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Deriving the General Laplace Inversion Formula using Complex Integration
Results and its Applications in Solving Partial Differential Equations
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Abstract: This study is concerned with Laplace transform and its applications to partial differential equations.
We derive the general Laplace inversion formula using some complex analysis results. Furthermore, we apply
this formula to find the formal solution of a heat conduction problem which 1s heat equation with Neumann
boundary conditions. We conclude that Laplace transforms with the mversion formula provide a potent

technique for solving partial differential equations.
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INTRODUCTION

The Laplace transform can be helpful in solving
ordinary and partial differential equations because it can
replace an ODE with on algebraic equation or replace a
PDE with an ODE. Another reason that the Laplace
transform 1s useful 1s that it can help deal with the
boundary conditions of a PDE on an infinite domain.
Therefore, it has been considered by many researchers,
for instance (Atangana and Noutchie, 2014
Blanchard et al., 201 2; Coleman, 2013; Gadaimn and Bachar,
2017, Zhou and Gao, 2017). For its applications science
and engineering, we refer to the survey paper (Reddy and
Vathyasubramarian, 2018). In some application of PDEs,
situations arise mn which the mverse function of Laplace
transform cannot be found using the known and classical
methods. Therefore, it is important to have a general
inversion formula for the Laplace transform. In this
study, we will state some results those devoted to
find such a formula with involving integration in
complex plane. Moreover, we will use the general
inversion formula in finding a formal solution of heat
equation with nonhomogeneous Neumarn boundary
conditions.

MATERIALS AND METHODS

Laplace transform: In this study, we will give the general
definition of Laplace transform and the sufficient
conditions of its existence and uniqueness (Trim,
1996).

Definition 2.1: Let, f be a function of t The Laplace
transform of t is defined as follows:

F(s) = [ e firydt (1

Provided the immproper integer converges. When the
Laplace transform exists it 13 denoted by L{f{t)}. In
fact, this integral might not always converge. The
following theorem provides sufficient condittion
under which the Laplace transform is defined. Before to
state the theorem, we need to recall the following

definition.

Definition 2.2: A function is said to be of exponential
order ¢« 1if there exist constants T and M=0 m R
such that |f(t)|<Me* for all t>T. This 1s denoted as
f(t) = 0(e™).

Theorem 2.3: Let, f be a function of t that 15 of
exponential order ¢ and is piecewise continuous on
0<t<T for all TeR. Then, F(s) = L {f} exists for all s=c.

Remark 2.4: We notice that when L {f} exists it 1s unique
because it is given by a convergent integral. However,
given F(s), there can be countably many functions f; such
that L{f(t)} = F(8). This follows from the fact that if two
function f, g are Lebesgue integrable over a set AcR and
f = g almost everywhere, then:

jAf:-[Ag 2)
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Fig. 1: Right half-plane contour

The inversion formula: As, we have mentioned in section
one, finding the inverse of the Laplace transform is the
most difficult step in using this technique for solving
complicated differential equations. Therefore, we need a
general inversion formula when dealing with more
complicated expressions. In this study, we state some
theorems, to give a way of deriving this formula. Tn this
formulation, we need to use some results from complex
analysis which play a key role in the development of an
mverse formula (Trin, 1996, Zemaiman, 1968) (Fig. 1).

Theorem 3.1: If £ 1s a fimction of exponential order ¢ that
18 O(e™) and f is piecewise continuous on every finite
interval 0<t<T then, the Laplace transform L. {f(t)} = F(s)
of fis an analytic function of s in the half-plane x>q.

Proof: Trim (1996).

