New Types of Openness and Closed Graphs in Topological Space

Ali Khalaf Hussain Al-Hachami
Department of Mathematics, College of Education, Wasit University, Kut, Iraq

Abstract: ≺-unequivocally \(\theta \)-continuity function and (≺, \(\theta \))-closed graphs was examined by Chae et al. The goal of this study is to research a few of new portrayal and properties of ≺-unequivocally \(\theta \)-continuity and (≺, \(\theta \))-closed graphs. Besides we characterize new sort of a function called ≺, \(\theta \)-open function which is more grounded than quasi ≺-open and ≺-open and we acquire a few portrayals and properties for it.

Key words: Characterize, properties, portrayals, function, \(\theta \)-continuity, ground

INTRODUCTION

The concept of ≺-open sets was introduced and investigated by Njastad (1965). Latterly, the concept of ≺-unequivocally \(\theta \)-continuity function has studied by Chae et al. (1995). We know from Chae et al. (1995) that the type of ≺-unequivocally \(\theta \)-continuity function is stronger than a unequivocally \(\theta \)-continuity function (Noiri, 1980) and a unequivocally ≺-continues function (Faroo, 1987).

In this study we aim to investigate further properties and characterizations of ≺-unequivocally \(\theta \)-continuity functions as well as \(\theta \)-closed graph (Chae et al., 1995) and new types of function define called ≺, \(\theta \)-open functions which is stronger than quasi ≺-open and hence, unequivocally ≺-open, some characterizations and properties are obtain for it.

Preliminaries: All through this study just \(X \) speaks to a topological space.

Definition 2.1: Let be a subset of a topological space \((X, \tau)\) then is called:

- Regular open if \(A = (\overline{A})^o \) (Njastad, 1965)
- ≺-open if \(A \subset (\overline{A})^o \) (Levine, 1969)
- Semi-open if \(A \subset \overline{A} \) (Levine, 1969)
- \(\theta \)-open if for each \(x \in A \), there exist an open set \(U \) in \(X \) such that \(x \in U \subset \overline{U} \subset A \) (Velicko, 1968)
- \(\theta \)-semi-open if for each \(x \in A \), there exist an semi-open set \(U \) in \(X \) such that \(x \in U \subset \overline{U} \subset A \) (Noiri and Kang, 1984)

The supplements of the sets said above are their individual closed sets.

Definition 2.2: The set \(\overline{A} = \{ p | \exists X: A \subset \overline{X} \subset \varnothing \} \) for each ≺-open set \(H \) containing \(p \).

Definition 2.3: A filter base \(\Psi \) is said to be \(\theta \)-convergent (Velicko, 1968) (resp. \(\theta \)-convergent to a point \(x \) in \(X \) if for each open (resp. ≺-open) set \(G \) containing \(x \), there exist an \(F \in \Psi \) such that \(F \subset X \) (resp. \(F \subset X \)).

Definition 2.4; (Maheshwar, 1982): A subset \(A \) of a topological space \((X, \tau)\) is called a feebly open set in \(X \) if there exist an open set \(U \) such that \(U \cap A = \sigma Cl(U) \) where is the semi-closure operator.

Remark 2.5; (Jankovic, 1985): A subset \(A \) of a topological space \((X, \tau)\) is called ≺-open if and only if it is feebly open. It is notable that for a space \((X, \tau)\), \(X \) can be retopologized by the family \(\tau^a \) of all ≺-open sets of \(X \) (Maheshwar et al., 1982; Thakur, 1980) and furthermore the family \(\tau^a \) of all \(\theta \)-open set of \(X \) (Velicko, 1968) that is \(\tau^a \) (called \(\theta \)-topology) and \(\tau^s \) (called an \(\sigma \)-topology) are topologies on \(X \) and it is clearly that \(\tau^s \subset \tau^a \subset \tau^a \). The family of all ≺-open (resp. \(\theta \)-open and feebly-open) arrangements of \(X \) is indicated by ≺0(X) (resp. \(\theta_0(X) \) and \(\sigma_0(X) \)).

