Lie Group of Solving System for Partial Differential Equations

Eman Ali Hussain and Zainab Mohammed Alwan
Department of Mathematics, College of Science, University of AL-Mustansiriya, Baghdad, Iraq

Abstract: In this procedure, we established some examples for system 1st order partial differential equations to find the general solution using Lie group.

Keywords: PDEs, lie group, invariance, transform, order partial, solution

INTRODUCTION

Lie group theory of deterministic differential equations is well comprehension in literature (Hydon, 2000; Ibragimov, 1999; Bluman et al., 2010; Bluman and Anco, 2008; Nasi, 2014) and can applied for many substantial applications in the context of differential equations. For instance, for determination of group-invariant solutions, solving the 1st order DE, reducing order for higher ODE, reducing the number of variables of partial differential equations and finding conservation laws. The powerful and by now rather standard tool in the study of deterministic nonlinear problems is symmetry analysis of differential equations (Olver, 1986; Stephani, 1989; Cicogna and Gaeta, 1999). The theory of infinitesimal symmetries of Ordinary and Partial Differential Equations (ODEs and PDEs, respectively) is a classical research topic in applied mathematics, providing powerful tools both for investigating the qualitative behavior of differential equations and for obtaining some explicit expression for their solutions (Stephani, 1989; Olver, 2012).

MATERIALS AND METHODS

Example (1): solve the system of PDE by symmetry method (of one-dimension shallow water):

\[
\begin{align*}
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial x} &= 0 \\
\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial u}{\partial x} &= 0 \\
\frac{\partial z}{\partial t} + v \frac{\partial z}{\partial x} + z \frac{\partial v}{\partial x} &= 0
\end{align*}
\] (1)

Write the vector field as:

Then, the determining equation of system given in Eq. 6

Corresponding Author: Eman Ali Hussain, Department of Mathematics, College of Science, University of AL-Mustansiriya, Baghdad, Iraq

534
\[\sigma_x (u_x + v_x) (\sigma_x - \eta_x) - u_x \eta_x + u_x (\sigma_x - \eta_x) + u_x u_x + v_x v_x + \sigma u_x = 0 \]
(7)

\[\tau_x + v_x (\tau_x - \eta_x) + (u_x + u_x) \eta_x \tau_x = 0 \]
(8)

\[\psi_x - (v_x - \sigma_x) \psi_x (\psi_x - \sigma_x) - u_x \eta_x + u_x u_x + v_x \psi_x + v_x \sigma_x = 0 \]
(9)

At last, we separation the coefficient of Eq. 7-9 with respect to \(u_x, v_x \) and \(z_x \) this attend for coefficient of these variables equal to zero:

\[u_x^2 (\sigma_x - \eta_x) - u_x \eta_x + u_x u_x + v_x v_x + v_x \sigma_x + \sigma = 0 \]
(10)

\[v_x^2 (\sigma_x - \eta_x) + 2 u_x^2 + (\tau_x - \eta_x) = 0 \]
(11)

\[v_x^2 (\sigma_x - \eta_x) + 2 u_x^2 + (\tau_x - \eta_x) + v_x \sigma_x + v_x \psi_x = 0 \]
(12)

The above system is given the general solution:

\[\zeta(t, x) = c_1 t + c_2 \]
(13)

\[\eta(t, x) = c_1 x + c_4 \]
(14)

\[\psi(t, x, z) = c_3 z \]
(15)

\[\sigma(t, x, u) = \tau(t, x, v) = 0 \]
(16)

The Lie symmetries are determined as follows:

\[X_1 = \frac{\partial}{\partial t} + \frac{\partial}{\partial \xi} \]
(18)

\[X_2 = z \frac{\partial}{\partial z} \]
(19)

\[X_2 = \frac{\partial}{\partial x} \]
(20)

Example (2): Solve the following system of PDE by Lie group:

\[\frac{\partial \sigma}{\partial t} + k \frac{\partial \sigma}{\partial \xi} \tau \frac{\partial \psi}{\partial \xi} = 0 \]
(21)

Write the vector field as:

\[X = \zeta \frac{\partial}{\partial t} + \eta \frac{\partial}{\partial \xi} + \tau \frac{\partial}{\partial \psi} + \psi \frac{\partial}{\partial \xi} \]
(22)

Remark that the operator \(X \) depend on the variables \(t, x, u, v, k \) as follows:

\[\zeta = \zeta(t, x) \]
(23)

\[\eta = \eta(t, x) \]
(23)

\[\sigma = \sigma(t, x, u) \]
(23)

\[\tau = \tau(t, x, v) \]
(23)

\[\psi = \psi(t, x, k) \]
(23)

Now, we must find the 1st for \(X \) of style:

\[X^{(1)} = X \tau \zeta_x \frac{\partial}{\partial \tau} + \zeta_u \frac{\partial}{\partial \zeta} + \zeta_v \frac{\partial}{\partial \psi} + \tau \frac{\partial}{\partial \psi} \]
(24)

After that, applying the equation in Eq. 24 to the system given in Eq 1:

\[X^{(1)} = [u_x + k u_x + v_x] \]
(25)

