individual locations. Each of
the test cases 1dentified at application level 1s split in such
a way that test cases meant for testing a distributed
system is tested through several test cases and testing

Standard test case serial-1 Comprehensive test case Testing methods Master test case
1 Read temp-1 and write to LCD Scatfolding 1
2 Test the R8485 based communication between the 89C51 Scaffolding 2
(System-1) and the central micro controller system-5)
3 Read-temp-1 and send to central micro controller Scatfolding 3
4 Read temp-1 Scatfolding 4
5 Measurer throughput Instruction set simulator, in-circuit emulator 4
6 Test the R8485 based communication between the 89C51 Scaffolding 5
(Systemn-3) and the central micro controller system-3)
7 Read temp-1 Scaffolding 6
8 Test temp-1=reference temp-1 Scaffolding 6
9 Test for pump-1 on Scaffolding 6
10 Read temp-1 Scatfolding 7
11 Test termp-1<reference temp-1 Scatfolding 7
12 Test for pump-1 off Scaffolding 7
13 Read temp-1 Scaffolding 8
14 Test termp-1>temp-2 Scatfolding 8
15 Test for buzzer on Scatfolding 8
16 Read temp-1 Scaffolding 9
17 Test temp-1 !>temp-2 Scaffolding 9
18 Test for buzzer off Scatfolding 9
19 Test for response time of temp-1 Tnstruction set simulator, in-circuit emulator 10
20 Test for temp-1>reference temp-1 Scaffolding 10
21 Test for response time of the pump-1 on Instruction set simulator, in-circuit emulator 10
22 Test for response time of temp-1 Tnstruction set simulator, in-circuit emulator 11
23 Test for temp-1=reference temp-1 Tnstruction set simulator, in-circuit emulator 11
24 Test for response time of the pump-1 off Instruction set simulator, in-circuit emulator 11
25 Test for response time of temp-1 Instruction set simulator, in-circuit emulator 12
26 Test for temp-1=reference temp-1 Scatfolding 12
27 Test for response time of the buzzer on Tnstruction set simulator, in-circuit emulator 12
28 Test for response time of temp-1 Instruction set simulator, in-circuit emulator 13
29 Test for temp-1>reference temp-1 Instruction set simulator, in-circuit emulator 13
30 Test for response time of the buzzer oft Tnstruction set simulator, in-circuit emulator 13
31 Test the R8485 based communication between the 89C51 Scatfolding 14
(System-2 and the central micro controller system-5)
32 Read temp-2 and write to LCD Scaffolding 15
33 Read-temp-2 and send to central micro controller Scatfolding 16
34 Read temp-2 Scatfolding 17
35 Measurer throughput Tnstruction set simulator, in-circuit emulator 17
36 Test the R8485 based communication between the 89C51 Scaffolding 18
(System-4) and the central micro controller sy stern-5)
37 Read temp-2 Scatfolding 19
38 Test temp-2=reference temp-2 Scaffolding 19
39 Test for pump-2 on Scaffolding 19
40 Read temp-2 Scatfolding 20
41 Test temp-2<reference temp-2 Scatfolding 20
42 Test for pump-2 off Scaffolding 20
43 Read temp-2 Scaffolding 21
44 Test temp-2>temp-1 Scatfolding 21
45 Test for buzzer on Scaffolding 21
46 Read temp-2 Scatfolding 22
47 Test temp-2=>temp-1 Scaffolding 22
48 Test for buzzer on Scaffolding 22
49 Test for response time of temp-2 Tnstruction set simulator, in circuit emulator 23
50 Test for temp-2>reference temp-2 Scaffolding 23
51 Test for response time of the pump-2 on Tnstruction set simulator, in-circuit emulator 23
52 Test for response time of temp-2 Instruction set simulator, in-circuit emulator 24
53 Test for temp-2-reference temp-2 Scatfolding 24
54 Test for response time related to pump-2 oft’ Tnstruction set simulator, in-circuit emulator 24
55 Test for response time when temp-2 is sensed Instruction set simulator, in-circuit emulator 25
56 Test for temp-2-reference temp-2 Scatfolding 25
57 Test for response time of the buzzer on Instruction set simulator, in-circuit emulator 25
58 Test for response time of temp-2 Tnstruction set simulator, in-circuit emulator 26
59 Test for temp-2>reference temp-2 Scaffolding 26
60 Test for response time of the buzzer off’ Instruction set simulator, in-circuit emulator 26