Definition 2.5; (Noiri and Kang, 1984): A function \(f: X \rightarrow Y \) is said to be unequivocally \(\theta \)-continuous if for each \(x \in X \) and each open set \(H \) of \(Y \) containing \(f(x) \), there exist an open set \(G \) of \(X \) containing \(x \) such that \(f(G) \subset H \).

Definition 2.6; (Noiri and Kang, 1984): A function \(f: X \rightarrow Y \) is said to be unequivocally \(\theta \)-continuous if for each open set \(H \) of \(Y \), \(f^{-1}(H) \) is \(\theta \)-open in \(X \) if and only if each closed set \(F \) of \(Y \) \(f^{-1}(F) \) is \(\theta \)-closed in \(X \).

Definition 2.7; (Maheshwar, 1983): A function \(f: X \rightarrow Y \) is said to be unequivocally ≺-continuous (resp. faintly continuous (Long and Herrington, 1982), completely ≺- irresolute and unequivocally ≺- irresolute (Faroo, 1987) if for each open (resp. \(\theta \)-open, ≺-open and ≺-open) set \(H \) of \(Y \), \(f^{-1}(H) \) is ≺-open (resp. open, regular open and open) in \(X \).
Definition 2.8; (Noiri, 1973): A function $f: X \to Y$ is said to be semi-open (resp. \sim-open (Maheshwari et al., 1983), quasi \sim-open (Thivagar, 1991; Abdul Jabbar, 2000), θ-open (Abdul-Jabbar, 2000) weakly θ-open and θ^{**}-open (Ali, 2003) function if the image of each open (resp. open \sim-open, open, θ-open and semi-open) set of G of X, $f(G)$ is semi-open (resp. \sim-open, open, θ-semi-open, and θ-semi-open and open) in Y.

Definition 2.9; (Lee et al., 1985): A function $f: X \to Y$ is said to be pre-feebly-open (resp. inequivalently \sim-open (Thivagar, 1991), \sim^{**}-open (Ali, 2003) function if the image of each \sim-open set of G of X, $f(G)$ is \sim-open in Y.

Definition 2.10; (Baker, 1986): Let A be a subset of a topological space (X, τ) then A is called a θ-neighborhood of a point x in X if there exist an open set U such that $x \in U \subset \bigcup U \subset A$.

Definition 2.11; (Lee et al., 1985): “A function $f: X \to Y$ is said to be \sim-open function if for each $x \in X$ and each θ-neighborhood A of x, $f(A)$ is \sim-neighborhood $f(x)$.”

Definition 2.12; (Singal and Arya, 1969): A space X is said to be practically regular if for each regular closed set of X and each point $x \in X$, there exist disjoint open set U and V such that $x \in U \subseteq V$.

Definition 2.13; (Faro, 1987): A space X is said to be \sim-Hausdorff if for any $x, y \in X$, $x \neq y$, there exist \sim-open sets G and H such that $x \in G, y \in H, G \cap H \sim \phi$.

Definition 2.14; “A space X is said to be \sim-compact (resp. \sim-compact (Jankovic et al., 1988) if and only if every cover of X by θ-open (resp. \sim-open) sets has a finite subcover”.

Definition 2.15; (Porter and Thomas, 1969): “A subset A of a topological space (X, τ) is said to be quasi H-closed relative to X if $\{E : i \in I_{E}\}$ each cover of A by open sets of X, there exist a finite subset I_{E} of I such that $A \subset \bigcup \{E : i \in I_{E}\}$.”

Definition 2.16; (Porter and Thomas, 1969): “A space X is said to be quasi H-closed if X is quasi H-closed relative to X."