Then:

\[X^{(1)} = 0 \]
(25)

\[X^{(1)} = 0 \]
(25)

\[X^{(1)} = 0 \]
(25)
\[
\begin{align*}
\zeta_x + 2k\psi u_x + k^2\zeta_x + 2v_x \zeta_x &= 0 \\
\zeta_t + \zeta_x + \psi u_x + 2ku_x \zeta_x &= 0 \\
\zeta_x - u_x \zeta_x + c_k \zeta_x + 2v_x \zeta_x &= 0 \\
\eta_t &= \psi \\
\eta_x &= \psi \\
\tau_t &= \psi \\
\sigma_t &= \psi \\
\zeta(t, x) &= c_2 \\
\eta(t, x) &= c_1 \\
\tau(t, x, v) &= c_1 \\
\sigma(t, x, u) &= \psi(t, x, k) = 0 \\
X_x &= \frac{\partial}{\partial v} \\
X_t &= \frac{\partial}{\partial \xi} \\
X_t &= \frac{\partial}{\partial x} \\
\text{RESULTS AND DISCUSSION}
\end{align*}
\]

Example (3): Solve the following system of PDE by Lie group:

\[
\begin{align*}
\frac{\partial \psi}{\partial t} + u \frac{\partial \psi}{\partial x} + v \frac{\partial \psi}{\partial y} &= 0 \\
\frac{\partial \psi}{\partial \xi} + u \frac{\partial \psi}{\partial \eta} + \frac{\partial \psi}{\partial \zeta} &= 0 \\
\frac{\partial \psi}{\partial \kappa} + u \frac{\partial \psi}{\partial \sigma} + \frac{\partial \psi}{\partial \tau} &= 0
\end{align*}
\]

First write the vector field gives:

\[
X = \frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta} + \frac{\partial}{\partial \zeta} + \frac{\partial}{\partial \sigma} = 0
\]

The operator X depend on the variables as follows:

\[
\begin{align*}
\zeta &= \zeta(t, x) \\
\eta &= \eta(t, x) \\
\sigma &= \sigma(t, x, u) \\
\tau &= \tau(t, x, v) \\
\psi &= \psi(t, x, k)
\end{align*}
\]

Now, we need find the 1st prolongation of the operator X in the style:

\[
X^{(1)} = X + \zeta_t = 0 + \zeta_x + \frac{\partial \zeta}{\partial u_x} + \frac{\partial \zeta}{\partial v_x} + \frac{\partial \zeta}{\partial k_x} + \frac{\partial \zeta}{\partial \psi_x} = 0
\]

Next, applying the formula given in Eq. 38-41, we obtain the following:
\[X^{(1)}(u,\bar{u}u_x+v_kx)\big|_{t=0} = 0 \]
\[X^{(1)}(v,\bar{v}v_x+u_k)\big|_{t=0} = 0 \]
\[X^{(1)}(k,\bar{k}k_x+u_k)\big|_{t=0} = 0 \] (42)

We result the following:

\[\zeta_{\nu} + \nu \zeta_{\nu} + \nu \zeta_{\nu} = 0 \]
\[\zeta_{\eta} + \nu \zeta_{\eta} = 0 \]
\[\zeta_{k} + \nu \zeta_{k} = 0 \] (43)

Then, the determining equation of above system given in Eq. 6, we obtain:

\[\sigma \left[(u_x+v_k) (\sigma - \zeta) - u \eta_x + \nu u_x + \nu \zeta_x \right] + \]
\[\tau \left[(\tau - \eta) - v \eta + \psi + k (\psi - \zeta_x) \right] = 0 \] (44)

\[\tau \left[(\tau - \eta) - v \eta + \psi + k (\psi - \zeta_x) \right] = 0 \] (45)

\[\zeta_x + \psi_x + k (\psi - \zeta) + (u_x + v_k) \zeta_x = 0 \] (46)

Lastly, solve above system with separation of the coefficient \(u_x, v_x \) and \(k_x \):

\[\sigma \left[(u_x+v_k) (\sigma - \zeta) - u \eta_x + \nu u_x + \nu \zeta_x \right] + \]
\[\tau \left[(\tau - \eta) - v \eta + \psi + k (\psi - \zeta_x) \right] + \]
\[\nu \zeta_x = 0 \] (47)

\[\psi_x + k (\psi - \zeta) + (u_x + v_k) \zeta_x = 0 \] (48)

\[\psi_x + k (\psi - \zeta) + (u_x + v_k) \zeta_x = 0 \] (49)

The above system is introduce the general solution as:

\[\zeta(t, x) = \eta(t, x) = \sigma(t, x) = \psi(t, x) = \zeta(t, x) \]

The Lie symmetries of above system as:

\[X_x = \frac{\partial}{\partial x} + u \frac{\partial}{\partial u} + v \frac{\partial}{\partial v} + k \frac{\partial}{\partial k} \] (51)

\[X_\tau = \frac{\partial}{\partial \tau} \] (52)

\[X_\nu = \frac{\partial}{\partial \nu} \] (53)

\[X_\psi = \frac{\partial}{\partial \psi} \] (54)

CONCLUSION

In this research, we introduced steps of algorithm for transformation invariance system 1st order partial differential equations to find the general solution.

ACKNOWLEDGEMENT

The researcher thank of Mustansiriyah University, College of Science, Department of Mathematics and Your esteemed journal for their supported this research.

REFERENCES