1955

J. Eng. Applied Sci., 13 (8): 1947-1962, 2018

undertaken solely at different locations. The test cases individual locations are shown in Table 6. Tt has been
that are split to enable undertaking the testing at considered that the when emulator based testing is

Table 6: Splitting master test cases into test cases that can be executed at different locations

Master test case Test case Split master case Testing methods Location of testing
1 Read temp-1 and write to T.CD 1 Scatfolding Location-1
2 Test the CAN based communication between the 89C51 2 Scaffolding Location-5
(System-1) and the central micro controller sy stem-3)
3 Read-temp-1 and send to central micro controller 3 Scaffolding Location-1
4 Read temp-1 44 Scatfolding Location-1
Measurer throughput 4B Emulator Location-1
5 Test the CAN based cormrmunication between the 89C51 5 Scatfolding Location-5
(System-3) and the central micro controller system-5)
6 Read temp-1 64 Scatfolding Location-1
Test temp-1>Reference temp-1 6B Scaffolding Location-5
Test for pump-1 on 6C Scattfolding Location-3
7 Read temp-1 A Scaffolding Location-1
Test ternp-1<Reference termp-1 7B Scatfolding Location-5
Test for purmp-1 off 7C Scaffolding Location-3
8 Read temp-1 84 Scatfolding Location-1
Test temp-1>temp-2 SB Scaffolding Location-5
Test for buzzer on 8C Scatfolding Location-5
9 Read temp-1 9A Scaffolding Location-1
Test ternp-1-=termp-2 9B Scatfolding Location-5
Test for buzzer off aC Scaffolding Location-5
10 Test for response time of temp-1 10A Logic analyzer Location-1
Test for temp-1=reference temp-1 10B Scaffolding Location-5
Test for response time of the purmp-1 on 10C Emulator Location-3
11 Test for response time of temp-1 11A Logic analyzer Location-1
Test for termp-1=reference temp-1 11B Scatfolding Location-5
Test for response time of the pump-1 off 11C Emulator Location-3
12 Test for response time of temp-1 124 Logic analyzer Location-1
Test for temp-1=reference temp-1 12B Scaffolding Location-5
Test for response time of the buzzer on 12C Emulator Location-5
13 Test for response time of temp-1 13A Logic analyzer Location-1
Test for termp-1=reference temp-1 13B Scatfolding Location-5
Test for response time of the buzzer off 13C Emulator Location-5
14 Test the R8485 based communication between the 89C51 14 Scatfolding Location-2
(System-2 and the central micro controller system-5)
15 Read temp-2 and write to T.CD 15 Scatfolding Location-2
16 Read-temp-2 and send to central micro controller 16 Scaffolding Location-2
17 Read temp-2 17A Scatfolding Location-2
Measurer throughput 17B Emulator Location-2
18 Test the RS485 based communication between the 89C51 18 Scaffolding Location-2
(System-4) and the central micro controller system-5)
19 Read temp-2 194 Scatfolding Location-2
Test temp-2>reference temp-2 19B Scaffolding Location-5
Test for purmp-2 on 19C Scatfolding Location-4
20 Read temp-2 20A Scaffolding Location-2
Test ternp-2<reference temp-2 20B Scatfolding Location-5
Test for pumnp-2 off 20C Scaffolding Location-4
21 Read temp-2 214 Scatfolding Location-2
Test temp-2>temp-1 21B Scaffolding Location-5
Test for buzzer on 21C Scatfolding Location-5
22 Read temp-2 22A Scaffolding Location-2
Test ternp-2=termp-1 22B Scatfolding Location-5
23 Test for response time of temp-2 23A Logic analyzer Location-2
Test for termp-2-reference temp-2 23B Scatfolding Location-5
Test for response time of the pump-2 on 23C Emulator Location-4
24 Test for response time of temp-2 244 Logic analyzer Location-2
Test for temp-2>reference temp-2 24B Scaffolding Location-5
Test for response time related to pump-2 oft 24C Emulator Location-4
25 Test for response time when temp-2 is sensed 25A Logic analyzer Location-2
Test for termp-2-reference temp-2 25B Scatfolding Location-5
Test for response time of the buzzer on 25C Emulator Location-5
26 Test for response time of temp-2 264 Logic analyzer Location-2
Test for temp-2>reference temp-2 26B Scaffolding Location-5
Test for response time of the buzzer off’ 26C Emulator Location-5