Definition 2.17; (Noiri, 1975): A function $f: X \to Y$ is said to be θ-closed (resp. θ^{**}-closed (Long and Herrington, 1977), semi-θ-closed (Dubu et al., 1998), θ-θ-closed (Abdul-Jabbar, 2000), almost inequivalently θ-θ-closed and inequivalently θ-θ-closed graph if and only if for $x \in X$ and each $y \in Y$ such that $y \neq f(x)$, there exist an open (resp. semi-open, open, semi-open and semi-open, semi-open and semi-open) U containing x in X and an open (resp. open, semi-open, open, open and open) set V containing $f(x)$ in Y such that $(U \times V) \cap f^{-1}(U) \sim \phi$ (resp. $(U \times V) \cap f^{-1}(U) = \phi$).

MATERIALS AND METHODS

\sim-Inequivalently θ-coherence

Definition 3.1: By Chae et al. (1993) “A function $f: X \to Y$ is said to be \sim-inequivalently θ-coherence if for each $x \in X$ and each \sim-open set H of Y containing $f(x)$, there exist an open set U of X containing x with the end goal that $f(U) \subset H$.”

Theorem 3.1: For a function $f: X \to Y$, $\tau(Y, \gamma)$ the accompanying proclamations are proportionality:

- f is \sim-inequivalently θ-coherence
- $f: (X, \tau(Y, \gamma))$ is unequivalently \sim-irresolute

Theorem 3.2: In the event that a function $f: X \to Y$ inequivalently θ-coherence at that point for each $x \in X$ and each \sim-open set H of Y containing $f(x)$, there exist a θ-open set N of X containing x with the end goal that $f(N) \subset H$. The evidence of the above theorems are not hard and along these lines, they are precluded.

Theorem 3.3: For a function $f: X \to Y$, $\tau(Y, \gamma)$ the accompanying articulations are proportionality:

- f is \sim-inequivalently θ-coherence
- For each point $x \in X$ and each filter base Ψ in X θ-converging to x, the filterbase $f(\Psi)$ converges to $f(x)$ in $(Y, \tau(Y))$.
- For each point $x \in X$ and each net $\{x_i\}_{i \in I}$ in X θ-converging to x, the net $f(x_i)$ converges to $f(x)$ in $(Y, \tau(Y))$.
- For each point $x \in X$ and each filter base Ψ in X θ-converging to x, the filterbase $f(\Psi)$ α-converges to $f(x)$ in (Y, γ).
- For each point $x \in X$ and each net $\{x_i\}_{i \in I}$ in X θ-converging to x, the net $f(x_i)$ converges to $f(x)$.

Proof: (i)\Rightarrow(ii)\Rightarrow(iii) and (i)\Rightarrow(iv)\Rightarrow(v) follows, immediately from Definition 3.1 and Theorem 2 of (Chae et al., 1995).

Lemma 3.1; (Andrijevic, 1984): Let X be a topological space and $\alpha \subseteq X$. At that point the accompanying are hold:

- $\alpha Cl(E) = E \cup Cl(\alpha Int(E))$.
- $\alpha Int(E) = E \cap Cl(\alpha Int(E))$.
Theorem 3.4: For a function \(f: X \rightarrow Y \) the accompanying articulations are comparability:

- \(f \) is \(\sim \)-unequivocally \(\theta \)-coherence
- \(f(\text{Cl}(A)) \subseteq \text{Cl}(f(\text{Int}(\text{Cl}(f(A))))), \) for every subset \(A \) of \(X \)
- \(\text{Cl}(f(E)) \subseteq f(\text{Cl}((\text{Int}(\text{Cl}(f(E))))), \) for every subset \(E \) of \(Y \)
- \(f(\text{Cl}(\text{Int}(\text{Cl}(f(E)))))) \subseteq \text{Int}(f(\text{Cl}(E))), \) for every subset \(E \) of \(Y \)

Proof: This follows from Lemma 3.1 and Theorem 2 of (Chae et al., 1995).

Theorem 3.5: If a function \(f: X \rightarrow Y \) is \(\sim \)-unequivocally \(\theta \)-coherence and if \(E \) is an open subset of \(X \), then \(f(E,E^\circ) \) is \(\sim \)-unequivocally \(\theta \)-coherence in the subspace \(E \).