Theorem 3.2: Let, f be piecewise continuous on every
finite interval O<t<T with f{t) = O(e™). Suppose, also that
in some half-plane x>8>0 there exists constants M, R and
k=1 such that [F(8)S¥|<M for |s|>R. If the inversion integral
of converges then:

¥+B1

fit)=L {F(s)}*—hmj. ¢ F(S)dS (3)

Proof: Since, f is of exponential order and it is piece wise
continuous on every finite interval 0<t<T by applying.
Theorem 3.1, we conclude that F is analytic in the
half-plane x>¢. Next, we apply Cauchy Integral formula,
(Churchill, 1960), for F over the following contour. So, we
obtain:

j?dw j FC@ ds = j PO s - 27 F(s) (4

e &8 r & cur &

By taking the limit of above integral, when B goes to
infinity, we obtam:

lim F(C) —==ds+1lim

By % C Byes

I (C")ds 27 F(s) (5)

By a complex mtegral mequality it follows:

F
I(Q ‘ I|§©||d| (©)

But by our assumption, we have F(J)<M/|J|* for |I[=R, So:

FQ) gl <im mf Mo |<1im{11/m8}—
B ! (s Bper m |§ ‘ B | B \B-s\
7
And this due to || =B if {eT. Thus:
lim 12@ s - ®)

From above Eq. 5 be comes:

BAWC C

4B
j L@dg =i (9)
{-s

‘:-ﬁl

Thus:
Y F(&)
(S)—— _[ gSdC (10)

By taking the inverse Laplace transform for both
sides of Eq. 3, we get:

v
f(t)——hm j Fs)L! { ! }ds (11)

$-3

It is well known that, 1" {1/s-s} = ™ (Blanchard et al.,

2012). Thus:
¥+Bi
F(h=——lim | Fise"as a12)
M1 B e

The next theorem states the sufficient condition for
INVersion.

Theorem 3.3; Sufficient condition for inversion: Let, fbe
a function of complex variable s that is analytic for all
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Fig. 2: Left half-plane contour

§ = xHy in the half-plane a<s and F(s) is real-valued when
x=¢. Further, let, k=1, M and r be constants such that
[F(s)s"<M for |sf>r in the half-plane x>x. Then, the
inversion integral of F along any line x = ¥ defined by:

w+Bi
L_hm *Fis)ds (13)
2mi B e

Converges to a real-valued function of t (Fig. 2).

Proof: Tt is given that F is analytic function in the
half-plane ¢<s and e*F(s) is a continuous function of vy
and t where, z = y+iy and v>a. Since, [F(s)SY<M, it
follows, there exist r,>0 such that:

MMM

Fliz)l<—=—"__ <
‘(Z)| ‘Zk‘ (Yz+y2)kfz ‘y|k

for ‘y| >, (14)

Moreover, F is analytic and real in the half-plane x>c.
Thus, F@E=F@s and that by the Schwarz reflection
principle. Which means F(y+iy) = F(¥-1y). So, the
mversion integral takes the real form:

¥t

%TRe [emF(Hiy)} dy = e—IRe[e‘“F(¥+iy)de+
0 o

T
et g : )

?JRe[e "F(yHy) |dy

(15)

Using the fact |Re(Z,Z;)|</ReZ||ReZ,|VZ,, Z,cC, we
obtain:

‘Re[e‘“F(va)] < ‘Ree“’t

‘Re F(Y+iy)| = (16)

cos(yt)||Re F(¥+y)| < |Pe F(¥Hy) <|F(y+iy)|

By Eq. 14 and above it follows that Re[e"F(y+iy)]<
M/ly|*<M/ ¢ for |y|=r,. Hence, the improper integral
above converges umformly with respect to t. And since,
Re[e”F(¥+iy)] is continuous for all t and y it follows that
the two mtegrals above comverge to a real-valued
function f(t). Ancther important result for inverting a
Laplace transform 1s given below.

Theorem 3.4:. TetF be a function for which the inversion
integral along a line x = ¥ represents the inverse function
f and let F be analytic except for isolated singularities
S.n=1, 2, ..., )in the half-plane x<¥. Then the series of
residues of e”F(s)at S=8,(n=1, 2, ...,) converges to { for
each positive t, provided a sequence C, of Contours can
be found that satisfies the following properties:

» C, Consists of the straight line x = ¥ from ¥-B,1 to
¥+B.i and some curve I'n beginning at ¥+B,i ending
at ¥-B,1 and lying in x <y

+» (C,encloses 3,3, ... S,

S T

o lim, . [;e*F(s)ds =0
Proof: Trim (1996).

