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Abstract: Control Chart Pattern Recogmtion (CCPR) 1s a critical task i Statistical Process Control (SPC).
Abnormal patterns exhibited in control charts can be associated with certain assignable causes adversely
affecting the process stability. In fact, numerous CCPR studies have been developed according to various
objectives and hypotheses. Despite the research, efforts are keeping continue to increase the efficiency and
recognition model simplicity. Application of different CCPR is obvious in an industrial production process
where many process parameters have to momnitor to meet the objectives. In this research, rather than having
several numbers of CCP recognizer, a multi-process CCP recognition using a single recognition model has
presented to save the solution cost. Recognition model has applied feedforward neural architecture along with
gradient descent learming. In previous research over CCPR, effects of faults in recogmtion model have generally
1gnored which 1s very important from real-time application point of view. In this study, the effects of faults over
the efficiency of CCP recognition are also presented and observed that the proposed model has very high levels
of fault tolerance against different types of faults. Test simulation has applied over the huge number of control
chart patterns and observed that the proposed method has delivered the superior recognition accuracy in a
robust manner in comparison with other existing works in literature.

Key words: Control chart pattern, pattern recognition, neural networl, fault tolerance, architecture, recognition

INTRODUCTION

Control charts are important statistical process
control tools for determining whether a process 1s run in
its mtended mode or m the presence of unnatural
patterns. Patterns displayed on control charts can provide
mformation about the process. Control charts have two
general uses in the maintaining the quality of the process,
the most common application is as a tool to monitor
process stability and control and a less common,
although, some might argue more powerful, use of control
charts 1s as an analysis tool. When a process 1s stable and
in control, it displays common cause variation, a variation
that is inherent to the process. A process is in control
when based on past experience it can be predicted how
the process will vary (within limits) in the future. If the
process is unstable, the process displays special cause
variation, non-random variation of external factors.
Control charts are simple, robust tools for understanding
process variability. Control Chart Patterns (CCPs) are
important statistical process control tools for determ ining
whether a process is run in its intended mode or in the

presence of unnatural patterns. CCPs can exhibit six types
of pattern: NoRmal (NR), CyClic (CC), Increasing Trend
(IT), Decreasing Trend (DT), Upward Shift (US) and
Downward Shift (D3) (Wang et af., 1998). Except for
normal patterns, all other patterns indicate that the
process being monitored 1s not functioning correctly
and requires adjustment. Figure 1 has shown six
fundamental patterns of a control chart. Interpretation of
the process data still remains difficult because it involves
pattern recognition tasks. Tt often relies on the skill and
experience of the quality control personnel to identify the
existence of an umnatural pattern in the process. An
efficiently automated Control Chart Pattern (CCP)
recognition system can compensate this gap and ensure
consistent and unbiased nterpretation of CCPs, leading
to a smaller number of false alarms and better
implementation of control charts. With this aim, several
approaches have been proposed in past for CCP
recognition. Some of the
rules-based possibilities hike expert systems, the fuzzy
clustering method and Decision Tree (DT) based classifier
while other researchers have used black box approaches

researchers have used
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Fig. 1: Six variations of pattern in CCP: a) Normal; b) Cyclic; ¢) Increment; d) Decrement; ¢) Upwardshift and f)

Downwardshift

like Artificial Neural Networks (ANNs) for recogmtion of
CCPs. ANNs can be simply classified into two main
categories: supervised ANNs and unsupervised ANNs.
Literature reviews show that the techniques that use
supervised neural networks as the classifier have higher
performances. The advantage with a neural networle is
that it does not require the provision of explicit rules or
templates. Most existing technmiques have used the
unprocessed data as the inputs of the CCP recognition
system. The use of unprocessed CCP data has many
additional problems such as the amount of data to be
processed being large. On the other hand, the approaches
which use pattemn features are more flexible to deal with a
complex process problem, especially when no prior
mformation 1s available. If the features represent the
of patterns explicitly and if their
components are reproducible with the process conditions,
the classifier recognition accuracy will increase. Further,
if the feature is amenable to reasoning, it will help in

characteristic

understanding how a particular decision was made and
this makes the recognition process a transparent process.
Features could be obtammed m various forms, mcluding
principal component analysis shape features, a correlation
between the mput and various reference vectors and
statistical correlation coefficients.

