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Layout Optimization of Sewer Networks by Adaptive
Genetic Algorithmin A Hybrid Model
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Abstract: The problem of optimal layout is one of the most difficult problems. This is due to the large size of
the search space, which expands rapidly as the size of the network increases. This paper introduces an adaptive
procedure to improve the efficiency of genetic algorithm (GA) formulation in GA-TGA optimization model
of the optimum layout design of sewer networks. Adaptive strategy helps the designer develop adaptive genetic
algorithms in which method operators are systematically adapted to the constraints of the layout problem. The
adaptive selection operator keeps the genetic algorithm in feasible region of the search space and consequently
improve the performance of optimization in terms of speed. The formulation of selection and crossover lead
to not need to discard or repair unfeasible solutions or apply penalty factors to the cost function as commonly
used in the principles of genetic algorithms. Four different selection methods will be used with the GA. In
MATLAB code, the optimization model implemented. Benchmark example and case study of sewer networks
are used to test the present method. This method has proven to be effective in terms of solution optimality and
the resulting convergence characteristics. Additionally, the method proves itself capable of finding an optimal,

or near optimal solution.
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INTRODUCTION

Sewer networks are the basic infrastructure of urban
cities and have a direct influence on public health. The
task of building a new sewer system is a very expensive
and difficult task especially in densely populated cities.
Therefore, the issue has prompted engineers and
researchers to develop optimization methods to obtain the
most effective and efficient designs in terms of cost.

To find optimum sewer layout “system layout” is
surely not an easy work for engineers. The difficulty is
mainly due to two important factors: the complexity of the
system’s environment and the huge number of possible
design alternatives. Particularly in the large networks
necessary for urban sewer system, manual calculation
limits the evaluation of alternatives. This has inspired
many computerized optimization model studies. Some
researchers, have addressed the problem of layout
geometry determination of networks using different
optimization methods (Mays et al., 1976; Rowell and
Barnes, 1982; Morgan and Goulter, 1985; Walski, 1985;
Walters, 1992; Walters and Lohbeck, 1993; Davidson and
Goulter, 1995;Walters and Smith, 1995; Davidson, 1999;
Geem et al., 2000; Hassan et al., 2018).

Genetic algorithms are best suited to solving
combinatorial optimization problems with very large
solution spaces which cannot be solved using more
conventional optimization methods. The GAs were
originally conceived by Holland (1975) and have
since been further developed by De Jong (1975),

Goldberg (1989) and subsequently by many others
(Miettinen et al., 1999). The use of genetic algorithms for
effective and efficient research of the optimal layout
solution for sewer network is governed by several factors
such as coding type, fitness function, size of population,
three main operators (choice, mating and mutation),
penalty method, number of generation and finally, the
most important is the size of the search space. This paper
proposed an adaptive procedure to improve the efficiency
of genetic algorithm formulation to reduce the search
space. A model, GA-TGA, based on the proposed
methodology is developed and first tested and
verified for its efficiency and effectiveness on two
previously benchmark problems networks
(Hassan and Atiyah, 2019). Here, it is applied to the
optimal layout design of case study in Karbala city, Iraq.
The results obtained indicate that the modified GA with
reduction in search space proposed herein is effective,
especially for large practical networks.

ADAPTIVE GENETIC ALGORITHM
FORMULATION

The genetic algorithm dates back to the late 1970's in
Holland (1975) work such as evolutionary models. Its
popularity has grown considerably since then and there
are many engineering applications now. The algorithm
uses crossover operators and mutation to move from one
generation to the next to create solutions and the selection
operator works to select individuals from generation to
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next. Genetic algorithms belong to a category of powerful
research techniques that rely on genetic inheritance
and natural selection in Darwinian metaphor. These
algorithms maintain a finite memory of individual points
on the search landscape known as the “population”.
Typically, members of the population are represented as
a string, each of which has a standard value associated
with it that reflects its quality or fitness. The research may
seemto be a iterative application to a number of operators
such as selection, crossover and mutation, the goal is to
produce progressive individuals gradually. One of the
larger drawbacks of genetic algorithms is that they
require a large number of function evaluations to achieve
convergence. Each functional evaluation requires a
complete simulation of the system for a long time, a
process that is highly cost-effective. This concludes that
GA is a time-consuming optimization system. It can take
an improved runtime for a large distribution system to
take up to a few days on a modern personal computer.
Various reasons can be stated why long running times
may be problematic.

