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Abstract: The Hyperspectral Images (HSI) acquired by remote sensors are characterized by hundreds of
contiguous channels with high spectral resolution. Hyperspectral image classification is the process of assigning
land cover classes to pixels. Classifying remotely sensed data is a challenge because many factors such as
complexity of landscape, image processing and classification approaches affect the success of classification.
Convolutional Neural Networks (CNN) are gaining attention due to their capability to automatically discover
relevant relative features in image classification problems. The proposed approach employs totally eight layers
in which four convolutional layers, two pooling layers and two Fully Connected Network (FCN) hidden layers
to extract features from hyperspectral images. This method is able to extract the features invariably for their
location and distortion which leads to better classification accuracy. By extracting both spatial and spectral
information, the performance of the model is a promising one for high dimensional HSI with few available
training data. This method has been applied to University of Pavia and Indian pines datasets. The resultant of
the model demonstrates very good classification accuracy within limited number of training epochs.

Key words: Convolution layer, convolutional neural networks, deep learning, fully connected network,
hyperspectral image classification, land cover classification

INTRODUCTION

Remotely sensed hyperspectral images are very much
essential to meet the  ever growing demand of satellite
images with spectral, spatial, temporal and radiometric
high resolutions. HSI captures the reflected radiation from
the earth surface as series of narrow and contiguous
wavelength bands. Compared to multispectral images HSI
provides more rich spectral information. Images
represented as three dimensional cube with respect to a
scene  in  which  x  and  y-axis  represents  spatial  data
and  z-axis represents, the spectral data for the same
scene. The richer spectral information presents, the
detailed characteristics and uniqueness of the materials
(Lu and Weng, 2007).

The motivation of classification is to convert
continuous data into categorical information classes,
describing the landscape. The classified image can be
used for decision making for effective management of
natural resources by linking each pixel to one or more
user defined labels like vegetation, water, built up etc.
Due to high dimensionality of the pixel, heterogeneity,
noise, spatial and spectral redundancy, atmospheric and
geometric distortions, the characteristics of the image,

lead to nonlinear feature relations. All these non-linear
factors with very few labelled classes make HSI
classification a challenging problem. The major steps of
image classification may include determination of a
suitable classification system, selection of training
samples, image pre-processing, feature extraction,
selection of suitable classification approaches, post
classification processing and accuracy assessment. The
several factors such as the spectral and spatial resolution,
sources of images, classification methods affects the
accuracy of the classification. Various classification
techniques has their own merits and demerits in each
situations. Based on pixel information, images can be
classified as per-pixel, sub-pixel, per-field, knowledge
based, contextual and multiple classifiers. Per-pixel
classifiers may be parametric or non-parametric. Based on
the use of training samples, images can be classified using
supervised or unsupervised or semi supervised
classification methods (Kamavisdar et al., 2013).

In this study, HSI classification is carried out using 
CNN method which is a powerful feature learning model.
It is built using stacked convolution, pooling and Fully
Connected Network (FCN) layers. It learns both the
hierarchical, discriminative features which helps in better
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classification over hard-wired classification model. The
model is adaptive, trains both feature extractor and
classifier together in supervised mode. Therefore, it is
most suitable for HSI classification task which is
characterized by rich spectral and spatial domain
information.

Literature review: The high number of features
encountered in remote sensing HSI classification tasks
from use of simple statistical classifiers, commonly
employed in multispectral image classification are
ineffective. Therefore, more sophisticated classifiers must
be used to exploit the rich spectral information offered by
HSI. In this way, different techniques have been proposed
from the field of pattern recognition and artificial
intelligence for handling hyperspectral data.

The broadly used Principle Component Analysis
(PCA), Independent Component Analysis (ICA) focuses
on spectral dimensionality reduction based classification
techniques which transforms the data into new domain to
extract potentially better features (Villa et al., 2011;
Licciardi et al., 2012). Support Vector  Machines (SVMs)
is a binary classifier which assigns a test sample to any
one of the class and it is a non-parametric statistical
learning method. It is investigated that this technique is
applied without the necessity of feature reduction process
and it works better with less number of training samples
(Mountrakis et al., 2011; Melgani and Bruzzone, 2004).