This study has applied multilayer feedforward
architecture for recognition of the fundamental six types
of control chart patterns. The proposed method includes
three main modules: Recognition module for a single
process, effects of architecture comnection faults over
recogmnition efficiency and recognition of the multiprocess
CCP through a single neural model Performance
comparison has also presented with other existing work in
literature.

Literature review: Because of its significant contribution
in maintaining the process quality, CCP recognition area
has got lots of attention from a number of researchers.
Industrial development of a pattern recognition system
designed to detect and analyze various patterns that can
oceur on statistical quality control charts has presented
by Wang et al. (1998). Pattern recogmition techniques
have been widely applied to identify unmatural patterns in
control charts. The statistical correlation coefficient
method has applied by Yang and Yang (2005) in the
development of control chart pattern recogmition system.
The research by Guh (2005) has presented a hybrid
learning-based model which integrates NN and DT
learning techniques to detect and discriminate typical
unnatural CCPs while identifying the major parameter
(such as the shuft displacement or trend slope) and the
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starting point of the CCP detected. The investigation has
been given by Ebrahimzadeh and Ranaee (2010) on the
design of a better system for Control Chart Pattern (CCP)
recognition that includes two main modules: the feature
extraction module and the classifier module. The feature
extraction module uses the entropies of the wavelet
packets. The possibility of parallel algorithms for fast
control chart pattern recognition has explored by
Wani and Rashid (2005). Tt addressed three major issues
of control chart pattern recognition: Transparency,
accuracy and fast detection of abnormal pattems.
Combination of clustering and classified as a Hybrid
Intelligent Method (HIM) (Ebrahimzadeh et al., 2012) has
applied for recognition of the common types of Control
Chart Pattern (CCP). Temporal coding spiking neural
networks have received wider attention due to their
computational power. The coincidence detection property
of a spiking neuron which has no counterpart in a
sigmoidal neuron 1s one of the reasons for that power.
Application of spiking neural network for CCP
recognition has been shown by Pham et al. (2007) and
Awadalla and Sadek (2012). Enhancements to the
SpikeProp leamning algorithm have also given by
Awadalla and Sadek (2012) which provide additional
learning rules for the synaptic delays, time constants and
for the neurons thresholds. To improve the pattern
recognition performance of control chart, a method based
on Improving Sequential Forward Selection (ISFS) and
Extreme Learning Machine (ELM) has been presented by
Zhang and Lin (2014). Based on Bayesian inference and
maximumn likelihood estimation, a statistical method of
Control Chart Pattern (CCP) recogmtion has presented by
Naeini et al. (2011). Fourier descriptors and neural
networks have applied by Phokharatkul and Phaiboon
(2011) to analyze the control chart pattern. A hybrid model
for recogmzing the mixture CCPs that included three main
aspects: Feature extraction, classifier and parameter
optimization has also exploredin (Zhang and Cheng, 201 5).
In the feature extraction, statistical and shape features of
observation data are used mn the data mput to get the
effective data for the classifier. A Multiclass Support
Vector Machine (MSVM) applies for recognizing the
mixture CCPs. Finally, the Genetic Algorithm (GA) 1s
utilized to optimize the MSVM classifier by searching the
best values of the parameters of MSVM and kernel
function. By assuming that an unnatwral CCP is a
combination of normal pattern and process disturbance,
a multi-stage control chart pattern recogmition scheme
which integrates Independent Component Analysis (ICA)
and Support Vector Machine (SVM) is proposed by Kao
et al. (2016). The proposed multi-stage ICA-SVM scheme
first uses ICA to extract Independent Components (ICs)

from the monitoring process data containing CCPs.
Bag et al. (2012) has given focus on the design and
development of an expert system for on-line detection of
various control chart patterns, so as to enable the quality
control practitioners to initiate prompt corrective actions
for an out-of-control manufacturing process. A hybrid
approach has been proposed by Yang et al. (2015) that
integrates Extreme-pomt Symmetric Mode Decomposition
(ESMD) with Extreme Learning Machine (ELM) to identify
typical concurrent CCPs and in addition to accurately
quantify the major CCP parameter of the specific basic
CCPs mvolved. Pattern generation scheme on the
accuracy of pattern recognition has been studied by De
la Gutierrez and Pham (2016) using two ML algorithms:
Support Vector Machine (SVM) and Probabilistic
Neural Network (PNN). An attribute control chart
using multiple-dependent state repetitive sampling has
designed by Aldosari ef al. (2017).