In the present study, an attempt is made to improve
GA for the design layout of practical networks, by
increasing its efficiency and effectiveness. In the adaptive
GA, a integer representation, instead of using only the
basic selection method, four different selection methods
are used, simple objective function, order crossover
method and a one gene mutation operator. A methodology
based on critical path method is suggested herein to
reduce the search space. The GA-TGA model is
developed using MATLAB code.

The improved GA formulation was achieved by using
different selection methods providing an improvement
compared with the simple GA. As follows, a brief
description of the four selection methods.

Roulette Wheel Selection (RWS): The roulette wheel is
the simplest and traditional random selection method
proposed by the Holland (1975). It is classified under a
proportional selection as individuals select on the basis of
aprobability proportionate with their fitness. Assigned for
each individual a part on the roulette wheel. The size of
each part in the roulette wheel is proportional to the value
of individual’s fitness, The higher the value, the greater
the part (Hassan, 2019):

fi
I @

e Stochastic Universal Sampling (SUS): Stochastic
Universal Sampling is introduced by Baker (1987), is
quite similar to Roulette wheel selection. However,
instead of spinning the roulette wheel n times as
described in Roulette Wheel Selection, in this

technique one can spin the Roulette Wheel just once,
but after determining n points in the Wheel, where n
is a population size. Then choose n chromosomes
that situated in front of the determined points

» Exponential Rank Selection (ERS): This is based
on the chromosomes’ rank instead of their fitness.
The rank of 1 is granted for the worst chromosome,
while the best chromosome is given the rank of n.
Thus, based on its rank, each chromosome (i) has the
probability of being selected given the expression
(Jebari and Madiafi, 2013):

p(i) =1.0x etwck(i)) )
Where:
7(2nx(n—1»
RG] ©

e Random Selection (RMS): In this method parents
are randomly selected from the current population.
There is no strategy for selection pressure to certain
individuals and therefore prefer to avoid this method
usually

e GA-TGA model: The GAs are often used in
combination with a problem-specific or local search
procedure, especially in commercial applications
(Goldberg and Voessner, 1999). The goal of using a
problem specific search method is to improve the
efficiency of the GA, either in terms of the time
required to find a good solution or the quality of the
solution found. Early hybrid GAs were introduced by
Smith (1985) and Grefenstette et al. (1985) are
commonly used today in serious GA applications
(Goldberg and VVoessner, 1999)

The GA-TGA a technique combined genetic
algorithm with tree growing algorithm, which uses a
suitable growth algorithm TGA to avoid the problems
associated with configuring of infeasible solutions, the
following is a brief description of the model:

e Coded the design variable: This coded string is
similar to the structure of a chromosome of
genetic code. A selected mapping between the coded
sub-strings and the design variables associates the
artificial genetic code with a pipe network design

e Generation of initial population by using TGA:
The trees produced will on average be biased towards
those which diverge from a root node speci ed on the
base graph. This is a useful feature of the algorithm
as it closely mimics the characteristics of the natural
plant growth and of most engineering tree networks
involving flows
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e Fitness function: For each layout in the
population will be find the fitness, which is
represented the inverse of the objective function
of each layout. Walters and Smith (1995)
suggested a simplified cost function to found the
cost of layout based on the length and concave
function of the flow rate per pipe, as shown
follows:

Fitness function = 1/objective function

m
Total cost = |

Ii
i=1

Vo (4)

where, total cost is the layout objective function,
L is sewer length and Q is accumulated sewer flow
rate that is indirectly obtained with the layout
configuration

«  Generation of a new population using the selection,
crossover and mutation operators. They occur with
some specified probability

» Production of successive generations: A new
generation is produced when using the above three
operators in steps 3 and 4. The GA repeats the
process to generate successive generations. The least
cost strings are stored and updated as cheaper cost
alternatives are generated

APPLICATIONS

The applicability and ef ciency of the formulations
described in the previous section are tested in this
section against benchmark example in the literature and
the real case study. The rst example to be considered is
that of a simple network shown in Fig. 1 proposed and
solved by Walters and Smith (1995) using evolutionary
programing. More details about this example are found in
the cited reference.