The Extreme Learning Machine (ELM) is a single
hidden layer feed-forward neural network which is
computationally efficient pattern classification approach.
The weights of input to hidden layer are randomly applied
and hidden to output layer weights are leant while training
which results in poor training o no solution. This weaker
learner is tied with another weak leaner to build strong
learner. ELM used for classification of HSI is a challenge
due to its high spectral data (Samat et al., 2014). Yicong
Zhou et al. (2015) proposed, two spatial-spectral
composite   kernel   ELM   classification   methods   in
which the spatial or spectral kernel has activation
function, Gaussian  based kernel, respectively for HSI
classification. But the small architecture of ELM has
limited distinguishing power.

Active learning can successfully reduce labelling
tasks  for  remote  sensing  image  classification.  The
active  learning  procedure  is  based  on  the  uncertainty
sampling strategy and a deep neural network. Stacked
auto-encoders trained on redundant spatial and spectral
features and a few labelled training samples are used to
initialize a deep neural network. Uncertainty for a given
sample  is  measured  by  the  difference  between  the
largest two class outputs of the neural network. The less
difference there is the more uncertainty the sample has.
Batch of samples with most uncertainty will be selected

after label query and added into the training set. Then the
neural network is retrained and such active batch selection
will iterate until the budget (the upper limit of label
queries)  is  reached  (Licciardi  et  al.,  2012).  Initially,
k-means clustering is employed for unsupervised learning
and knowledge discovery for HSI. Training data is
prepared for neural network and tested with different
scenes of spatial and spectral variations. The performance
of proposed ensemble classifier is analyzed in terms of
overall and average accuracy. Ensemble classifier is
designed by employing support vector machine and neural
network to further improve the accuracy (Rudrapal and
Subhedar, 2016). Granular Neural Network (GNN) in
combination with the granular representation of
information using linguistic terms is one such system.
GNN takes the fuzzified input information and processes
them  with  neural  network  architecture  where  the
network structure is transparent enough to interpret the
processing steps. Further, knowledge encoding has been
considered as one of the principal elements of intelligent
decision-making systems. This study proposes a new
model of knowledge-encoded GNNs for land cover
classification of HSI images. Knowledge encoding is
done using Neighbourhood Rough Sets (NRSs) that
explore the local/contextual information. The encoded
knowledge using NRS is obtained in the form of
dependency rules with respect to the output class labels of
land covers and these rules determine appropriate number
of hidden nodes of GNNs. The dependency factors
obtained during rule generation are used for initializing
the connecting weights of GNNs. NRS is also used here
in the selection of a subset of features for reducing the
burden of high-dimensional fuzzy-granulated feature
space of HSI image (Meher, 2015).

A regularized deep Feature Extraction (FE) method
is used for HSI classification using a CNN. This approach
employs several convolutional and pooling layers to
extract deep features from HSIs which are nonlinear,
discriminant and space invariant (Zhang and Hong, 2018;
Paoletti et al., 2018). These features are functional for
image classification and target identification. In addition,
in  order  to  address  the  issue  of  disparity  between
high dimensionality and limited accessibility of training
samples for the classification of HSI, a few strategies such
as  L2  regularization  and  dropout  are  investigated  to
avoid over fitting in class data modelling. More
importantly, 3-D CNN-based FE Model with combined
regularization to extract effective spectral-spatial features
of hyperspectral imagery has been employed (Jia et al.,
2016; Hu et al., 2015). Many researchers, proposed  deep
learning architectures for land cover classification method
that extracts band specific features which requires fewer
training samples (Santara et al., 2017; Zheng et al., 2017;
Li et al., 2017).
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Fig. 1: (a) Architecture for proposed HSI classification CNN Model and (b) A stage representing a sequence of
Convolution1-Convolution2-Maxpooling stages (C-C-M)

MATERIALS AND METHODS

This study describes the architecture and the
algorithm of the proposed methodology for classification
HSI  using  CNN  technique.  The  architectural  network
of  the  proposed  method  is  presented  as  shown  in
Fig.1a and b.