1936

J. Eng. Applied Sci., 13 (8): 1947-1962, 2018

Maintain
locations

Locations)

Maintain
arguments
Argumnets '

(Commands

-_
&

Maintain
arguments

Maooed commands
arguments and
location

Map commands
to test cases

Mapped split
test cases with
commands

Split test cases

Fig. 5:Process flow for undertaking testing at an
individual location

considered, simulator based testing is avoided as every
test that can be done using a sunulator can also be
undertaken using in-circuit emulator.

Process flow for undertaking testing through in-circuit
emulator: Entire embedded application code could be
divided into a set of functions and the interlinking of the
functions can be recognized as function code sequences.
Execution of a test case involves execution of functions
mn a sequence. The process flow for undertaking testing
using in-circuit emulator is shown in Fig. 6.

Test scripts are generated for undertaking testing
at distributed locations for undertaking comprehensive
testing of distributed embedded system. The test scripts
are generated using the mapping of test cases with the
commands which are mapped with different types of
arguments. The generated test cases are written to an OS
file called test script file.

The following algorithm is used for generating test
scripts. Algorithm 1 shows the process mvolved in
undertaking testing at a particular location.

Algorithm 1:

Step-1

Reading test cases from the split test cases that have been identified to be
tested at a location using in-circuit Emulator

Step-2
Do the following process for each of test case to be executed at a location.
a. Select atest case
b. Select Script commands related to the test case
[Select the arguments related to the cormmand
i. For each of the argument, select
argument type and value range that can
be used for selecting a value for the
argument
ii. Select value for the argument by using
a process of randormization
d. Generate the script
e Read the test script into the Emulator

Split mapped
test cascs

Script
generator

Function code
sequence

Test script | casc into the

Y

Test
commands

Code,
commands
mappin

Read the test

emulator

MAP function
Function code Read
code sequence
- |estcclcri . sequence MAP function code
Scripl sequence v
Run
in-cricuit
emulator
Test results

audit trial
comm

Fig. 6: Merging the test results obtained through use
of instruction set simulator at each of the
location

Step-3
The emulator on the host will read the script string and then transmit the
sarne to the target

Step-4
The ermilator program on the target shall receive the script string from the
host and find the sequence of functions that must be executed

Step-5
Call the fimctions in the sequence required and at the end of completing
execution of all the functions store the test results

Step-6
Transmit the test results to the host

Step-7
Receive the test results and write the results to audit trail

Algorithm for undertaking the testing at a computing
location using an emulator: The test scripts generated
using the algorithm shown in Fig. 7 are shown in Table 7.
The test scripts are read into emulator by transmitting the
same by the host side testing related program.

Testing at individual locations through in-circuit
emulator: Testing at mdividual locations can be carried
using the testing cases identified for undertaking testing
at that location. The following description shows the way
the testing 18 carried at location-1. Testing at other
locations is undertaken in similar way.

The test cases that must be used for testing at a
location-1 which are in relation to the master test cases are
selected. For the test cases selected test scripts are
generated as shown m Table R.

Preparing testing environment for location-1: The ES
application 1s a set of functions and the functions must be
called in a sequence at any of the distributed locations for
undertaking testing of a particular test case. For each of
the testing to be carried, the sequence m which the
functions must be called 13 mapped and stored mn a
repository as shown in Table S.