Figure 2 shows the typical convergence curve for a
number of generations during the evolutionary process
to reach the optimal solution cost by GA-TGA method
with the RWS, ERS,SUS and RMS selection methods
respectively, for directed base graph of the benchmark
example.

The results were obtained with an order crossover
method (Pc = 0.9) and a one gene mutation per
chromosome with probability of mutation Pm = 0.5. As
expected, the number of generations required to reach the
final solution is improved by using different methods of
selection. The optimum objective function of solution
5218 units was obtained with the Exponential Rank
Selection (ERS) method, within 306 generations this is
the best and fastest method of selection. As for the RWS

Out let

Fig. 1: Directed base graph Walters and Smith (1995)

method, here their little disparity in costs because total
cost for each individual in population are close, so the
chance is equal.RMS selection method the result of
thismethod show that the data are irregular so this method
do not work with the proposed model.

Case study: A first sector from Al-Amil quarter in
karbala city, lrag was used exam the new proposed
method. Karbala is located in the central region of Iraq.
The city of Karbala was chosen for several reasons. There
is no significant change in terrain heights and therefore,
the designer cannot see the clear tracking of natural land
slopes to the specific outlet. In such areas, there is often
a lot of possible options for connecting sewers networks
and the location of the network outlet. There is only one
outlet discharging to sewage treatment plant. The design
discharge is 250 L/ca/day. This value is provided by the
sewer network which includes 216 nodes and 215 pipes,
the total length of network (8.227 km). It forms about
(0.485) and the layout of the present network shown
in Fig. 3. When using the objective function to
calculate the total cost of actual design for layout of
network as build, a total cost was obtained equal
450.92 units. Table 1 presents the data characteristics as
build for this network and information of actual layout
design by manually.

Figure 4 shows the performance of the proposed
GA-TGA model with the case study. The result was
obtained with an Exponential Rank Selection (ERS)
method was the best selection method worked with
present model in previous benchmark example, Order
crossover (OX), the probability of crossover Pc = 0.9,
one-gene mutation per chromosome, the probability
of mutation Pm = 0.5 and population size equal to

9469



J. Eng. Applied Sci., 14 (Special Issue 6): 9467-9476, 2019

5700

@

5600

5500

5400

Total cost
1

5300 u

5200

5100

Generation

(b)

Total cost
1
1

5250

5200

5150

5100
0O 50 100 150 200 250 300 350 400 450 500

Generation

I

Total cost

111
1Ll

5280

5260

5240
0O 100 200 300 400 500 600 700 800 900 1000

Generation

5350 -

Total cost

5250

5200

0 100 200 300 400 500 600 700 800 900 1000
Generation

Fig. 2(a-d): Convergence characteristics of generations for different selection methods (a) RWS, (b) ERS, (¢) SUS and
(d) RMS, by the present model
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Fig. 3: Existing layout of case study (first sector from Al-Amil district)
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Fig. 4: Optimum cost solution by the proposed method for the case study

200 chromosomes. Repeatedly running the program,
the optimum layout with minimum cost equal
392.0 units is gained in 209 generations as shown in
Fig. 5, resulting in a reduction of about 13.05%, this
reduction is relatively very good because of the

initial cost of establishing sewerage networks,
which are an important part of the city's infrastructure.
Table 2 presents the data characteristics for
optimum layout design of the case study by
proposed model.
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Fig. 5: Optimum layout of case study obtained by proposed model