In this study the architecture of the model and
algorithm for training and testing for classification of HSI
using CNN method is explained. CNN is feed-forward
neural network which is a combination of convolution
layer, pooling  and FCN layers. This model is based on
the  principle  of  deep  neural  network  architecture
which learns spectral-spatial features and gives better
performance in classification. The architecture diagram,
mainly consists of three cascaded steps which are patch
extraction, convolution and max pooling, Fully Connected
Layer (FCN)  as shown in Fig. 1a. The output of the
model is class label Oi for corresponding pixel Pi. The
entire network is trained by back propagating the error.
The  filter kernels of convolution layers and link weights
of FCN are updated depend upon the error.

In patch extraction step, a pixel Pi represented by a
patch  of  the  input  HSI  with  its  neighborhood  of  the
size Rp×Cp (Spatial adjacent features) along Nb bands

(Spectral features) is extracted. The successive pixel
representing  patches,  contains  overlapping  window  of
the neighborhood patches. Then the patch representing a
pixel presented to first convolution layer of stage-I which
is consists of two cascaded convolution layers and  a max
pooling layer as shown in Fig. 1b.

Inspired by the biological visual systems, CNN
architecture is evolved for computer vision applications.
In the human vision system, there are two types of cells in
the visual cortex such as simple cells and complex cells.
The simple cells determines local features, specifically
edge-like patterns whereas complex cells aggregates the
outputs  of neighborhood  simple  cells.  The  complex
cells have bigger receptive fields relative to simple cells
and they are invariant to local features. Similarly, the
architecture of CNN has two features, local connections
and shared weights. The local connection extracts local
correlation whereas shared weight facilitate in detecting
features, irrespective of their positions in the field of
view. Due to the shared weights, the number of trainable
parameters get reduced. The combination of both the
features helps in better generalization of the model.

In this case, a patch of input image having Rp rows,
Cp columns and Nb bands (Rp×Cp×Nb) is convolved by the
weights which is nothing but trainable filter kernels of the
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size FR×FC×Nb across the entire patch in that layer. At any
instant, the kernel weights (FR×FC) are convolved with a
window which is smaller than the image and extracts
features local to the window. But the same kernel weights
are used to extract similar features across the whole
image, hence, sharing of the kernel weights for the whole
image. Typically, the filter size may be 3×3 or 5×5 and it
is convolved over the image of 16×16. The resultant
feature maps of size Nb are summed up to produce, single
Rp×Cp sized feature map corresponding a given filter.
Similarly, F1 number of feature maps are produced using 
F1×Nb number of kernels for the same patch each
representing particularly specific feature. The resultant of
the convolution as shown in Eq. 1, produces a activation
layer. Then, these activation layers are converted into non
linear  by  applying  Rectified  Linear  Unit  (ReLU)  as in
Eq. 2. The output of the activation function is F1 number
of feature maps of the size Rp×Cp. Typically, F1= 400 in
the first convolution of stage-I layer:

(1) 1 1 -l 1
i i, j i i

j

A = f w *A +b

Where:
 Al

i : The activation of the ith feature map in lth layer
Ai

l-1 : The activation in ith feature map in (l-1)th layer
that is previous layer

wl
i, j : The convolution kernel (Filter kernel) for Ai

l-1

bl : Bias
* : Convolution operator

(2)   1 1
i iFi = f A = max 0, A

where, Fi is feature map of ith layer. The number of filter
kernels, filter size, the stride and amount of zero  padding
are hyper parameters in CNN which are tuned to obtain
better performance and this is essential for the type of
input image, number of class labels, computing speed and
available computing resources. 

The depth of  feature maps corresponds to the number
of filters at each convolution layer, represents various
oriented edges, blobs of colour for the same region of
input image. The large number of feature maps leads to
more requirement of memory and computation time.
Hence, this parameter has to be balanced for a given
problem. The stride refers to the number sliding pixels
after a  convolution operation of filter over a window of
input image. Suppose, the stride is one, the filter moves
one pixel at a time and for stride value of two, the filter
jumps two pixels at a time. More the number of strides,
the output will reduce across spatial dimensions. To cover
the border pixels of the images, it is essential to pad the
image with zero, therefore, output feature map spatial size
will be retained as that of the input image.

