Algorithm for Embedding Hybrid (Star-Bus) Topology onto Hex-Cell Topology

Nisrein J. Abu-Darwish, 2Talib A. Almseidein and 3Ala’M. Aljundi
1Department of Applied Science, Ajloun College, Al-Balqa Applied University, 26816 Ajloun, Jordan
2Shobak University College, Al-Balqa Applied University, 19117 Al-Salt, Jordan
3College of Finance and Business, The World Islamic Science and Education University (W.I.S.E), Amman, Jordan

Abstract: The present study was conducted to show an algorithm for embedding hybrid (star-bus) topology onto Hexcell interconnection network. Embedding capability of topological structures such as ring, bus, tree and mesh topologies can be done by Hexcell which is an interconnection network. We use two measurements to evaluate our proposed algorithms: congestion, expansion. Our evaluation results show that congestion is equal to 1 and the expansion equals to 1.

Key words: Embedding, Hexcell network, mapping, expansion, congestion, interconnection

INTRODUCTION

Routing algorithm acts an important role in communication system of network. Consequently, the data routing is most fundamental function in an interconnection network (Mohanty and Behera, 2017). Performance of the distributed computing system’s is affected by the interconnection network topology. So, the choice of the interconnection network topology is considered a critical issue that must be taken into when designing distributed systems and developing. So, for this reason many interconnection network topologies have been proposed such as tree, mesh, hypercube, tree hypercubes, bus, ring and hexcell for this reason (Mohammad et al., 2015; Qatawneh et al., 2015, 2011; Mohammad and Khatib, 2015).

Several features affect the performance of distributed systems, since, each network topology has its exclusive features such as: node degree, network degree, diameter, bisection bandwidth, routing algorithm, partitioning, mapping (Qatawneh, 2016).

The capability of embedding topological structure is desirable features in network system (Qatawneh et al., 2011). Graph embedding is one of the critical issue in network evaluation and selection (Almobaideen et al., 2007; Erastutis and Vajnovci, 2007).

Graph embedding (mapping) is a technique in interconnection networks that maps a guest graph into Hexcell network have scalability in a gradual fashion with minimal cost because of its recursive structure and another host graph (Qatawneh et al., 2011). There are more than criteria to assess embedding results have been mentioned in the literature (Lin et al., 2001; Qatawneh, 2011). Employs an efficient routing algorithm which requires less knowledge of the network interconnections and gathers less cost of communication (Sharieh et al., 2008).

In our research, we propose an algorithm for embedding hybrid (star-bus) topology onto Hexcell network. We use two measurements to evaluate our proposed algorithms: congestion, expansion.

Definition of Hexcell network: An interconnection networks topologies called Hexcell which can be constructed by using units of hexagon cells. A Hexcell network has six nodes and d levels numbered from 1-d with depth d. Level 1 represents one hexagon-cell. Level 2 represents 6 hexagon-cells surrounding the hexagon-cell at level 1. Level 3 represents 12 hexagon-cells surrounding the 6 hexagon-cells at level 2 and so on. Each level i has Ni nodes, representing interconnection in a ring structure and processing elements (Qatawneh et al., 2011).

MATERIALS AND METHODS

Algorithm 1: Proposed embedding algorithm:
Step 1: Define the root of the star
star-root = (number of nodes×d-line)/2×1, id = 1, edge = 0 nodes = 1
Step 2: for each edge from the root
give id to the one edge nodes from the root
if the node has one edge to a non connected node then
start from up then opposite the clock wise

Corresponding Author: Nisrein J. Abu-Darwish, Department of Applied Science, Ajloun College, Al-Balqa Applied University, 26816 Ajloun, Jordan
RESULTS AND DISCUSSION

Figure 1-5 show the results of applying our algorithm for embedding hybrid (star-bus) topology onto hexcell topology. To evaluate our embedding algorithm we use two measurements: congestion and expansion. Congestion is the maximum number of edges mapped into any edge in the embedding and the expansion is the ratio of the number of nodes in the embedding algorithm to that in the original network (Mohammad and Khattab, 2015). Our algorithm shows that the (star-bus) topology can be embedded into Hexcell Network with congestion and expansion of 1 (Table 1).

Fig. 1: Algorithm embedding (star-bus) onto Hexcell topology (step 1 of the algorithm)

Fig. 2: Embedding (star-bus) onto Hexcell topology (step 2 of the algorithm)
Fig. 3: The full addressing of (star-bus) onto Hexcell

Fig. 4: Embedding (Star-bus) onto Hexcell topology (step 3 of the algorithm)

Fig. 5: Embedding (star-bus) onto Hexcell topology (step 4 of the algorithm) each node with 3 edge become a root (this step make it star-bus(tree))
CONCLUSION

In this research, we proposed an algorithm for embedding hybrid star-bus topology onto Hexcell network. The measurements used to evaluate the proposed algorithms are congestion and expansion. Evaluation results show that the congestion and expansion is one for both.

REFERENCES