Table 1: Existing layout design for the first case study

Link from to Length (m) Q design (m* sec™) Link from to Length (m) Q design (m* sec™)
1 2 40 0.000355 103 107 30 0.014660
2 3 50 0.000790 104 105 40 0.000355
3 4 50 0.001224 105 106 45 0.000746
4 5 29 0.001474 106 107 45 0.001137
5 10 30 0.001735 107 110 56 0.016276
6 7 40 0.000355 108 109 40 0.000355
7 8 45 0.000746 109 110 40 0.000703
8 9 45 0.001137 110 348 30 0.017230
9 10 45 0.001527 112 113 50 0.000443
10 11 29 0.003506 113 115 50 0.000877
11 16 30 0.003766 114 115 45 0.000399
12 13 40 0.000355 115 116 50 0.001701
13 14 45 0.000746 116 347 50 0.002135
14 15 45 0.001137 119 120 40 0.000355
15 16 45 0.001527 120 121 40 0.000703
16 17 28 0.005528 121 122 35 0.001006
17 22 30 0.005789 122 345 35 0.001310
18 19 40 0.000355 125 126 40 0.000355
19 20 45 0.000746 126 127 40 0.000703
20 21 45 0.001137 127 128 35 0.001006
21 22 45 0.001527 128 343 35 0.001310
22 23 33 0.007595 131 132 40 0.000355
23 28 30 0.007855 132 133 40 0.000703
24 25 40 0.000355 133 134 35 0.001006
25 26 45 0.000746 134 341 35 0.001310
26 27 45 0.001137 137 138 40 0.000355
27 28 45 0.001527 138 139 40 0.002873
28 35 33 0.009660 139 140 40 0.003220
29 30 40 0.000355 140 141 40 0.003567
30 31 40 0.000703 141 142 40 0.003914
31 32 40 0.001050 142 143 40 0.004262
32 33 40 0.001397 143 144 40 0.004609
33 34 40 0.001744 144 145 40 0.004956
34 35 40 0.002091 145 146 40 0.005303
35 36 40 0.012091 146 147 40 0.005650
36 37 40 0.012439 147 148 40 0.005998
37 38 45 0.012830 148 149 40 0.006345
38 64 45 0.013220 149 339 35 0.006648
39 40 40 0.000355 157 158 40 0.000355
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Table 1: Continue

Link from to Length (m) Q design (m® sec™?) Link from to Length (m) Q design (m® sec™?)
40 41 40 0.000703 158 159 40 0.000703
41 42 40 0.001050 159 160 40 0.001050
42 43 40 0.001397 156 160 20 0.000181
43 44 40 0.001744 160 161 30 0.001483
44 45 40 0.002091 161 165 30 0.001744
45 56 40 0.002439 162 163 40 0.000355
46 47 40 0.000355 163 164 40 0.000703
47 48 35 0.000659 164 165 40 0.001050
48 50 35 0.000963 165 166 30 0.003046
49 50 40 0.000355 166 170 30 0.003306
50 51 32 0.001588 167 168 40 0.000355
51 55 30 0.001848 168 169 45 0.000746
52 53 40 0.000355 169 170 45 0.001137
53 54 35 0.000659 170 171 30 0.004695
54 55 35 0.000963 171 175 30 0.004955
55 56 50 0.003238 172 173 40 0.000355
56 57 30 0.005928 173 174 45 0.000746
57 62 30 0.006188 174 175 45 0.001137
58 59 40 0.000355 175 176 30 0.006344
59 60 40 0.000703 176 180 30 0.006605
60 61 40 0.001050 177 178 40 0.000355
61 62 40 0.001397 178 179 40 0.000703
62 63 28 0.007820 179 180 45 0.001093
63 64 30 0.008080 180 181 25 0.008124
64 65 32 0.021570 181 182 30 0.008384
65 70 35 0.021874 182 183 30 0.008645
66 67 40 0.000355 183 188 30 0.008905
67 68 45 0.000746 184 185 40 0.000355
68 69 45 0.001137 185 186 40 0.000703
69 70 45 0.001527 186 187 50 0.001137
70 71 31 0.023662 187 188 50 0.001571
72 73 40 0.000355 188 189 30 0.010728
73 74 40 0.000703 189 193 30 0.010988
74 76 40 0.001050 190 191 40 0.000355
75 76 40 0.000355 191 192 40 0.000703
76 77 32 0.003844 192 193 40 0.001050
77 81 30 0.004105 193 194 30 0.012291
78 79 40 0.000355 194 198 30 0.012551
79 80 40 0.000703 195 196 40 0.000355
80 81 40 0.001050 196 197 40 0.000703
81 81A 29 0.005398 197 198 40 0.001050
150 151 40 0.000355 198 209 56 0.014080
151 152 40 0.000703 199 200 40 0.000355
152 154 40 0.001050 200 201 45 0.000746
153 154 30 0.000268 201 202 45 0.001137
154 155 40 0.001657 202 206 55 0.001615
155 81A 20 0.001830 203 204 40 0.000355
81A 82 12 0.007324 204 205 45 0.000746
82 83 40 0.007673 205 206 45 0.001137
83 84 40 0.008020 206 207 40 0.003090
84 85 45 0.008411 207 208 45 0.003828
85 86 45 0.008802 208 209 45 0.004956
86 87 45 0.009192 209 210 20 0.019200
87 88 30 0.009452 210 211 38 0.019531
88 92 30 0.009712 211 212 45 0.019922
89 90 40 0.000355 212 213 45 0.020312
90 91 45 0.000746 213 338 45 0.020703
91 92 45 0.001137 338 339 25 0.020919
92 93 30 0.011101 339 340 30 0.027820
93 97 30 0.011362 340 341 29 0.028072
94 95 40 0.000355 341 342 30 0.029634
95 96 45 0.000746 342 343 30 0.029895
96 97 45 0.001137 343 344 30 0.031457
97 98 30 0.012751 344 345 30 0.031718
98 102 30 0.013011 345 346 30 0.035450
99 100 40 0.000355 346 347 30 0.035711
100 101 45 0.000746 347 348 30 0.038098
101 102 45 0.001137 348 349 30 0.055320
102 103 30 0.014400 8227
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Table 2: Optimum layout design for the case study by proposed model