1957

J. Eng. Applied Sci., 13 (8): 1947-1962, 2018

Table 7: Generated test scripts

Test script

Split master test case Test case Location of testing
4B Measurer throughput temp-1 Location-1
10A Test for response time of temp-1 Location-1
10C Test for response time of the purnp-1 on Location-3
11A Test for response time of temp-2 Location-1
11C Test for response time of the pump-2 off Location-3
124 Test for response time of temp-1 Location-1
12¢ Test for response time of the buzzer on Location-5
134 Test for response time of temp-1 Location-1
13C Test for response time of the buzzer oft Location-5
17B Measurer throughput temp-2 Location-2
23A Test for response time of temp-2 Location-2
23C Test for response time of the purnp-2 on Location-4
24A Test for response time of temp-2 Location-2
24C Test for response time related to purnp-2 off Location-4
25A Test for response time of temp-2 Location-2
25C Test for response time of the buzzer on Location-5
264 Test for response time of temp-2 Location-2
26C Test for response time of the buzzer off Location-5

THRUTEMP1, THRUPUT =10, Location =L1
RESPTEMPI1, RESPONSE = 10, Location=L1
RESPPUMP1, RESPONSE = 10, Location = L1
RESPTEMP2, RESPONSE = 10, Location-2 =12
RESPPUMP2, RESPONSE = 10, Location-2 =12
RESPTEMP1, RESPONSE = 10, Location-1 =L1
RESPBUZZER, RESPONSE = 10, Location-1 = L5
RESPTEMP1, RESPONSE = 10, Location-1 =L1
RESPBUZZER, RESPONSE =10, Location =L5
THRUTEMP2, THRUPUT =10, Location =L2
RESPTEMP2, RESPONSE = 10, Location =L2
RESPPUMP2, RESPONSE = 10, Location = L4
RESPTEMP2, RESPONSE = 10, Location=L1
RESPPUMP2, RESPONSE = 10, Location = L4
RESPTEMP2, RESPONSE = 10, Location =L2
RESPBUZZER, RESPONSE =10, Location =L5
RESPTEMP2, RESPONSE = 10, Location-1 =12
RESPBUZZER, RESPONSE = 10, Location-1 =15

Table 8: Test cases to be tested at location-1 to be tested through in-circuit emulator

Split master test case Test case Test script

1B Measurer throughput temp-1 THRUTEMP1, THRUPUT =10, Location =T1.1
10A Test for response time of temp-1 RESPTEMP1, RESPONSE = 10, Location =T1.1
11A Test for response time of termp-2 RESPTEMP2, RESPONSE = 10, Location-2 = 1.2
124 Test for response time of termp-1 RESPTEMP1, RESPONSE = 10, Location-1 =T.1
13A Test for response time of temp-1 RESPTEMP1, RESPONSE = 10, Location-1 = L1

Table 9: List of functions that process the throughput and response time of templ

Function code

Marme of the finction

Function description

Fol ReadTemp-1 () Reads the temp1 from sensor 1
Fo2 CountAndA cuumulate() Counts the number of times temp-1 is read and accurmilates the time taken to read the temp-1
Fo3 CompResponse() Computes the response time

Table 10: mapping the scripts with generated functions

Test serial Split master test case

Script

Function code sequence

1 4B THRUTEMPI1, RESPONSE = 10, Location=L1
2 10A RESPTEMP1, RESPONSE =10, Location =L1
3 11A RESPTEMP1, RESPONSE =10, Location =L1
4 12A RESPTEMP1, RESPONSE =10, Location =L1
5 13A RESPTEMP1. RESPONSE =10, Location =L 1

ReadTemp 1(), CountAndA cuumulate()

ReadTemp1(), CountAndAcuumulate(), CompResponse()
ReadTemp1(),CountAndAcuumulatel), CompResponse()
ReadTempl(), CountAndAcuumulate(), CompResponse()
ReadTemp1(), CountAndAcuumulate(), CompResponse()

Table 11: Test results obtained through in-circuit emulator executed at location-1 processor