In stage-I, F1 number of features obtained by first
convolution layer becomes input to second convolution
layer. In the second layer also convolution and activation

functions are applied on Rp×Cp×F1 sized input as in Eq. 1
and 2. The output produced at second convolution layer
with the depth of F2 feature maps of the spatial size Rp×Cp

is fed to max pooling layer. Through this operation, the
feature are made invariant from, the location and
distortion. This layer reduces the spatial size of the feature
maps by retaining the depth and concise the features.
Therefore, the computation burden of subsequent layers
is reduced. The max pooling operation, partitions the
input feature map into a set of non overlapping windows.
Then, the maximum value is chosen from the local pool
window of the feature map as in Eq. 3. In case of the
window size 2×2 then the output of this layer has the size
(Rp/2)×(Cp/2)×F2:

(3)  nxn
j iv = max v u n,n

where, vj is maximum in the neighbourhood of N×N
window, u (n, n) is the window function to the patch of
feature map, vi is the input window at location i in the
feature map.

The stage-II operations are similar to the stage-I,
except the depth of the feature maps. The output of the
stage-II has the spatial size (Rp/4)×(Cp/4) and feature
maps depth as F4. In the first layer of stage-I, the feature
map may contain low level features like edge of particular
orientation, lines etc. The following convolution, pooling
layers helps to detect higher level features like curves,
textures. Eventually, the feature maps may contain the
parts, patterns present in the scene that is entire visual
concept.  The  main  advantage  of  increasing  the  layers
is  to  increase  the  visual  hierarchy  of  concepts  with
smaller representation. To classify the feature detected in
convolution  layer,  FCN  is  used  as  final  stage  in
CNN. The stage-II output F4 feature maps of the size
(Rp/4)×(Cp/4)×F4 are converted to 1-D vector to feed to
FCN. This layer is a multi-layer perceptron neural
network which connects all nodes of one layer to all
nodes of next layer associated with activation function.
The FCN is comprising of one input layer which has same
number of nodes as that of output of max pooling layer,
followed  by  two  hidden  layers  h1  and  h2  with  M  and
N number of nodes, respectively. The computational
procedure is presented for hidden layer h1 of FCN as in
Eq. 4 and 5:

(4)
 linet h1 hl

l

h = f W , b for all M nodes

in h layer

Where:

(5)L
linet hl j = 1h = b + WjCj for all M nodes

Where:
Cj : Input from max pooling layer
bh1 : The bias at h1 layer
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Activation function, Rectified Linear Unit (ReLU) is
used to threshold the activation at zero as in Eq. 6:

(6)   li linet lineth = f h = max 0, h

Similarly,  the  net  and  activated  output  values  for
N nodes in h2 layer is computed same as in hidden layer
h1. Finally, the output of h2 layer is terminated at output
layer consisting of O number of nodes which represents
the desired number of class labels to be determined. The
input pixel is classified at this last layer by using softmax
as its activation function. The classification of an input
pixel is computed based on the conditional probabilities
of the O output classes as in Eq. 7. Conditional
probability for O classes, Pc = (Pc1, Pc2, Pc3, PcO). For
each class, the probability distribution (Chen et al., 2016)
computed as:

(7)
yi

i 0 yi
i = 1

e
P =

e

where,   yi   =   (y1,   y2,   y3,   ...,   yO)   is   the   input   to
softmax  activation  function  at  the  output  layer.  The
back-propagation  algorithm  is  used  to  minimize  the
error  between  the  desired  and  actual  output.  The error
is  calculated  by  various  cost  or  loss  functions.  In
training  process,  the  derivative  of  the  error  value  is
back-propagated, so that, the link weights in FCN and
kernel weights are updated to the optimal values. In this
implementation, cross entropy loss function has been
adopted. Suppose, O is the number of class labels then
{Pi, Ti} for i = 1 to N, training set in which Pi is the input
patch representing a pixel and Ti is a corresponding target
class. The loss function (Yang et al., 2016) for
classification is given in Eq. 8:

(8)      N 0
n = 1 k = 1 k

1
C = - f k = T n log P n

N
  

Where:
N : The number of training patches
T (n) : A ground truth label of the nth training sample
Pk (n) : The kth element
P (n) : Which is the conditional probability of assigning

kth class to the nth sample

The indicative function f (k = T (n)) is 1 if the
condition is met, else it is 0. Φ denotes the set of
convolutional kernels and bias values.