In most of the previous research, simulation
performances have analyzed over small data set of control
chart patterns which do not assure the reliability of
obtaining performances over the long run. The obtained
accuracy of recognition is another concerning issue
which required attention to improve because monitoring
takes place in real time and the uncontrolled process can
cause the increased value of production cost and
completion time. The third concern part is the robustness
of the recognition module itself, especially when there 15
a hardware implementation of the recognition module.
Any faults m the recognition module can cause serious
degradation in recognition efficiency. The fourth concern
1ssue 18 handling the multiple process parameters cost
effectively.

MATERIALS AND METHODS

Modeling of data generation in CCP: CCPs are used to
monitor the behavior of the system. Figure 1 shows the 6
main types of pattern that observed on a control chart:
Normal, eyclic, downward shift, upward shuft, increasing
trend and decreasing trend patterns. All patterns except
for normal patterns illustrate that the process beng
monitored is not functioning correctly and requires
adjustment. For this study, the patterns of all these
different types were generated using equations as shown
in Table 1. Each pattern was taken as a tune series of 60
data points. In the equations, is the nominal mean value
of the process variable under observation, ¢ 15 the
standard deviation of the process variable, a is the
amplitude of cyclic variations in a cyclic pattem (set to
<15), g is the gradient of an increasing trend pattern or a
decreasing trend pattern (set i the range 0.2-0.5), b
indicates the shift position in an upward shift pattern and
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Table 1: Modeling of CCP and associated parameters values

Control chart pattern

Pattern modeling equation

Parameters values

Normal p(t)=ntr(t)s n=10, c=35
Cyclic L amt a=10; T=10
Increasing trend p(t)=nir(t)ota sin TJ
Decresing trend p(t) = nr(t)otat g=035
p(t) =ntr (t)ﬁ —gt
Upward shift p(t) = n+r(t)stbs 8=12
_ K =12
Downward shift p(t) = ntr{t)o-bs K, = 30
0if t=<L
Where b=+ .
lif t 2L
L =[U[0.1]]k,
— Normal - - Increment - Upward
0.087(a) ~==Cyclic - Decrement - - - Downward
A 0.06 1
A 0.04 4
Ko}
= 0.024 .
0.00 — )
50 60 110
087(b)
0.6 1 n
"
1041
Ko
= 02-
0.0 T T T T 1
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Patterns

Fig. 2: Probability density function characteristics of all
patterns in: a) Single data set and b) All data set

a downward shift pattern (b = 0 before the shiftandb =1
at the shift and thereafter), s is the magmtude of the shift
(set between 7.5 and 20), r (0) is a function that generates
random numbers normally distributed between -3 and 3, t
is the discrete time at which the monitored process
variable 1s sampled (set within the range 1-60), T is the
period of a cycle in a cyclic pattern (set between 4 and 12
sampling intervals) and p (t) is the value of the sampled
data point at time t..

Complexity in statistical characteristics of CCP data: To
understand the complexity involved in the recognition of
the control chart patterns, statistical characteristics of
patterns have analyzed. Total 3000 patterns (500 of each
type) were generated in total as according to modeling
equations have given in Table 1. The normal Probability
Density Function (PDF) of each class has computed for
visualizing the statistical separability. In Fig. 2a, the PDF
for a randomly selected set of 6 different patterns has
shown and considered as short-run characteristic of
patterns while in Fig. 2b, the PDF of all the 6000 patterns

has shown and considered as long-run characteristics of
patterns. It 1s observed from Fig. 2b, that there 1s a high
level of overlap between normal and cyclic patterns while
the combinations of increment and upward shft,
decrement and downward shift, there was very significant
overlap. Such overlapped characteristics of PDF show the
difficulties involved in the recognition of the control chart
pattern, particularly through the statistical process. Even
for the short run case, there 1s a huge overlap observed
among different classes of patterns as shown in Fig. 2a.

Applied neural model for CCP recognition: The
complexity involved in the statistical separation of
patterns in the control chart as shown earlier has
suggested choosing the recognition model which does
not consider the patterns statistical features as inputs,
hence in this study, black box approach based on the
artificial neural network has applied Because of the
availability of targets, feedforward architecture has
considered instead of recurrent architecture. Because of
objectives to meet better generalization, fault tolerance
and handling multiprocess simultaneously, MLP has
considered instead of other possibilities of architecture
like Radial Basis Function (RBF) architecture which is
more sensitive towards connection faults.