Split Input Input Input Test Test
test Script Input variable Input variable-2 Input variable-3 output Test fail/
case Test case command variable-1 1 value variable-2 value variable-3 value variable output pass
4B Measurer throughput temp-1 THRUTEMP1 THRUPUT 10 - - - - TOUTTEMP1 10 Pass
10A Test for response time of temp-1 RESPTEMP1 RESPONSE 10 - - - - TOUTTEMP1 10 Pass
11A Test for response time of temp-2 RESPTEMP1 RESPONSE 10 - - - - TOUTTEMPL 10 Pass
124 Test for RESPTEMP1 RESPONSE 10 - - - - TOUTTEMP1 10 Pass
13A Test for RESPTEMP1 RESPONSE 10 - - - - TOUTTEMP1 10 Pass

The functions to be called and the sequence in wlich
the functions must be called for facilitating the testing
when test script is to be executed using in-circuit
emulator have been mapped to each of the test case and
the mapping is fed to the emulator for running
the code as required for testing a test case. The

mapping of the test script to function code 13 shown n
Table 10 and 11.

Undertaking the testing through in-circuit emulator at
location-1: The emulator program on the host reads a test
script from the script file and sends the same to the

target. The emulator program on the target parses the
command and its related arguments. Using the command
the list of functions and the sequence of the functions to
be executed are fetched. Pointers to the functions are
added into a queue. Another process contained within the
emulator reads the queue and executes the functions. The
functions are called by passing arguments which are
associated with the commands. The execution of function
leads to completing the testing and generating test
results. The test results obtained after testing using the
above process are sent to the host where the results are
written to audit trail are shown m Table 12 and 13.

1958

J. Eng. Applied Sci., 13 (8): 1947-1962, 2018

Testing at location-2

Identifying the test cases for location-2: The test cases
that must be used for testing at a location-2 through split
test cases are selected. Test scripts are generated
representing the test cases
Table 14 and 15.

which are shown in

Preparing testing environment for location-2: The ES
application 1s a set of functions and the fimctions
must be called in a
distributed locations for undertaking testing of a
particular test case. For each of the testing to be
carried, the sequence in which the functions must be

sequence at any of the

called 1s mapped and stored m a repository as shown in
Table 16.

The functions to be called and the sequence in wlich
the functions must be called for facilitating the testing
when test script 1s to be executed using the in-circuit
Emulator have been mapped to each of the test case and
the mapping is fed to the in-circuit emulator for running
the code as required for testing a test case. The
mapping of the test script to function code is shown
in Table 17.

Table 12: Test cases for testing at location-2 through in circuit emulator

Undertaking the testing through instruction set
simulator at location-2: The emulator code resident on
the host will makes available the script to the emulator
resident on the target. The emulator on the target reads
the script, parses the command and its related arguments.
Using the commands, the emulator fetches the list of
functions and the sequence in which they must be
executed. Pointers to the functions are added into a
queue. Another process contamned within the emulator
reads the queue and executes the functions. The
functions are called by passing arguments which are
associated with the commands. The execution of function
leads to completing the testing and generating test
results. The test results obtamed after testing using the
above process which are written to audit trail are shown
in Table 18.

Testing at location-3

Identifying the test cases for location-3: The test cases
that must be used for testing at a location-3 and
the related script code generated i1s shown in
Table 19 for each of the test case that must be tested at
location-3.

Split master test case Test case

Script code

17B Measurer throughput

THRUTEMP?2, THRUPUT = 10, Location = L2

Table 13: List of functions that are used to compute throughput and response of temp 2

Function code Narne of the function

Function description

Fo2 CountAndAcuumulate()

Counts the number of times temp-2 is read and accurnulates the time taken to read the temp-2

Table 14: Mapping the scripts with generated functions

Test serial Test case Script

Function calling sequence

17B Measurer throughput of temp 2

THRUTEMP2, THRUPUT = 10, Location =L2

CountAndA cuumulate()

Table 15: Test results obtained through in-circuit executed at location-2 processor

Split Tnput.
variable Tnput
1 value wvariable-2 value

test Script. Tnput
case Test case command variable-1

Input Input Test Test
variable-2 Tnput variable-3 output Test fail/
variable-3 value variable output. pass

178 Test for throughput of temp-2 THRUTEMP1 RESPONSE

TOUTTEMP2 230 Pass

Table 16: Test cases and script code for testing at location-3 through in-circuit emulation