Pipe from to Length (m) Q design (m® sec™) Pipe from to Length (m) Q design (m* sec™)
1 2 40 0.000355 100 101 45 0.000746
2 3 50 0.000790 101 102 45 0.001137
3 4 50 0.001224 102 103 30 0.014400
4 5 29 0.001474 103 107 30 0.014660
5 10 30 0.001735 104 105 40 0.000355
6 7 40 0.000355 105 106 45 0.000746
7 8 45 0.000746 106 107 45 0.001137
8 9 45 0.001137 107 110 56 0.016276
9 10 45 0.001527 108 109 40 0.000355
10 11 29 0.003506 109 110 40 0.000703
11 16 30 0.003766 110 348 30 0.017230
12 13 40 0.000355 112 113 50 0.000443
13 14 45 0.000746 113 115 50 0.000877
14 15 45 0.001137 115 116 50 0.025299
15 16 45 0.001527 116 347 50 0.025734
16 17 28 0.005528 119 120 40 0.000355
17 22 30 0.005789 120 121 40 0.000703
18 19 40 0.000355 121 122 35 0.001006
19 20 45 0.000746 122 345 35 0.001310
20 21 45 0.001137 125 126 40 0.000355
21 22 45 0.001527 126 127 40 0.000703
22 23 33 0.007595 127 128 35 0.001006
23 28 30 0.007855 128 343 35 0.001310
24 25 40 0.000355 131 132 40 0.000355
25 26 45 0.000746 132 133 40 0.000703
26 27 45 0.001137 133 134 35 0.001006
27 28 45 0.001527 134 341 35 0.001310
28 35 33 0.009660 137 138 40 0.000355
29 30 40 0.000355 138 139 40 0.002873
30 31 40 0.000703 139 140 40 0.003220
31 32 40 0.001050 145 144 45 0.000399
32 33 40 0.001397 144 143 40 0.000746
33 34 40 0.001744 143 142 40 0.001093
34 35 40 0.002091 142 141 40 0.001440
35 36 40 0.012091 141 140 40 0.001788
36 37 40 0.012439 140 115 55 0.023998
37 38 45 0.012830 146 147 35 0.000312
38 64 45 0.013220 147 148 40 0.000659
39 40 40 0.000355 148 149 40 0.001006
40 41 40 0.000703 149 339 35 0.001310
41 42 40 0.001050 157 158 40 0.000355
42 43 40 0.001397 158 159 40 0.000703
43 44 40 0.001744 159 160 40 0.001050
44 45 40 0.002091 156 160 20 0.000181
45 56 40 0.002439 160 161 30 0.001483
46 47 40 0.000355 161 165 30 0.001744
47 48 35 0.000659 162 163 40 0.000355
48 50 35 0.000963 163 164 40 0.000703
49 50 40 0.000355 164 165 40 0.001050
50 51 32 0.001588 165 166 30 0.003046
51 55 30 0.001848 166 170 30 0.003306
52 53 40 0.000355 167 168 40 0.000355
53 54 35 0.000659 168 169 45 0.000746
54 55 35 0.000963 169 170 45 0.001137
55 56 50 0.003238 170 171 30 0.004695
56 57 30 0.005928 171 175 30 0.004955
57 62 30 0.006188 172 173 40 0.000355
58 59 40 0.000355 173 174 45 0.000746
59 60 40 0.000703 174 175 45 0.001137
60 61 40 0.001050 175 176 30 0.006344
61 62 40 0.001397 176 180 30 0.006605
62 63 28 0.007820 177 178 40 0.000355
63 64 30 0.008080 178 179 40 0.000703
64 65 32 0.021570 179 180 45 0.001093
65 70 35 0.021874 180 181 25 0.008124
66 67 40 0.000355 181 182 30 0.008384
67 68 45 0.000746 183 182 30 0.009886