The following algorithm presents the working
procedure  to obtain, optimal model for HSI classification.
This  algorithm  has  several  steps  to  work  with  this
model  such  as  model  building,  dataset  preparation,
model  parameter  initialization,  fine  tuning  of  the
model, training and testing of the model to accomplish the
task.

Algorithm for CNN training and testing for HSI classification: The
steps  for  training  and  testing  of  HSI  classification  are  listed  as
below.

Step 1: Construction of the network:
i. Build the CNN Model in the sequence as {Convolution layer-

convolution layer-maxpool layer-convolution layer-convolution
layer-maxpool layer-hidden layer 1-hidden layer 2-output layer}
as shown in Fig. 1

ii. Set the number of filters and nodes as {F1-F2-F3-F4-M-N-O}. Set
maxpool layer window size = 2×2

iii. Set the activation function as ReLU as in Eq. 2 to all convolution
layer and hidden layer. Set softmax activation function to output
layer in FCN as in Eq. 7

Step 2: Preparation of the dataset:
i. Normalize all the pixel value of the image that is scale down the

pixel value (0-255) to (0.0-1.0)
ii. Read a pixel, equally surrounded by Rp×Cp pixels across Nb

number of bands  that is a patch image of the size Rp×Cp×Nb. Read
the ground truth label for the corresponding input pixel and set it
as a target class. Repeat the same process for all the R×C pixels of
the input HSI

iii. Shuffle the patches along with their target class
iv. Split the R×C number of pixels in the ratio of 7.5:2.5 in which

75% of pixels will be used for training, 25% for testing purpose

Step 3: Initialization of the model:
i. Initialize all filter kernels, FCN weights and biases to random

numbers
ii. Initialize the learning rate α to 10-3, maximum number of epochs,

training batches, batch size, stride and zero padding
iii. Set the loss function as shown in Eq. 8

Step 4: Training:
i. For each epoch, Do
ii. Input the batch of patches {batch, patches} to the network and

compute the Oi of every unit i in the output layer
iii. For each Oi, compute conditional probability Pi as in Eq. 7
iv. For each output node Oi, compute loss function as in Eq. 8
v. Update each network weight by w = w+Δw where Δw = αδp,

α6learning rate, δ6rate of change of error, p6input to that node or
kernel

vi. Back propagate the loss until it reaches the first convolution layer
and update the weights of kernels, link weights of FCN and biases

vii. Go to step 4 (ii) until all the batches completed
viii. Stop when the number of predetermined epochs completed

Step 5: Testing:
i. Consider testing sample patches and feed them to the network as

described in step 4. The weights of the network should not be
updated

ii. The actual output class is compared with the ground truth target
class. The classification errors are calculated

iii. Suppose the accuracy is reached to the desired level, go to step 7

Step 6: Fine tuning of the model:
i. Suppose the accuracy is not up to the expected value, modify the

hyper parameters such as learning rate, cost function, number of
filters in convolution layers, strides, maxpooling window size,
number of hidden layers, number of nodes in hidden layers, patch
size, combination of convolution and maxpooling layers and so
on. Go to step 1 and repeat the training

Step 7: Readiness of the model:
When the model is ready with the optimized weights can be used
for application
Then, the HSI images can be fed to the model for classification
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RESULTS AND DISCUSSION

Experimental results and analysis: In this study, the
details of experiment setup the dataset specification, the
results obtained and analysis of the data and results are
discussed.