Multilayer feedforward architecture has taken as a
neural model in which gradient descent based has applied
on squared error surface to arnve at the minimum. The key
to the use of this method on a multilayer perceptrons is
the calculation of error values for the hidden units by
propagating the error backwards through the networlk.
The local gradient for the jth unit in the output layer 1s
calculated as (assuming a logistic function for the sigmoid
nonlmearity):

5, = yj(lfyj)(dj 7yJ)
Where:

y, = The output of unit j and
d, = The desired response from the unit

For a hidden layer, the local gradient for neuron j is
calculated as:

0, :(I_YJ)ZESKWJK (1)

where, summation k 1s taken over all the neurons in the
next layer to which the neuron j serves as input. Once the
local gradients are calculated, each weight w; is then
modified according to the delta rule as given in Eq. 2:

Wi ()= wy (0408 (1) v (t) 2)
Where:
mn = Learning-rate parameter
t = Time
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Frequently modification of Eq. 2 is used that
incorporates a momentum term that helps accelerate the
learmng process and the final equation has given in Eq. 3:

w (1) = w (t)+n8, (t)Jra[Wji (t)—w, (tfl)} (3

where, a is a momentum term lying in the range 0 <a< 1.

Fault tolerant analysis of proposed ANN system: When
a system designed, quality characteristics can be defined
in various ways like speed, power consumption, size, etc.
Another kind of parameter which defines the reliability of
the system 1s fault tolerance. It defines the reliability of
system output if any fault happens. For a given design to
know the performance value with respect to fault
tolerance, it requires to analyze the system thoroughly.
ANN works on parallel distributed computing, so, the
expectation of fault tolerance 1s very high. This 1s a matter
of interest to know how faults in ANN affect its
performance with the presented principle of recognition.
From a functional point of view and independently of the
hardware implementation options; An ANN can have the
following faults; Fault with a connection/weight or
multiplier; Fault in an input, Fault in a multiplier,
adder or accumulator; Fault in the activation
function.

Some of these faults can mask each other in the sense
that it can be indistinguishable which fault occurred. This
1s the case of faults of type (111) and (1v) which produces
the same type of mmpact in the output and can be
considered as the same situation. While other faults occur
in parts of the network which have connections in parallel
and the impact in the output must be analyzed in this part
of the circuit the connection is serial and the effect is
similar. Faults of type (i) and (iii) both include the
multiplier. This duplication was considered because the
existence of a multiplier associated with each connection
falls into fault type (i) and the existence of a single
multiplier before the activation function falls into fault
type (111). Among all possible faults, faults with weights
and connections are more sensitive from a practical pomnt
of view hence analysis has done over that. The global
model has used consists of faults of type stuck at +W_
-W ... or 0 for all the connections where +W,__. is the
maximum value that the weight can assume with practical
effect. This model has used in the followng way: Test the
effect of each individual fault by setting the weight
associated with each connection to +W,_ ., -W . and 0.

rax

Practically fault occurrence happens with the uniform
distribution over the connection.

RESULTS AND DISCUSSION

Experimental analysis: The proposed principle has
applied in this study for control chart pattern recognition
with single and multiple processes. Pattern dataset which
containg 3000 patterns has been generated through the
model equations. Training data set contains the first 100
set of all 6 patterns (600 patterns) while the test dataset
containg remaining 2400 data patterns. Feedforward
architecture has developed which has a size of 60 wnput
nodes, 10 hidden nodes and € output nodes (each
corresponding to individual pattern). The ummodal
sigmoid function has considered as activation function in
all active nodes. Presence of maximum value among all 6
output nodes decides recognize patterns on the input
side. Pre-processing has applied to all patterns in terms of
normalization to keep the pattern variation within the
range of (0 1). Bias with fixed input +1 also has applied to
hidden nodes and output nodes. Initialization of all
weights defined as a random number by a umform
distribution in the range of (-1 1). To increase the speed of
learming momentum has also applied to momentum
constant equal to 0.2. The value of learning rate is taken
as 0.5 for all patterns. The objective of the learning
process was to meet the mean square error of less than
0.001.

Case 1; Single process CCP recognition: Over 600
patterns, traiming has given and for the remaining 2400
patterns test experiment has applied. Mean square error
plot for learming has shown in Fig. 3. It 1s clear that there

Table 2: Average performance for a single process

Trial Tr. data Test data No.of iterations Time taken (sec)
No. performance performance in training in training
1 99.6667 99.8333 140 16.2970
99.8333 99.7917 93 10.9220
3 99.3333 99.8750 117 13.5790
4 98.8333 99.9167 226 26.5310
5 99.8333 99.8750 96 10.8910
0.16
0.14
0.12
0.10
7
S 008
0.06
0.04
0.02
0.00 . . ; d
0 20 40 60 80 100
Iteration No.