Master test case Test case Script code
10C Test for response time of the pump-1 on RESPPUMP1ON, RESPONSE = 10, Location = 1.3
11C Test for response time of the pump-1 off RESPPUMPIOFF, RESPONSE = 10, Location =1.3

Table 17: List of functions that are used for computing response from pump-1

Function code

Narne of the function

Function description

F03 CompResponse()

Computes the response time of pump-1

Table 18: Mapping the scripts with generated functions for testing at location-3

Test serial Test case Script Function calling sequence
1 10C RESPPUMP1ON, RESPONSE = 10, Location = L1 CompResponse()
2 11C RESPPUMP1OFF, RESPONSE =10, Location=L1 CompResponse()

1939

J. Eng. Applied Sci., 13 (8): 1947-1962, 2018

Preparing testing environment for location-3: The ES
application is a set of functions and the functions must be
called in a sequence at any of the distributed locations for
undertaking testing of a particular test case. For each of
the testing to be carried, the sequence m which the
functions must be called 13 mapped and stored in a
repository as shown in Table 21.

The functions to be called and the sequence in
which the functions must be called for facilitating the
testing when a test script 1s to be executed using the
m-circuit emulator have been mapped. The MAP 15 used
by m-circuit emulator for nmning the code as required for
testing a test case. The mapping of the test script to
function code 1s shown i Table 22.

Merging test results and producing an audit trail: The
test results obtained from each of the testing
undertaken through in-circuit emulation are merged
based on the test cases serial which are originally
identified as a set of testing requirements. The
process of merging the test results which are obtained by
conducting testing using instruction set simulation
method at each of the distributed locations are shown in
Fig. 7.

The test result that could be obtamed related to the
entire distributed system level 1s achieved through
merging the test results obtamed at each of the test
location. The test results for the entire distributed
embedded system are shown i Table 23-28.

Table 19: Test results obtained through instruction set simulation executed at location-3

Split Input Input Input Test Test
test Script. Triput. variable Tnput variable-2 Input variable-3 output Test fail’
case Test case command variable-1 1 value wariable-2 walue variable-3 wvalue variable output_pass
10C Testresponse for Pump-1 on RESPPUMP1 RESPONSE 10 - - - - TOUTPUMP1 230 Pass
11C Test response for Pump-1 off RESPPUMP1 ~ RESPONSE 20 - - - - TOUTPUMP2 460 Pass
Table 20: Test cases and script code for testing at location-4 through instruction set simulation

Master test case Test case Script code

19C Test for response time of the Pump-2 on RESPPUMP1ON, RESPONSE = 10, Location = L3
20C Test for response time of the Pump-2 off RESPPUMP1OFF, RESPONSE = 10, Location = L3

Table 21: List of functions that are used for computing response from pump-2
Function code Narmne of the function
Fo3 CompResponse()

Function description
Testing for response of pump-2

Table 22: Mapping test scripts to application functions for testing at location-4

Test serial Test case Script Function calling sequence
1 19¢C RESPPUMP20ON, RESPONSE = 10, Location = 1.1 CompResponse)

2 20C RESPPUMP20FF, RESPONSE = 10, Location =1.1 CompResponse()

Table 23: Test results obtained through instruction set simulation executed at location-4

Split Tnput. Triput Trput Test Test.
test Seript. Tnput variable Tnput variable-2 Trput variable-3 output Test fail/
case Test case command variable-1 1 walue wariable-2 value variable-3 value variable output pass
19C Test response for pump-2 on RESPPUMP2 RESPONSE 10 - - - - TOUTPUMP2 230 Pass
20 C Test response for pump-2 off RESPPUMP2 RESPONSE 20 - - - - TOUTPUMP2 460 Pass

Table 24: Test cases and script code for testing at location-3 through instruction set simulation

Master test case Test case Script code
12C Test for response time of the buzzer on RESPBUZZERON, RESPONSE = 10, Location = L5
13C Test for response time of the buzzer off RESPBUZZEROFF, RESPONSE = 10, Location = 1.5

Table 25: List of functions that are used for computing response from buzzer
Function code Marme of the fimction
Fo3 CompResponse()