Experiment set up and datasets: In this study, the
experiments conducted using proposed HSI classification
method is presented. Initially, the CNN Model is built
with the convolution layers and fully connected layers. In
this method, the patch of an image of the size of
Rp×Cp×Nb is extracted from the input HSI and fed to CNN
network. In this experiment, patch size considered are
5×5×B, 7×7×B, 9×9×B where B is the size of the number
of bands in HSI. In this experiment, the filter sizes
selected as 3×3×Fn for all the convolution layers where Fn

is the size of  feature maps. In the stage-I, the values of F1

and F2 are 500 and 400, respectively and in stage-II,  F1

and F2 are chosen as 200 and 100, respectively. The
maxpooling operation is carried out to reduce the spatial
size of the feature maps, after the successful two
convolutions in both the stages of layer 1 and 2. After this
operation the spatial size of feature maps get halved. The
final feature map obtained at the end of layer 2 operation
is flattened to one dimensional vector. The 1-D vector is
fed to FCN. In this experiment at Fully Connected hidden
layer (FC-h1), M = 200 and  at second hidden layer FC-h2,

N = 100. The output layer has the number of nodes equal
to the number of class labels that is O = 16 in the case
Indian pines dataset and O = 9 for Pavia university
dataset. The activation functions employed in hidden
layers and output layer are ReLU and sigmoidal functions,
respectively.

The training data is used for updating convolution
filter values and weights in the fully connected network.
The testing data samples are used for evaluating the
proposed model. The learning rate has been experimented
from 0.1-10-4 for better accuracy. The size of the feature
maps and number of nodes in the hidden layer of FCN are
varied and tested to improve the performance of the
model.

To experiment, two standard hyperspectral images of
different characteristics such as spectral and spatial
resolution, land cover, area size are considered. The first
one is AVIRIS hyperspectral image of Indian pines
(Baumgardner et al., 2015) and the second image used is
of Pavia University in Northern Italy.

In  this  proposed  methodology,  a  patch  is
considered as a training example which represents a pixel
surrounded by its neighborhood pixels. Approximately,
10000 samples are shuffled and divided into training set
and testing set in the ratio of 7.5:2.5, respectively. The
performance of the proposed model is assessed using
overall accuracy (Provost et al., 1998):

Table 1: Land cover classes for Indian pines dataset
Class Samples
-------------------------------------------------------------- -------------------
Color Name Train Test

Alfalfa 35 12
Corn-notill 1071 357
Corn-min 623 208
Corn 178 60
Grass-pasture 363 121
Grass-trees 548 183
Grass-pasture-mowed 21 7
Hay-windrowcd 359 120
Oats 15 5
Soya bean-notill 729 243
Soya bean-mintill 1842 614
Soya bean-clean 445 149
Wheat 154 52
Woods 949 317
Building-grass-trees 290 97
Stone-steel-towers 70 24

Total number of samples 7692 2569

Table 2: Indian pines
No. of epochs 60 100 125 160 200
Training accuracy 0.9013 0.9419 0.9719 0.9891 0.991
Testing accuracy 0.7600 0.8331 0.8544 0.8860 0.921
Training loss 0.3000 0.1400 0.1000 0.0700 0.020

(9)Number of successful prediction
Overall accuracy =

Total number of prediction

Classification of Indian pines scene: The Indian pines
image (Baumgardner et al., 2015) has spatial resolution of
20 m2 per pixel and spectral resolution of 224 spectral
bands in the range of 400-2500 nm which covers visible
and infrared region. This image scene has 3/4th area of
agricultural  land and some part as forest vegetation. Also,
there are buildings, railway tracks and highways in the
image scene. The ground truth is available for 16 classes
such as fields of corn, wheat, soybean, oats, stone-steel
structures and other objects as shown in Table 1. The total
size of the image is 145×145 pixels which covers the area
of 2×2 miles.

The performance of classification is evaluated using
overall accuracy as in Eq. 9. There are some classes
which has very few available samples such as 20 for oats
and very large number such as 2456 for soya bean-mintill
as shown Table 1. To improve the number of training
samples, the classes with small number of samples are
over sampled. The results obtained from the experiment
are presented in Table 2 which gives both training and
testing accuracy at various number of epochs. It is
observed that the more the number of epochs, more the
accuracy. The testing accuracy is less, relative to the
training accuracy as given in Table 2 and Fig. 2-4.
However, after the 200 epochs the testing accuracy is
getting closer to training accuracy. The visual inspection
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Fig. 2: Indian  pines  ground  truth  and  classified  images: (a)  Indian  pines  ground  truth, (b)  Accuracy  =  0.76  and
(c) Accuracy = 0.92