Fig. 3: Convergence characteristics 1 the learning mode
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Table 3: Confusion matrix for a single process in all trials

Trial 1: Recognise pattern (%)

Given test pattern NOR [TrP TsP] CYC[TrP TsP]

IT [TrP TsP]

DT [T1P TsP] US [TrP TsP] DS [TrP TsP]

NOR
CYC [100100]

1T [100100]
DT

Us [0 0.5]
DS

Trial 2; Recognise pattern (%)

NOR [100 99.75]

CYC [100 100]

IT [100 100]
DT

us [0 0.5]

DS

Trial 3; Recognise pattern (%)

NOR [100100]

CYC [100100]
1T [100100]
DT

us

DS

Trial 4: Recognise pattern (%)

NOR [100 99.75]

CYC [100 100]

1T [100100]
DT

Us

DS

Trial 5; Recognise pattern (%)

NOR [100 99.75]

CYC [100 100]

IT [100 100]
DT

us [00.5]
DS

[100 99.5]

[0 0.25]

[00.5]

[100 100]

[100 99.5]
[2 0] [98 100]
[00.25] [oo]
[00]
[00]
[0 0.25]
[00]
[99 100]

[100 99.75]
[100 99.25]

[10] [0

[100 99.75] [0 0.25]
[100 100]
[40.5] [96 99.5]

[00.25]

[100 99.75] [0 0.25]
[100 100]
[70] [93 100]

[0 0.25]

[100 100]
[100 99.5]

[10] [99 100]

1s a very sharp decline in the error value at the beginmuing
itself. The whole process was repeated for 5 mndependent
trials to get the understanding of experimental variation.
The obtained result in the form of average recogmtion
performance and in the form of a confusion matrix has
been shown m Table 2 and 3. The required number of
iterations to achieve the error below the desired value
along with the time taken in the training process for each
trail also has shown in Table 2. It 1s observed that there
were very high recognition accuracy and consistency
performances in the different trials over traiming as well as
test data set. As we know, the values in the diagonal of
the confusion matrix show the correct performance of the
recognizer for each pattern. In other words, these values
show how many considered patterns are recognized
correctly by the system. The other values show the
mistakes of the system. In order to obtain the Recognition
Accuracy (RA) of the system, it 13 needed to compute the
average values that are appeared in the diagonal of the
confusion matrix.

Scatter diagram of recognition values for all patterns
has shown in Fig. 4. The maximum value of a particular
pattern class indicates the quality of the decision and its
confidence over that class.

Comparison with existing work: To get the relative
comparison n recognition accuracy, three different works
available in the literature (Ebralumzadeh et al., 2012
Zhang and Cheng, 2015; Awadalla and Sadek, 2012) have
taken. Medhat etc. (Awadalla and Sadek, 2012) have
applied spiking neural network architecture for a control
chart recognition purpose which consists of a fully
connected feedforward network of spiking neurons. The
overall recognition efficiency has achieved as 98.6%.
Based on statistical features and shape (Zhang and
Cheng, 2015) has applied the support vector machine to
recognize the patterns class. GA has applied to optimize
the parameters of SVM. Different statistical characteristics
of pattern like; Mean, standard deviation, mean-square
value, average autocorrelation, positive cusum, negative
cusum, skewness, kwrtosis have applied while shape
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Table 4: Comparative performance for single process CCP

Table 5: Tnput-Hidden laver cormection faults and achieved avg. performance

Comparison in recognise pattern (%)

Method NOR CYC IN DT Us DS Awg, perform
Awadallaand 99 98.2 98 98.5 99 99 98.6167
Sadek (2012)

Zhang and 100 98 98 100 100 98 99.00
Cheng (2015)