9474



J. Eng. Applied Sci., 14 (Special Issue 6): 9467-9476, 2019

Table 2: Continue

Pipe from to Length (m) Q design (m® sec™) Pipe from to Length (m) Q design (m® sec™)
68 69 45 0.001137 188 183 30 0.009626
69 70 45 0.001527 184 185 50 0.001970
70 71 31 0.023662 185 186 40 0.003845
72 73 40 0.000355 186 187 50 0.004280
73 74 40 0.000703 187 188 50 0.004714
74 76 40 0.001050 189 188 30 0.004660
75 76 40 0.000355 193 189 30 0.004400
76 7 32 0.003844 190 191 40 0.000355
7 81 30 0.004105 191 192 40 0.000703
78 79 40 0.000355 192 193 40 0.001050
79 80 40 0.000703 194 193 30 0.003098
80 81 40 0.001050 198 194 30 0.002837
81 81A 29 0.005398 195 196 40 0.000355
150 151 40 0.000355 196 197 40 0.000703
151 152 40 0.000703 197 198 40 0.001050
152 154 40 0.001050 209 198 56 0.001537
153 154 30 0.000268 182 140 30.5 0.018528
154 155 40 0.001657 202 201 45 0.000399
155 81A 20 0.001830 201 200 45 0.000790
81A 82 12 0.007324 200 199 40 0.001137
82 83 40 0.007673 199 184 46 0.001536
83 84 40 0.008020 206 205 45 0.000399
84 85 45 0.008411 205 204 45 0.000790
85 86 45 0.008802 204 203 40 0.001137
86 87 45 0.009192 203 185 46 0.001536
87 88 30 0.009452 206A 207 30 0.000268
88 92 30 0.009712 207 208 45 0.000659
89 90 40 0.000355 208 209 45 0.001050
90 91 45 0.000746 339 340 30 0.001570
91 92 45 0.001137 340 341 29 0.001822
92 93 30 0.011101 341 342 30 0.003384
93 97 30 0.011362 342 343 30 0.003645
94 95 40 0.000355 343 344 30 0.005207
95 96 45 0.000746 344 345 30 0.005468
96 97 45 0.001137 345 346 30 0.009200
97 98 30 0.012751 346 347 30 0.009461
98 102 30 0.013011 347 348 30 0.035446
99 100 40 0.000355 348 349 30 0.052668
CONCLUSION In order to ensure the efficiency of the proposed

The adaptive Genetic Algorithm procedure have been
successfully developed-in a hybrid optimization model
which combines GAs with a TGA to enable optimal tree
networks to be selected from directed base graphs of
sewer network. The drawbacks of using this approach are
few and the bene ts are such that optimization runs can
either be made shorter to achieve a given goal or discover
better results in a xed timeframe. These algorithms require
only limited computer facilities and can be used to design
the layout of large nonlinear flow networks.

Comparison of the solution for the benchmark
example obtained by proposed model with reduction in
search space, with the solutions provided by Walters and
Smith, 1995, indicated that the modified model is more
efficient and effective in finding similar result
(5218 u nits) with much reduced computational effort.
As well as the lack of the need to repair or discard
infeasible layouts or even apply the factors of penalty on
the cost function. This improves the performance of the
optimization model more efficiently in terms of speed and
accuracy.

method for the design of real networks, it was examined
with case study located in Karbala Holy city, Iraq, then
compared the cost of the manual designs with the designs
obtained from this model for networks. The saving
percentage was 13.05%, the savings percentage obtained
through the optimal design by using the proposed
GA-TGA model indicate that the model is well
performing.
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