Proof: Let \(H \) be any \(\sim \)-open subset of \(Y \). Since, \(f \) is \(\sim \)-unequivocally \(\theta \)-coherence. Therefore, by [7, theorem 2], \(f^{-1}(H) \cap \theta^0(X) \), so by Lemma 1.2.9 of (Abdul-Jabbar, 2000) \((f|E')^{-1}(H) = f^{-1}(H) \cap \theta^0(E) \). This implies that \(f|E:E \rightarrow Y \) is \(\sim \)-unequivocally \(\theta \)-coherence.

Theorem 3.6: For any two functions, \(f: X \rightarrow Y \) and \(g: Y \rightarrow Z \), the accompanying are valid:

- \(f \) is \(\sim \)-unequivocally \(\theta \)-coherence and \(g \) is \(\sim \)-continuous, then \(g \circ f \) is unequivocally \(\theta \)-coherence
- \(f \) is faintly continuous and \(g \) is \(\sim \)-unequivocally \(\theta \)-coherence, then \(g \circ f \) is unequivocally \(\sim \)-irresolute

Theorem 3.7: "Let \(f: X \rightarrow Y \) be faintly continuous and \(\theta \)-open function and \(g: Y \rightarrow Z \) be a function. Then \(g \circ f: X \rightarrow Z \) is unequivocally \(\tau \)-continuous if and only if \(g \) is unequivocally \(\theta \)-coherence."

Proof: Let \(g \circ f: X \rightarrow Z \) be \(\sim \)-equivocally \(\theta \)-coherence and \(H \subseteq \Theta^0(Z) \). Then \((g \circ f)^{-1}(H) = f^{-1}(g^{-1}(H)) \subseteq \Theta^0(X) \). Since, \(f \) is \(\theta \)-open function, \(\text{Int}(\text{Cl}(f(H))) \subseteq \Theta^0(Y) \). Hence, \(g^{-1}(H) \subseteq \Theta^0(Y) \). Thus, \(g \) is \(\sim \)-equivocally \(\theta \)-coherence. It is easy to prove the opposite and is thus omitted.

Theorem 3.8: If \(g: Y \rightarrow Z \) be a one to one \(\sim \)-open function on Yonto and \(g \) is \(\sim \)-equivocally \(\theta \)-continuous. Then \(f \) is unequivocally \(\theta \)-coherence.

Proof: Suppose \(g \) is \(\sim \)-open function. Let \(H \) be an open subset of \(Y \), since, \(g \) is one to one and onto, then the set \(g(H) \) is an \(\sim \)-open subset of \(Z \), since, \(g \circ f \) is \(\sim \)-equivocally \(\theta \)-coherence, it follows that \((g \circ f)^{-1}(g(H)) = f^{-1}((g \circ f)^{-1}(g(H))) = f^{-1}(H) \) is \(\sim \)-open in \(X \). Thus, \(f \) is unequivocally \(\theta \)-continuous.

Theorem 3.9: If \(X \) is almost regular and \(f: X \rightarrow Y \) is completely \(\sim \)-irresolute function \(f \) is \(\sim \)-equivocally \(\theta \)-coherence.

Proof: Let \(H \) be an \(\sim \)-open subset of \(Y \), since, \(f \) is completely \(\sim \)-irresolute function, then \(f^{-1}(H) \) is regular open in \(X \) and from the fact that a space \(X \) is almost regular if and only if for each \(x \in X \) and each regular open set \(f^{-1}(H) \) containing \(x \), there exist a regular open set \(U \) such that \(x \in \text{cl}(U) \cap f^{-1}(H) \). Therefore, \(\theta \)-open in \(X \) and by [7, theorem 2], \(f \) is \(\sim \)-equivocally \(\theta \)-continuous.

Lemma 3.2: (Chae et al., 1986): Let \(\{X_i, \lambda \in \Delta \} \) be a family of spaces and \(U_{\lambda i} \), subset of \(X_i \), for each \(i = 1, 2, \ldots, n \). Then \(U = \bigcap_{i=1}^{n} U_{\lambda i} \times \text{Int}(X_i) \) is \(\sim \)-open in \(U_{\lambda i} \times X_i \) if and only if \(U_{\lambda i} \times \Theta^0(X_i) \) for each \(i = 1, 2, \ldots, n \).