Ebrahimzadeh 100 100 97.9¢ 100 100 100 99.65

et al. (2012) 99.75 100 100 100 99.75 100 99.9167
Proposed

features of pattermn like slope of the least-square line,
number of mean crossing, number of least-square line
crossing, the area between the pattern and its mean line,
area between the pattern and its least-square line have
considered. The overall achieved efficiency was 99%. To
mcrease the accuracy (Ebralumzadeh ef al, 2012) has
applied a hybrid approach of clustering and classifier.
Different types of neural architecture, MLP (Resilient
back-propagation), MLP (momentum), the PNN and the
RBF have applied and obtamned accuracy were 99.65,
99.23,99.53 and 96.42% correspondingly. Obtained the
best result mn this study has compared with other results
available in the Ebrahimzadeh et al. (2012), Zhang and
Cheng (2015), Awadalla and Sadek (2012) as 1s shown in
Table 4. Tt is clear that the proposed method has better
efficiency from other considered methods. The overall
recognition efficiency achieved by the proposed method
15 99.91% which 1s superior and can be considered as an
optimal status for practical purpose.

Awvg, performance Avg. performance

No.of fault B ReGEeEEEEEEE ] No.of fault -
(Type: Open)  (%0) Tr. Ts (Type :close)  (%6) Tr. Ts

4 99.6667  99.6667 8 99.8333 99.7083
3 99.6667 99.5417 3 99.8333 99.2083
7 99.8333 99.4583 5 99.1667 99.5000

Table ¢: Hidden-Output  layer comnection faults and achieved avg.

performance
Avg, performance (%o) Avg. performance (%)
No.of fault - - Novof fault -
(Type: open) Tr. Ts (Type: Close) Tr. Ts
2 99.6667 99.0417 2 99.6667 99.7917
1 99.8333  99.8750 1 99.8333 99.8750
2 99.8333 98.9167 2 98.1667 99.1667

Robustness against faults: Faults in hidden and outer
layer connections have considered in this study and the
robustness of proposed system against these faults (open
and short) has estimated in terms of variation in
recognition efficiency by comparing of the system
without faults. Probabilistic environment through uniform
distribution has applied to find the position of faults
in the input-hidden layer connections as well as
hidden-output layer connections. Each connection has
chance to be faulty as 5%. To get the more clear
information about the effect of faults, performances have
evaluated separately over traming dataset as well as
test data set. For a different number of faults over
input-hidden layer connections and hidden-output
layer connections, obtained performances have
shown in Table 5 and 6. The average recognition
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Table 7: Average performance against faults

Fault place  Fault type  Avg No.of fault Tr. data Test data
I-H layer Open 5 99.72 99.56
1-H layer Short 6 99.61 99.47
H-O layer Open 2 99.78 99.28
H-O layer Short 2 99.22 99.61
1.0 1 I []®m NOR
0.9 1 _ B CYC
o IN
0.8 o DT
= 0.7 1 o uUS
S 0.6 o DS
=
.g 0.5
2
g 047
2 03
0.2
0.1
0.0- T T T
1 2 3 4 5 6

Applied pattern in sequence

Fig. 5:Decision value m recognition for six different
patterns with the fault in output connection weight

performance against average no. of faults also has shown
in Table 7. Tt was observed that either for open
comnection faults or short comnection faults, performance
were more than 99% of all cases which is very appealing
from a practical point of view and can be considered as
fault-tolerant.

It 18 observed from performance result after faults that
there 1s no sigmficant effect of faults mn terms of
recognition efficiency but decision depth level has
reduced which 1s very obvious. The decision depth
(probability to be a pattern) for a test set of patterns has
shown in the Fig. 5 in which the decision depth of each
pattern has a different color. The height of decision depth
indicates the confidence towards the pattern.When a test
mput pattern applied, the decision depth corresponding
to all six patterns appeared in the output. The position of
the maximum value of decision depth decides the final
recognized pattern. Tt is observed that the pattern 4 which
1s decreasing trend pattern when has applied to test, there
1s the meaximum outcome for 4th position and very close to
zero for another pattern position except position 6
corresponding to downward shift. Such an outcome has
appeared because of statistical similarity in both patterns
as shown in Fig. 2. Techmcally because of a connection
fault, either information passed with lesser/zeros weight
in open type of faults or with more weight than actual in
short type of faults.

Practical integration of proposed solution with an
industrial plant has shown m Fig. 6 where neuro CCP

Control unit

Fig. 6: Application  phase of single parameter neuro

system

recognition module recognized the characteristic of
currently available pattern and passes this information to
control unit where correct measure step is taken if
needed.

