Results for Normal Matrices and Majorization Inequalities for their Eigenvalues

Tala H. Sasa
Applied Sciences Private University, Amman, Jordan

Abstract: In this study, we introduce and study some of the classical results to normal matrix case and give generalization for Lemma 2.5.2 by Horn and Johnson and put special emphasis on majorization inequalities for eigenvalues of normal matrices.

Key words: Normal matrices, majorization, doubly stochastic matrices, generalization, eigenvalues, special emphasis

INTRODUCTION

There are several differences between Hermitian matrices and normal matrices. For example, the sum of two Hermitian matrices is Hermitian and the product of two Hermitian matrices is Hermitian if and only if the matrices commute but the sum (or difference) of two normal matrices is not necessarily normal. The principal submatrices of a normal matrix are not necessarily normal. In this study, we will give generalization of Lemma 2.5.2 by Horn and Johnson (1990) which prove that if $A \in \mathbb{C}^{m \times m}$ be partitioned such that the diagonal blocks are square, then, the upper triangular matrix is normal, if and only, if A_{ii} and A_{ij} are normal and $A_{ij} = 0$, then, we will discuss some majorization inequalities for normal matrices. Marshall and Olkin (1979), Zhang (2011), Knyazev and Argentati (2010), Marshall et al. (2011) and Ando (1994). All through this study, M_n will stand for space of all $n \times n$ complex matrices. The direct sum of two matrices $A \in \mathbb{C}^{m \times m}$ and $B \in \mathbb{C}^{n \times n}$ is a larger block matrix $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, denoted by $A \oplus B$.

Preliminaries

Definition 3.1: Let $A \in \mathbb{C}^{n \times n}$. Then:
- A is called Hermitian (or self-adjoint) if $A^* = A$
- A is called normal if $AA^* = A^*A$
- A is called unitary if $A^*A = AA^* = I_n$ where, I_n is the identity matrix of order n

Definition 3.2: Let x and y be real n-vectors and let $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_n$ be their coordinates arranged in the decreasing order. We say that, x is majorized by y if $\sum_{\leq k} x_k \leq \sum_{\leq k} y_k$ for all $1 \leq k \leq n$ and $\sum_{\leq k} x_k \leq \sum_{\leq k} y_k$.

If x is majorized by y, we write $x \preceq y$. When the last equality condition is not required, x is said to weakly majorized (or submajorized) by y and this weak relation is denoted by $x \preceq_w y$.

Theorem 3.3: Schur's Unitary Triangularization Theorem: Let $A \in \mathbb{C}^{n \times n}$, with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$. Then there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ such that $U^*AU = T = \begin{pmatrix} T_{ij} \end{pmatrix}$ is an upper triangular matrix with diagonal entries $T_{ii} = \lambda_i$, $i = 1, 2, ..., n$.

Theorem 3.4: A necessary and sufficient condition that $x \preceq y$ is that there exists a doubly stochastic matrix P such that $x = Py$. Here, we regard vectors as column vectors, i.e., $n \times 1$ matrices.

Proposition 3.5: Schur: If $A \in \mathbb{C}^{n \times n}$ is Hermitian matrix, then, $\text{Diag}(A) \preceq \lambda(A)$. Where $\text{Diag}(A)$ is the diagonal part of a square matrix A.

Proposition 3.6: Fan: If $H = \begin{pmatrix} A & X \\ X & B \end{pmatrix} \in \mathbb{C}^{m \times m}$, then, $\lambda(A \oplus B) = T\begin{pmatrix} A & X \\ X & B \end{pmatrix}$ where, H is Hermitian matrix.

Proposition 3.7: Fan: Let $A, B \in \mathbb{C}^{n \times n}$ are Hermitian matrices, then, $\lambda(A + B) = \lambda(A) + \lambda(B)$.

MAJORIZATION AND NORMAL MATRICES

Proposition 4.1: If $A_i, A \in \mathbb{C}^{n \times n}$ are such that $A_i^*A_i = A_iA_i^* = I$, then, $A_i^*A_i$ is normal.

Proof: Since, $A_i^*A_i + A_iA_i^* = I$, we will multiply pre and post of this equation by A_i^* and A_i, respectively, we get:

$(A_i^*A_i)^* + A_iA_i^*A_iA_i = A_i^*A_i$

Then:

$(A_i^*A_i)^* - A_iA_i^*A_i = -A_iA_i^*A_iA_i$

Now, we will multiply pre and post of this equation $A_iA_i^* + A_iA_i^* = 1$ by A_i^* and A_i, respectively, we get:

$A_iA_i^*A_iA_i + (A_iA_i^*)^* = A_i^*A_i$
Then:
\[(A_2^*A_2)^2 - A_2^*A_2 = -A_2^*A_2A_2^*A_2\]

Pre multiplying of this equation \(A_2^*A_2 + A_2^*A_2 - I\) by \(A_2^*A_2\), we get:
\[(A_2^*A_2)^2 - A_2^*A_2 = -A_2^*A_2A_2^*A_2\]

Post multiplying of this equation \(A_2^*A_2 + A_2^*A_2 - I\) by \(A_2^*A_2\), we get:
\[(A_2^*A_2)^2 - A_2^*A_2 = -A_2^*A_2A_2^*A_2\]

Thus, \(A_2^*A_2A_2^*A_2 = A_2^*A_2A_2^*A_2\), i.e., \(A_2^*A_2\) is normal.