Fig. 3: The loss of training dataset of Indian pines versus
number of epochs

of ground truth image and the predicted image has been
carried out at the interval of every 25 epochs. For better
understanding of the effectiveness of accuracy, the ground

Fig. 4: The over all accuracy of Indian pies dataset versus
number of epochs

truth  and  predicted  images  are  presented  as  shown  in
Fig. 2b through Fig. 2c for the testing accuracies of 76%
and 92%, respectively (Fig. 2-4).
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Fig. 5: Pavia  University  ground  truth  and  classified  images: (a)  Pavia  ground  truth (b)  Accuracy  =  0.9235  and
(c) Accuracy = 0.975

It is clearly shows that the predicted image of 92%
has less number of misclassification compared to 76%.
Through these evident, the proposed algorithm is better
for HSI classification. The loss or the error value across
various epochs are observed as shown in Table 2. The loss
is  reducing  drastically  till  the  60th  epoch.  Afterwards,
the  error  is  gradually  reducing  and  it  is  observed
after 200 epoch, it is stuck at minimum value of 0.05 as
shown in Fig. 3. The overall accuracy is achieved through
this proposed model for training is 99% and testing
accuracy 92%.

Classification of Pavia University scene: This image is
captured from the Reflective Optics System Imaging
Spectrometer (ROSIS) sensors and have spatial resolution
of  1 .2  m2  in  the  spectral  range  of  430-860  nm  with
103 spectral bands. The Pavia University image has the
size of 610×340 pixels. The image scene has the building,
roads covered with different materials like bitumen,
asphalt, gravel, land cover by meadows, bare soil, metal
sheets structures, trees as shown in Table 3 which covers
9 classes. The Pavia University image is applied to the
proposed model of HSI classifier to study the performance
of the model for high resolution images. In this case also
the overall accuracy of the predicted image computed in
both training and testing phase as tabulated in Table 4 and
Fig. 6. For the visual evidence Fig. 5 (a) through (c) is
presented with ground truth of Pavia University and
predicted images at the accuracy of 92.35 and 97.5%
testing accuracy.

Fig. 6: The overall accuracy of Pavia dataset versus
number of epochs

Table 3: Land cover classes for Pavia University
Class Samples
---------------------------------------- -------------------------------
Color Name Train Test

Asphalt 4974 1658
Meadows 13987 4663
Gravel 1575 525
Trees 2298 766
Metal sheets 1009 337
Bare soil 3772 1258
Bitumen 998 333
Bricks 2762 921
Shadow 711 237
Total 32082 10698

The model is converging faster when compared to
Pavia dataset due to its high resolution. It is also observed
that the testing accuracy is very much close to training
accuracy. The loss computed at various epochs are
presented  in  Table  4  and  its graph in Fig. 7. The loss is
0.1 at 50th epoch and  it  is  reduced  to  small  as  0.01  at
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Fig. 7: The loss of training dataset of Pavia University
versus number of epochs

Table 4: Pavia University
No. of epochs 50 75 100 130 155
Training accuracy 0.9637 0.9872 0.9968 0.9975 0.9988
Testing accuracy 0.9510 0.9597 0.9715 0.9750 0.9752
Training loss 0.1100 0.0400 0.0200 0.0100 0.0080

120th epoch. Since, the applied image dataset is very high
resolution and more distinguishable in the object spacing
in the scene has made the model to reach the accuracy at
lower number of epoch training. This model outperformed
in this scene with respect to testing accuracy and
convergence time such as 97.52% at 115 epochs.

CONCLUSION

In this study, a new eight layer HSI classification
model based on deep convolutional neural network is 
proposed. The proposed CNN Model takes the input of
both spectral and spatial data as a patch by considering
the neighborhood of the pixel of interest. The
experimental result shows that the proposed method
improves the overall classification accuracy of the model
for small number of epochs. The experiment has been
conducted for different spatial and spectral resolution
images. The results are verified for the effectiveness of
the method by computing the classification accuracy for
different number of epochs. The classification into the
required output classes was successfully performed. The
testing accuracy of 97% is achieved through this
experiment. This classification is used to classify all
pixels in a digital image into one of several land cover
classes. The future research involves dimensionality
reduction techniques can be used to reduce the number of
bands and processing time.
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