Case 2; Multivariable process CCP recognition:
Generally, there are a number of parameters which have to
momnitor to deliver the output under a satisfactory range of
variation. To monitor and analyze all the parameters
together, we have applied the three process parameters
which have varied nature as given through the Table 1
but each process parameter has their own mean value
([80, 40, 20]) and standard deviation ([5 7 3]) in result there
were 18 patterns in a set of pattern. Total 10800 patterns
generated m which 1800 patterns have taken for traming
and remaining 9000 patterns have taken for test purpose.
Preprocessing has applied to normalize the data and
neural model 1s the same as in case of single process
parameters. In Fig. 7, the different process parameters for
a set of 18 patterns have shown. Error minimization
characteristic in the learning process has shown in the
Fig. 8. For the test point of view, five independent trials
have given to understand the overall performance
behavior of the proposed model and obtained
performances have shown mn Table 8. It 1s clear from the
result that on average there is more than 99% efficiency
has been obtamed. The practical mtegration of the
proposed model with application plant has shown in the
Fig. 9. There 138 Time Division Multiplexing (TDM)
sampling method need to apply to capture the all process
parameters from the plant one by one. While the
recognition of one process parameter is in progress, other
process parameter in the
corresponding buffer and the stored information utilized
for the next time slot. Control unit collects the decision of
neuro recognizer and takes the appropriate measure step

information is stored

as according to need.
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Fig. 7: Three different process patterns in single CCP: 1st process (Blue color), 2nd process (Green color), 3rd process

and f) Downward pattern

Table 8: Performance efficiency (%) over training and test data set for multiprocess CCP

(Red color): a) Normal pattern; b) Cyclic pattern; ¢) Increment pattern; d) Decrement pattern; e) Upward pattern

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
Pattern Tr. Test Tr. Test Tr. Test Tr. Test Tr. Test
NOR 100.00 098.00 100.00 099.75 100.00 099.50 100.00 099.75 100.00 099.25
100.00 093.75 098.00 095.25 099.00 091.75 100.00 092,75 100.00 095.75
100.00 093575 100.00 097.50 100.00 095.50 100.00 098.00 100.00 097.75
CYC 100.00 099.75 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 099.50
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
IT 100.00 100.00 100.00 100.00 100.00 099.75 100.00 099.75 099.00 098.00
100.00 099.50 100.00 099,75 100.00 099.25 100.00 099.25 100.00 097.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
DT 100.00 100.00 100.00 100.00 100.00 099.75 100.00 100.00 100.00 100.00
100.00 099.25 100.00 099,75 100.00 098.50 100.00 099.25 100.00 099.75
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
uUs 100.00 100.00 100.00 100.00 100.00 099.75 100.00 100.00 100.00 099.75
100.00 097.75 099.00 096.25 100.00 095.50 100.00 099,00 100.00 098.50
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
DS 100.00 098.75 100.00 098.00 099.00 100.00 100.00 100.00 100.00 099.50
100.00 098.75 100.00 098.00 099.00 098.75 100.00 099.25 100.00 096.50
100.00 100.00 100.00 100.00 099.00 100.00 100.00 100.00 100.00 100.00
Avg, 100.00 098.958 099.83 099.13 099.78 098.78 100.00 099.28 099.95 098,96
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Iteration No.

Fig. 8: Error minimization in the learning of the
multiprocess parameters

TDM switch control unit

Buffer Plant

[
m
PR3

R
[

Control unit ’J

Fig. 9: Schematic diagram of integration for multivariable
CCP recogmtion system with the plant and control
unit

A

A

CONCLUSION

The need of automated control chart pattern is very
important and crucial in industrial applications where the
need for high efficiency and simplicity are always desired.
In thus research; Based on the feedforward archutecture of
the neural network, single process as well as multi process
parameters of the CCP recognition solution has presented
to meet the practical industrial need. The six fundamental
pattemns of control chart: normal, cyclic, mcremental,
decremental, upward shift and downward shift have
included for recognition purpose. The proposed solution
has analyzed the effect of faults which can happen n
hidden and output layer comnection weights and
observed that the proposed solution has enough strength
to tolerate these faults. The proposed solution has tested
over huge number of patterns under the number of
mndependent trials and correct recogmition accuracy on

average was more than 99.85% on a single process while
more than 99% of multi-process. Integration of the
proposed solution with a plant in the block diagram form
has also presented. Finally with the outcome of
experimental results, it can be stated that the proposed
solution can be applied n any industrial plants where
precision; Accuracy and speed are of paramount
importance to monitor and analysis of the control chart
pattern.
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