Remark: If the assumptions of theorem 3.2 and 3.3 are
satisfied, then, f(t) = L'{F(s)} is given by the Laplace
inversion Eq. 13. Moreover, by theorem 3.4, we can get:

f(t) =L'{F(8)} =Y. Res(e"F(s)8,) (17)

where, m is the number of singular points, 3, of e*F(s)
inside the contowr C,UT,.

RESULTS AND DISCUSSION

Applications of Laplace inversion formula: Tn this study,
we consider the solution of the problem of heat
conduction, mtroduced by Newcomb (1958). In the
process, we use the inversion formula derived in last
section, to obtain the final solution.

Heat conduction problem: Consider the linear flow of heat
in a solid mitially at zero temperature and bounded by a
pair of infinite parallel planes at x = 0 and x = d such that
at x = 0 there 18 no flow of heat perpendicular to the plane
and atx = d there is a uniform thermal flux N(1-Mt) into the
solid N and M are constants determined from the rate of
evolution of heat and t represents time (sec). If u, kand &
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denote the temperature, thermal conductivity and
diffusivity, respectively, the solution of the differential
equation:

d'u 10du (18)

82__§ =0, O<x<d
X a

Is required with the boundary conditions:

a—Uzoa‘[X:O (19)
ot

k%“—N(l Mtjatx =d (20)

The solution of heat conduction problem: The problem of
Heat conduction Eq. 18 with Eq. 19 and Eq. 20 is difficult
to be solved by using some known techniques such as
separation of variables and Fourier transform and that due
to the complexity of the Boundary conditions. Therefore,
we aim to find a formal solution to this problem using
Laplace inversion formula derived in last section.

Theorem 4.1: If we use Laplace transform technique
with Laplace inversion Eq. 13 to solve the heat
conduction problem Eq. 18-20. Then, the formal solution
takes the form:

= | (2(nl d—) (2(n+l)d+x)2
N—JE nZn[ + ™ +2t]—

k Mi[@(nﬂ)d-x)4t +(2(n+1)d+:><)2 +t2]

ux,t) =

41 4oy’

n=10

2D
Proof: The proof of this theorem 1s divided into five steps:

Step one: Taking the Laplace transform. First of all, we
introduce the Laplace transform of w:

U= _Lwe'“u(x, t)dt (22)
By wsing integration by part, we obtain:
= ,J‘ e, dt (23)
Take the second derivative of Eq. 22 with respect to x:

pie:d

u_ = r e”tu_ dt (24)
1]

From Eq. 24 and 25, we get:

0, -t {u Ly }dt (25)

U, =-"u=0, 0<x<d (26)
0.4

Thus:

Next, we find the new 1initial boundary conditions.
Since, 1, (0, t) = 0, it follows that:

u, (0,t)= J.Um e (0,t)dt =0 (27)
Thus:
T_(0,1) = OVt (28)
And:
T, d,0= [ e tu, (d.d (29)

From Eq. 21, we obtain:

u(dt)j { 1Mt)}j (30)

By integration by part, we get:
ux(d,t)—NF-M} (31)

Step two: Solving the new problem. To solve the ordinary
differential Eq. 26 with the boundary conditions Eq. 27
and 28, we will use Euler method assuming that u=¢". By
direct calculations it follows that the general solution of

Eq. 27 takes the form:

u=Ae¥+A ¥ where q —JE (32)
a
So:
u= ﬁ(e%re'“lx ) Jrﬂ(eqX e ) +
2 2 (33)
Az bd X Az % bd
o) e
Thus:
1, = A cosh gx+B sinh gx (34)
Where:
A=l My g A A (35)
2 2 2 2

To find the constant A, B we use the boundary
conditions:
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u,_ = Aqsinh qx+Bq cosh qx (36)

So, U, ={0)=2Bq=0_ thus, B = 0. This leads to
T= A cosqx, q=+/a by Eq. 31, we get:

1, (d) = Aq sinh qd _ﬁ(lﬂz] (37)
Kis s
It follows that:
A= LM B S (38)
Kls s q sinh (qd)

Thus, the solution of problem Eq. 29 with Eq. 30 and
31 becomes:

u_N{l MJCOSh(qX) (39)

K|s s |qsinh (qd)

Step three: Write the solution Eq. 33 in an nfimte series
form. To simplify the last Eq. 33, we need to prove the
following proposition.