Function description
Testing for response of pump-2

Table 26: Mapping test scripts to Application functions for testing at location-4

Test serial Test case Script Function calling sequence
1 12C RESPBUZZERON, RESPONSE = 10, Location = L5 CompResponse()

2 13C RESPBUZZEROFF, RESPONSE = 10, Location =15 CompResponse()

Table 27: Test results obtained through in-circuit emulator executed at location-5

Split Input Input Input Test Test

test Script. Tnput variable Tnput variable-2 Tnput variable-3 output Test fail/

case Test case command variable-1 1 walue wariable-2 value variable-3 value variable output pass

12C Test response for buzzer on RESPRUZZER RESPONSE 10 - - - - TOUTBUZZER. 230 Pass
13C Test response for buzzer off RESPRUZZFR RESPONSE 20 - - - - TOUTBUZZER 460 Pass

1960

J. Eng. Applied Sci., 13 (8): 1947-1962, 2018

Table 28: Distributed system level experimental results

Split Input
test Script variable-1 Input-2 Output Test Test
case Test case command Input-1 value Input-2 value variables output _ fail/pass
4 Read Temp-1 and measure throughput THRUTEMP1 TEMP-1 180 THRU 10 THRUTEMP1 230 Pass
10 Test response between the reading the RESPPUMP1 TEMP-1 55 RESP 10 RESPTEMP1 230 Pass
temp-1 and starting the pump-1
11 Test response between the reading the RESPPUMP2 TEMP-1 78 RESP 20 RESPTEMP1 460 Pass
temp-1 and stopping the pump-1
12 Test response between the reading the RESPBUZZER TEMP-1 80 RESP 30 RESPTEMP1 690 Pass
temp-1 and starting the buzzer
13 Test response between the reading the RESPBUZZER TEMP-1 50 RESP 40 RESPBUZZER 920 Pass
temp-1 and stopping the buzzer
17 Read temp-2 and measure throughput THRUPUMP2 TEMP-2 60 RESP 10 THRUTEMP2 230 Pass
23 Test response between the reading the RESPPUMP2 TEMP-2 45 RESP 10 RESPPUMP2 230 Pass
temp-2 and starting the pump-2
24 Test response between the reading the RESPUMP2 TEMP-2 56 RESP 20 RESPPUMP2 460 Pass
temp-2 and stopping the pump-2
25 Test response between the reading the RESPBUZZER TEMP-2 43 RESP 30 RESPBUZZER 690 Pass
Temp-2 and starting the buzzer
26 Test response between the reading the RESPBUZZER TEMP-2 77 RESP 40 RESPBUZZER 920 Pass
Temp-2 and stopping the buzzer
Text Text Text Text Text REFERENCES
results-audit| [results-audit| [results-audit| |results-audit| [results-audit
trail'lf“ion "a“']g‘:ti"“ trail ';’Cti‘)“ trail 1‘4”“"“ trail IZC“OH Armengaud, E., A. Steininger and M. Horauer, 2005,
Efficient stimulus generation for testing
embedded distributed systems the FlexRay
example. Proceedings of the 10th IEEE
" Conference on Emerging Technologies and
erge . X
audt%it Factory Automation (ETFA’05) Vol 1,
trail September 19-22, 2005, IEEE, Catama, Italy, pp:
— 761-770.
v Chimisliu, V. and F. Wotawa, 2012. Model based test case
generation for distributed embedded systems.
TZSt it Proceedings of the 2012 IEEE International
merged-audr .
trails Conference on Industrial Technology (ICIT),
March 19-21, 2012, IEEE, Graz, Austria, ISBN:

Fig. 7. Merging the test results obtained through use of
Instruction set simulator at each of the location

CONCLUSION

The standard methods such as instruction set
simulators, scaffolding, assert macros, m-circuit
emulators, etc. which are in existence as on teday can be
used for testing standalone embedded systems. However,
the same methods can be extended and used for
testing the distibuted embedded systems. Testing
through in-circuit emulation provides a basis of testing
considering both hardware and software together. The
test cases that are to be used for testing entire
embedded systems can be broken into test cases that can
be tested at different locations and merge the results
obtammed out of testing at mdividual locations to get
the overall picture of testing entwre distributed
embedded system. The testing through mstruction
mn-circuit emulators can be achieved through breaking and
merging process which 1s presented mn this study.