Theorem 3.10: Let \(g_i: X_i \rightarrow Y_i \) be a function for each \(\lambda \in \Delta \) and \(g: \bigcap_{i=1}^{n} X_i \rightarrow Y_i \), a function defined by \(g(x_i) = \{g_i(x_i)\} \) for each \(x_i \in X_i \). If \(f \) is \(\sim \)-equivocally \(\theta \)-coherence, then \(g \circ f \) is \(\sim \)-equivocally \(\theta \)-coherence for each \(\lambda \in \Delta \).

Proof: "Let \(\beta \in \Delta \) and \(V_\beta \subseteq \Theta^0(Y_\beta) \). Then, by Lemma 3.2, \(V_\beta \subseteq \Pi_{\lambda \in \Delta} Y_i \) is \(\sim \)-open in \(\Pi_{\lambda \in \Delta} X_i \) and \(g^{-1}(V_\beta) = \bigcap_{i=1}^{n} X_i \subseteq \Pi_{\lambda \in \Delta} Y_i \) is \(\sim \)-open in \(\Pi_{\lambda \in \Delta} X_i \). From Lemma 3.2, \(g^{-1}(V_\beta) \subseteq \Theta^0(X_i) \). Therefore, \(g \circ f \) is \(\sim \)-equivocally \(\theta \)-coherence.

Remark 3.1: It was known in [6, example 2.2] that \(V \subseteq \Theta^0(X \times Y) \) may not, generally, be a union of sets of the form \(A \times B \) in the product space \(X \times Y \) where \(A \subseteq \Theta^0(X) \) and \(B \subseteq \Theta^0(Y) \). Therefore, the converse of Theorem 3.10 may not be true, generally.

Theorem 3.11: Let \(g: X \rightarrow Y \) be a function for each \(\lambda \in \Delta \) and \(Y_i \) is a regular space.

Proof: Let \(x \) be any point in \(X \) and \(H \) be any \(\sim \)-open set in \(X \) containing \(f(x) - x \), then by Lemma 3.2, \(H \times Y \) is \(\sim \)-open in \(Y_i \times Y \) which contain \((x_i, x) \). Since, \(g \) is \(\sim \)-equivocally \(\theta \)-continuous, there exist an open set \(U \) containing \(x \) such that \(g(\text{Cl}(U)) \subseteq H \times Y \). Then \(f(\text{Cl}(U)) \subseteq f(\text{Cl}(U)) \subseteq H \times Y \). Therefore, \(f(\text{Cl}(U)) \subseteq H \times Y \). Hence, \(f \) is \(\sim \)-equivocally \(\theta \)-coherence. Similar statement for \(f \), is \(\sim \)-equivocally \(\theta \)-coherence.

Lemma 3.3: Let \(X_1, X_2, \ldots, X_n \) be \(n \) topological spaces and \(\mu = \Pi_{i=1}^{n} X_i \). Let \(E \subseteq \Theta^0(X_i) \) for \(i = 1, 2, \ldots, n \), then \(\Pi_{i=1}^{n} E \subseteq \Theta^0(\mu) \).
Proof: Let \((x_1, x_2, ..., x_n)\) be an element of \(\prod_i E_i\), then \(x_i \in E_i\) for \(i = 1, 2, ..., n\). Set \(U_i = \prod_j E_j\) for \(i = 1, 2, ..., n\). Therefore, \((x_1, x_2, ..., x_n) \in U_1 \times U_2 \times ... \times U_n\). Then \(f((x_1, x_2, ..., x_n)) = f(x_1) \times f(x_2) \times ... \times f(x_n) = \prod_i E_i \times \prod_i E_i \times ... \times \prod_i E_i = \prod_i E_i \times \prod_i E_i = (\prod_i E_i, \prod_i E_i)\) is \(\theta\)-open set in \(\prod_i E_i\).