Proposition 4.2: For any x€R we have:

1 - _ i er(2n+l)x (40)
- n=10

Proof: Let us start with the left hand side 1/e%-e® =
1/e(1-e™) and by using the geometric series, it follows:

1 1 & o N 2o+ )x (41 )
= e = e
e-e® €& nz:n ) ,ZD

Now, by Eq. 34, the solution Eq. 33 becomes as follows:

= N( 1 M ]|:2 -q[(Zn+1)d- x]+2 -q[(Zn+ 1)d+z] (42)

quq n=0

Or 1t can be rewritten as follows:

=y E[e”+e”1 mz[e“”ebﬁ

(43)

NJ_

Where:
Z(n+d-x _ 2(n+hd-x

YTl T

n=01,2 .. 44

Step four: Taking Laplace inverse to Eq. 43. By taking the
Laplace nverse to the two side of Eq. 43, we get:

ms 4 "”iﬁ-
Ih
C,
TS = ne® -
0,<0<21-6, s=0 d Re S
A
v a-ip,

Fig. 3: Left half-plane contour for problem Eq. 18
. -a \E R J;
K g e q|em™
u= E|:L { 3z }H‘ { 372 H'

N i ] s

oo & (s)

. -a \E R J—

g je™ e

e

n=0

anns apfs
F(s) = em ,F(s)—e—,nEN (46)

Set:

Tt 1s clear that, we can find a constant M such that:

‘F1(5)|< for s>0 (47)

<
=5/
5

Moreover, F,, F, are analytic in half-plane £>0. Therefore,
to find the Laplace mverse to F, and F,, we can apply
theorem (3.2) and (3.2) and by the inversion Eq. 3, we
obtain (Fig. 3):

v+

LYEG) = lim [ e*Rsyds (48)
P
1 v +Pi

LY{F,(s)} = —lim j &F,(5)dS (49)
2711 B

For v>0. Next, in order to apply theorem (3.4) which
can help us to find the integrals in the right hand side of
each of Eq. 48 and 49, we need to consider the
contour below. It 13 clear that this contour satisfies the
conditions 1-3 of theorem 3.4. Moreover, the Functions F,,
F, are analytic except for the isolated smgular pomt
3 = 0. Thus, to apply theorem (3.4) 1t 1s only left to show
that for each of F,, F; the condition 4 of this theorem 1s
satistied.
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Proposition 4.3: Let, F(s) = e+ keN, k>2,020. Then:
: at _
lﬂ! e’ F(s)ds =0, t=0 (50)

Where:
T, :s=ne®0 <6<2m1-8 (51)

Proof: By substituting s = ne”® in the function |e *F|, we

obtain:
est-mJ; ent(cus B+ sme)-m-\ﬁ[cns(eﬂ)ﬂ sm(efz))
e“F(s)| = = <
‘ ‘ ‘Skfz ‘ ne?
ent cosB-onfn cos(8/2)+isin(B/2) . ei[ﬂt sin e-DLJITSm(SJ’Z))
<
nku
ent cos e-ﬂJ;CDS(eﬂ'Z)
nku
(52)
Thus:
In8, ntcos e-ﬂJ;CDS(e."Z)
st st
[ e Fisds| < [|e*Fesylds| < [ i (n)de
T Ty B=8,
(53)