978-1-4673-0340-8, pp: 656-661.

Ergincan, F. and A. Saatci, 1986. A stand-alone in-circuit
emulator. Microprocessing Microprogramming, 17:
159-167.

Hill, J., P. Varshneya and D. Schmidt, 2011. Evaluating
distributed real-time and embedded system test
correctness using system execution traces. Open
Comput. Sci., 1: 167-184.

Jacobson, I, G. Booch and J. Rumbaugh, 1999. The
Unified Software Development Process.
Addison-Wesley, Boston, Massachusetts, USA.,
ISBN:9780321822000, Pages: 512.

Lee, NH. and S.D. Cha, 2003. Generating test
sequences from a set of MSCs. Comput. Netw., 42:
405-417.

Liu, H, M. Jin and C. Liu, 2010. Construction of the
simulating environment for testing distributed
embedded software. Proceedings of the 5th
International Conference on Computer Science
and Education (ICCSE’10), August 24-27, 2010,
IEEE, Hefei, China, ISBN:978-1-4244-6002-1, pp:
87-101.

1961

J. Eng. Applied Sci., 13 (8): 1947-1962, 2018

Nakamoto, Y., T. Tto, K. Yabuuchi and T. Osaki, 2014.
Wide-area distributed integrated test environments
for distibuted embedded control system.
Proceedings of the 2014 IEEE 17th International
Symposium on Object-Component-Service-Oriented
Real-Time Distributed Computing (ISORC), June
10-12, 2014, IEEE, Reno, Nevada, ISBN:
978-1-4799-4430-9, pp: 174-179.

Saini, D.K., 2012. Software testing for embedded systems.
Intl. I. Comput. Appl., 43: 1-6.

Schutz, W. 1994, Fundamental issues in testing
distributed real-time systems. Real Time Syst,7:
125-157.

Thane, H. and H. Hansson, 1999. Towards systematic
testing of distributed real-time systems. Proceedings
of the 20th IEEE Symposium on Real-Time Systems,
December 1-3, 1999, TEEE, Phoenix, Arizona USA., pp:
360-369.

1962

Tian, P, T Wang, H. Leng and K. Qiang, 2009.
Construction of distributed embedded software
testing environment. Proceedings of the International
Conference on Intelligent Human-Machine Systems
and Cybernetic (THMS3C'09) Vol. 1, August 26-27,
2009, TEEE, Hangzhou, Zhejiang, China,
ISBN:978-0-7695-3752-8, pp: 470-473.

Tsa, W.T., L. Yu, A, Samm and R. Paul, 2003
Scenario-based object-oriented test frameworks for
testing distributed systems. Proceedings of the 9th
IEEE Workshop on Future Trends of Distributed
Computing Systermns (FTDCS’03), May 30, 2003, IEEE,
San Juan, Puerto Rico, USA., pp: 288-294.

Tsal, W.T., X. Bai, R. Paul and L. Yu, 2001. Scenario-based
fimctional regression testing. Proceedings of the 25th
Annual International Conference on Computer
Software and Applications (COMPSAC’01), October
8-12,2001, TIEEE, Chicago, Tllinois, USA., pp: 496-501.

	1947-1962 - Copy_Page_01
	1947-1962 - Copy_Page_02
	1947-1962 - Copy_Page_03
	1947-1962 - Copy_Page_04
	1947-1962 - Copy_Page_05
	1947-1962 - Copy_Page_06
	1947-1962 - Copy_Page_07
	1947-1962 - Copy_Page_08
	1947-1962 - Copy_Page_09
	1947-1962 - Copy_Page_10
	1947-1962 - Copy_Page_11
	1947-1962 - Copy_Page_12
	1947-1962 - Copy_Page_13
	1947-1962 - Copy_Page_14
	1947-1962 - Copy_Page_15
	1947-1962 - Copy_Page_16