Theorem 3.12: Let \(X_1, X_2, ..., X_n\) and \(Z\) be topological spaces and \(\prod_i E_i \to Z\). If given any point \(p\) of \(X_1, X_2, ..., X_n\), \(X_p\) be \(n\) topological spaces and \(\prod_i E_i\), and given any \(\alpha\)-open set \(U\) containing \(f(p)\), there exist \(\theta\)-open set \(E_i\) in \(X_i\), for \(i = 1, 2, ..., n\), such that \(p \in E_i\) and \(f(E_i) \subseteq U\). Then \(f\) is \(\alpha\)-equivocally \(\theta\)-coherence.

Proof: Let \(p \in X\) and \(U\) be any \(\alpha\)-open set in \(Z\) containing \(f(p)\), there exist \(\theta\)-open set \(E_i\) in \(X_i\), for \(i = 1, 2, ..., n\), such that \(p \in X\) and \(f(E_i) \subseteq U\). Since, \(E_i \in \theta(X)\) for \(i = 1, 2, ..., n\). Therefore, by Lemma 3.3, \(E_i \in \theta(\prod_i E_i)\), for \(i = 1, 2, ..., n\). Thus, \(f\) is \(\alpha\)-equivocally \(\theta\)-coherence.

RESULTS AND DISCUSSION

\(\alpha\theta\)-Open Function: In this area, new kind of function called \(\alpha\theta\)-open function study and we discover some portrayal and properties for it.

Definition 4.1: A function \(f: X \to Y\) is called \(\alpha\theta\)-open if and only if for each \(\alpha\)-open set \(G\) in \(Y\), \(f^{-1}(G) \in \theta(X)\). Let the open set \(G\) that takes over quickly that each \(\alpha\theta\)-open function is quasi \(\alpha\)-open and thus, unequivocally \(\alpha\)-open, the opposite is not valid as observed from the accompanying illustration.

Example 4.1: Let \(X = \{a, b, c, d\}\) and \(Y = \{x, y, \{a\}, \{e\}, \{a, b\}, \{a, c\}, \{b, c\}, \{c, d\}\}\). The identity function \(i: X \to Y\) is unequivocally \(\alpha\)-open and not is \(\alpha\theta\)-open function, since, \(\{a\} \in \alpha \theta(X, \tau)\) but \(i(\{a\}) = \{a\} \notin \theta(Y, \tau)\). We discover a few portrayals and properties of \(\alpha\theta\)-open function.

Theorem 4.1: For any bijection function \(f: X \to Y\), the accompanying are proportionate:

- The inverse function is \(\alpha\)-equivocally \(\theta\)-coherence
- \(f: X \to Y\) is \(\alpha\theta\)-open function

The following lemmas are used in sequel.

Lemma 4.1: (Abdul-Jabbar, 2000): The accompanying is valid, for each subset \(E\) of \(X\):

\[
X / \text{Cl}_E(E) = \text{Int}_E(X / E)
\]

Lemma 4.2: The accompanying is valid for every subset \(E\) of \(X\):

\[
X / \text{Cl}_E(E) = \alpha \text{Int}_E(X / E)
\]

Theorem 4.2: For a function \(f: X \to Y\) the accompanying are equal:

- \(f\) is \(\alpha\theta\)-open function
- \(f(\alpha \text{Int}(E)) = \alpha \text{Int}(f(E))\), for each subset \(E\) of \(X\)
- \(f(\alpha \text{Int}(f^{-1}(W))) = \alpha \text{Int}(f^{-1}(W))\), for each subset \(W\) of \(Y\)