Proposition 4.2: Let \(A \in M_m\) then, the matrix \(X = \begin{pmatrix} A & A^* \end{pmatrix}\) is normal.

Proof: We get the proof from comparing \(X^*X\) and \(XX^*\). Thus, any square matrix can be a principal submatrix of a normal matrix. Now, we will give the generalization for Lemma 2.5.2 by Horn and Johnson (1990).

Proposition 4.3: Let \(A\) be a normal matrix and
\[A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}\]
be partitioned such that the diagonal blocks are square, then \(A_{11}\) (resp. \(A_{22}\)) is normal, if and only if \(A_{11}A_{11}^* = A_{21}A_{21}^* = A_{12}A_{12}^* - A_{12}^*A_{12}\).

Proof: We get the proof from comparing:
\[A^*A = \begin{pmatrix} A_{11}^*A_{11} + A_{12}^*A_{22} & A_{11}^*A_{12} + A_{12}^*A_{22} \\ A_{21}^*A_{11} + A_{22}^*A_{21} & A_{21}^*A_{12} + A_{22}^*A_{22} \end{pmatrix}\]

And:
\[AA^* = \begin{pmatrix} A_{11}A_{11}^* + A_{12}A_{12}^* + A_{12}^*A_{22} & A_{11}A_{12}^* + A_{12}^*A_{22} \\ A_{21}A_{11}^* + A_{22}A_{12}^* + A_{22}^*A_{22} & A_{21}A_{21}^* + A_{22}^*A_{22} \end{pmatrix}\]

Note that \(A_{12}A_{12}^* = A_{12}^*A_{12}\) is not always true for normal matrices, for example: Let
\[A_{11} = A_{22} = A_{12}^* = A_{21} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\]

Then, \(A_{12}A_{12}^* + A_{21}A_{21}^*\).

Lemma 4.4: Let, \(A \in M_m\) then, \(\text{Re} \lambda(A) < \lambda(\text{Re} A)\).

Proof: We know from Theorem 3.3 that there is a unitary matrix \(U\) such that \(U^*AU = T\), where, \(T\) is an upper Triangle matrix.

So, we will use the fact that real part of the eigenvalues of \(T\) coincide with the diagonal entries of \(T + T^* / 2\). Thus, \(\text{Re} \lambda(A) = \lambda(T)\). \(< \lambda(T + T^* / 2)\) (by using Proposition 3.5) = \(\lambda(A + A^* / 2) = \lambda(\text{Re} A)\).

Proposition 4.5: Let \(A, B \in M_m\) be normal matrices, then, \(\text{Re} \lambda(A + B) < \lambda(\text{Re} A + \text{Re} B)\).

Proof: \(\text{Re} \lambda(A + B) < \lambda(\text{Re} A + \text{Re} B)\) (by Lemma 4.4) = \(\lambda(\text{Re} A + \text{Re} B)\) (by Proposition 3.7) = \(\lambda(A + B)\) (by Proposition 4.5). Note that Proposition 4.5 shows that Proposition 3.7 can be extended to the case of normal matrices. Note that, if \(N\) is a normal matrix, then, \(\lambda(N) = \lambda(\text{Re} (N))\).

Proposition 4.6: Let, \(N\) be a normal matrix and \(N = \begin{pmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{pmatrix}\) be partitioned such that the diagonal blocks are square, then, \(\lambda(N) = \lambda(\text{Re} (N))\).

Proof: \(\lambda(N) = \lambda(\text{Re} N)\) (by Lemma 4.4) = \(\lambda(\text{Re} N_{11}, \text{Re} N_{22})\):
\[\lambda = \lambda\left(\frac{\text{Re} N_{11} + \text{Re} N_{22}}{2} \text{Re} N_{22}\right)\]

by Proposition 3.6 = \(\lambda(\text{Re} (N))\) - \(\lambda(\text{Re} (N))\).

CONCLUSION

This study will give the generalization for Lemma 2.5.2 by Horn and Johnson (1990).

ACKNOWLEDGEMENT

The researcher acknowledges Applied Science Private University, Amman, Jordan, for the fully financial support granted of this research study.

REFERENCES

Knyazev, A.V. and M.E. Argentati, 2010. Rayleigh-Ritz
majorization error bounds with applications to
Majorization and its Applications. 5th Edn./Vol. 143,
Academic Press, Cambridge, Massachusetts, USA.,
Pages: 569.

Inequalities: Theory of Majorization and its
9780387682761, Pages: 937.

Zhang, F., 2011. Matrix theory: Basic Results and
Techniques. 1st Edn., Springer, Berlin, Germany,