Since, cosf 1s asymmetric function and cos(6/2)=0, for
/2<0 <1 it follows that it is easy to show that, the linear
equation which passes through the two pomts
(1/2, 0), (m, -1) takes the form h(0) = -2/m6+1. Thus:

at(1-2m8) |

iz

4 7 at(1-2/n6) -7
<—— | e do =
IR _[ 't

I e"F(s)ds

w2

(54)
By taking the limit when n- e, we obtam:
lim j e F(s)dS)| < lim 2 [1e™]=0 (55)
n—peo T e nk" 2t
Which leads to:
4 st _
}1_}121:[ e"F(s)ds =0 (56)

By proposition 4.3, we see that the condition 4 of
theorem (3.4) 1s satisfied for each of F, F,. Therefore, by
applying theorem (3.4) it follows that Laplace inverse for
F,, F, can be found by taking the residues of e"F(s),
e*F,(s), respectively, at the singular point (s = 0). Thus,
Eq. 48 and 48 become:

L' {F ()} = Res(e*F,(5),0) (57)
L'{F,(s)} = Res(e"F,(s),0) (58)

Before to move on step five, we need to state the
following defimtion, (Yang, 2011).

Definition 4.4: Suppose that z, 13 an solated singular
point of F(z). Then, there is a local fractional Taurent
series:

F(z)= E o, (z-z, )m (59)

[

valid for |z-zj|*<R" «eQ, O<g<l. The coefficient o, of
(z-z,)* 1s called the residue of F(z) at z = z, and 1s
frequently written as Res(F(z), z,). Moreover, if F(z) =
G(2)(z-z, 1" where, ¢ 15 analytic function, ¢eQ,0<g<1 and
7, is a pole of order ne, neEN then, Res(F(z), z,) = ...

Step five: Finding the residues. In this step, we prove that:

2
: a,
Res(e tFl(s),O) = t+—2 (60)
t? a’t a’
Res(e®F (s), 0) = —+—2+2 (61)
(¢"F..0) 2 2 4l

To prove this, let us expand e'F,(s), e"F,(s) in a
Laurent expansion around s = 0 and by defimtion 4.4, the
residue for each of these functions will be the coeffient of
5% in each of these series. Let us start with 'F,(s):

gl [ (e

4 = —| 1+ o =
&R (s) 2 K 1 (st—an\/g) g
_1 +_t ﬂJrJ;tz t+ arzl T = 1 + tJra_le_l ﬂJr

SB#’Z _J; s 2 n 2J; 3 3/2 2 _J; s

(62)
Thus:

2

Res(F (s), 0) = t+%n (63)

Next, we consider the second function:
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(st-an\/g)z

2

+

g lran] e

estF2 (S) = 357 Z

e 3 4
i ol i (st-an-Jg) (st—an-Jg)
+ s
6 4
(64)
Thus:
1t oa  t° at a st
Y S
at’ . a’t _ant2 +i+smt4 _2ant33+af,t2\/§_
30205 6 6 4 4 A1 (65)
ant35+2ait2s/; at anst3+2ait2\f§ aitJr
4 41 414 41 4
alt’fs Zaitszr al N
4 A s T
So,
t* alt al
Res(e*F,(s), 0) = —+2—+ (66)
(.65 ) 202 4
Thus, by Eq. 63-65 and 40, we obtam:
-a-J; 2
-1 e a'n
L { 5312 }_t+2 (67)
aafs 2 2 4
L2 _tata (68)
s 2 2 4
By wsing a similar way, we can show that:
e H
Ll{em }_Hbzn (69)
5
o5 2 2 4
0 A UL LN (70)
s 2 2 !

Thus, Eq. 45 becomes:

= (2(n+1)d-:>()2 (2(n+l)d+x)2
Ny 23[ o +2t]_

u(xt) \ )
k Mi[(Z(nH)d—x) t+(2(n+1)d+x) +t2]

! 4!

(71)
Which 1s the formal solution of the heat conduction
problem Eq. 18-20.

CONCLUSION

We see that, complex analysis has an important role
in finding the inverse Laplace transform for general types
of functions. Moreover, Laplace transform with using the
inversion formula derived in section 3 can be considered
a robust techmque for solving complicated boundary
problems of partial differential equations such as the
problem of heat conduction which has been considered in

thus study.
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