Proof: (a) \(\Rightarrow\) (b) Suppose \(f\) is \(\alpha\theta\)-open function and \(E \subseteq X\). Since, \(\alpha \text{Int}(E) = f(\alpha \text{Int}(E)) = f(\alpha \text{Int}(f^{-1}(W)))\), and hence, \(f(\alpha \text{Int}(E)) = \alpha \text{Int}(f(E))\). Let \(W \subseteq Y\). Then \(f^{-1}(W) \subseteq X\), therefore, we apply (b), we obtain \(f(\alpha \text{Int}(f^{-1}(W))) = \text{Int}(f^{-1}(W))\). Then \(\alpha \text{Int}(f^{-1}(W)) = f(\text{Int}(f^{-1}(W)))\). (c) \(\Rightarrow\) (d): let \(W \subseteq Y\), then apply (c) to \(W \subseteq Y\), we get \(\alpha \text{Int}(f^{-1}(W)) = f(\text{Int}(Y \cap f^{-1}(W)))\). Then \(\alpha \text{Int}(f^{-1}(W)) = \alpha \text{Int}(f^{-1}(W))\). Therefore, \(f^{-1}(W) \subseteq X\). Which completes the proof.

Remark 4.1: Let \(f: X \to Y\) be a bijection function. Then, \(f\) is \(\alpha\theta\)-open function if and only if \(f(F) \in \theta(Y, \tau)\), for each \(\alpha\)-closed set \(F\) in \(X\).

Theorem 4.3: If \(Y\) is regular space, then each \(\alpha\theta\)-open function is \(\alpha\theta\)-open.

Proof: Given \(G\) a chance to be any \(\alpha\)-open subset of \(X\), then it is semi-open. Since, \(f\) is \(\alpha\theta\)-open function. Therefore, \(f(G)\) is open in \(X\). But \(Y\) is regular space, then by [1, Lemma 1.2.8] \(f(G)\) is \(\theta\)-open in \(Y\). Which completes the proof.

Theorem 4.4: In the event that \(f: X \to Y\) is \(\theta\)-open function and \(E \subseteq X\) is an open set in \(X\), at that point the \(f(E) \subseteq Y\) is \(\alpha\theta\)-open function.

Proof: Let \(H\) be any \(\alpha\)-open set in the open subspace \(E\). At that point, by [15, Theorem 3.7], \(H\) is \(\alpha\)-open in \(X\). Since, \(f\) is \(\alpha\theta\)-open function. In this way, \(f(H)\) is \(\theta\)-open in \(Y\). Hence, \(f(E) \subseteq \alpha\theta\)-open function.
Theorem 4.5: Given \(f: X \to Y \) be a function and \(\{E_\alpha: \alpha \in \mathcal{V}\} \) be an open cover of \(X \). If the restriction \(f|_{E_\alpha} \), \(\alpha \in \mathcal{V} \), is \(\sim_0 \)-open function for each \(\alpha \in \mathcal{V} \), then \(f \) is \(\sim_0 \)-open function.

Proof: Give \(H \) a chance to be any \(\sim_0 \)-open set in \(X \). In this manner, by [15, Theorem 3.4], \(H \cap E_\alpha \) is \(\sim_0 \)-open in the subspace \(E_\alpha \) for each \(\alpha \in \mathcal{V} \). Since, \(f|_{E_\alpha} \) is \(\sim_0 \)-open function \((f|_{E_\alpha})(H \cap E_\alpha) \) is \(\theta \)-open in \(Y \) and hence, \(f(H) = \bigcup \{f|_{E_\alpha}(H \cap E_\alpha): \alpha \in \mathcal{V}\} \). This demonstrate \(f \) is \(\sim_0 \)-open function.

Remark 4.1: Unmistakably \(\theta \)-compact and quasi \(H \)-closed equivalent from theorem 2.11 of (Ahmed and Yunis, 2002).

Theorem 4.6: In the event that \(f: X \to Y \) is \(\sim_0 \)-open function and \(f(F) \) is \(\sim_0 \)-compact relative to \(Y \), then \(F \) is \(\sim_0 \)-compact subspace relative to \(X \).

Proof: Let \(\{E_\alpha: \alpha \in \mathcal{V}\} \) be an open cover of \(F \), then \(\{f(E_\alpha): \alpha \in \mathcal{V}\} \) is cover for \(f(F) \). Since, \(f \) is \(\sim_0 \)-open function.

Conversely, let \(G \) be any \(\sim_0 \)-open subset of \(X \) and put \(S = Y \setminus f \). Then \(X \setminus S \) is \(\sim_0 \)-closed set containing \(f(G) \). By hypothesis, there exist a \(\theta \)-closed set \(M \) in \(Y \) containing \(S \) such that \(f(M) \subseteq X \setminus S \). Thus, we have \(f(M) \subseteq Y \setminus M \). On the other hand, we have \(f(G) = Y \setminus S \subseteq Y \setminus M \) and hence, \(f(G) \subseteq Y \setminus M \). Consequently, \(f(G) \) is \(\theta \)-open in \(Y \) in \(\sim_0 \)-open function.

Function with \((\sim_0, \theta) \)-closed graph: In this area, we examine new properties of \((\sim_0, \theta) \)-closed graph (Chae et al., 1995). Definition 5.1 (Chae et al., 1995). Let, \(f(G) = \{(x, f(x)): x \in \mathcal{X}\} \) be the graph of \(f: X \to Y \), then is said to be \((\sim_0, \theta) \)-closed with respect to \(X \setminus Y \), if for each point \((x, f(x)) \in \mathcal{G}(f) \), there exist an open set \(U \) and an \((\sim_0, \theta) \)-open set \(H \) containing \(x \) and \(y \), respectively, such that \(f(U) \cap H = \emptyset \). The accompanying diagram is a growth of the graph 4.1.1 of (Abdul-Jabbar, 2000). None of the suggestions is reversible (Fig. 1).

Example 5.1: Let \(X = \{a, b, c\} \) and, \(\tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\} \), then the function \(f(X, \tau) \subseteq (Y, \tau) \) defined as \(f(x) = a \), for each \(x \in \mathcal{X} \) has \(\theta \)-closed graph which has not \((\sim_0, \theta) \)-closed graph.

Theorem 5.1: If \(f: X \to Z \) is a function with \((\sim_0, \theta) \)-closed graph and \(f(X) \subseteq \equiv \)-equivalently \(\theta \)-coherence functions, then the set \(\{(x, y): f(x) = g(y)\} \) is \(\theta \)-closed in \(X \setminus Y \).

Proof: Let \(E = \{(x, y): f(x) = g(y)\} \). If \((x, y) \in X \setminus Y \setminus E \), then \(f(x) \neq g(y) \). Hence, \((x, g(y)) \in \{X \setminus Y \setminus E \setminus g(y) \} \). Since, \(f \) has \((\sim_0, \theta) \)-closed graph. Therefore, there exist open set \(U \) and \((\sim_0, \theta) \)-equivalently \(\theta \)-coherence of \(g \) implies that there is an open set \(V \) of \(X \) such that \(g(V) \subseteq H \). Therefore, we have \(f(U) \setminus g(V) = \emptyset \). This established that \((f(U) \setminus g(V)) \cap E = \emptyset \) which implies that \((x, y) \notin \text{Cl}_E E \). hence, \(E \subseteq Y \setminus X \).

Corollary 5.1: If is an Hausdorff space and \(f, g: X \to Y \) are \((\sim_0, \theta) \)-equivalently \(\theta \)-coherence functions, then the set \(\{(x, y): f(x) = g(y)\} \) is \(\theta \)-closed in \(X \setminus Y \).
Theorem 5.2: If \(f : X \to Y \) is any function with \(\theta \)-closed point inverses such that the image of each closure of open set is \(\sim \)-closed, then has \(\sim \)-closed graph.

Proof: Let \((x, y) \in X \times Y(f) \). Then \(x \in f^{-1}(y) \) and since, \(f^{-1}(y) \) is \(\theta \)-closed, there exist an open set \(U \) containing \(x \) such that \(\overline{U} \cap f^{-1}(y) = \varnothing \). It follows that \(f(\overline{U}) \) is \(\sim \)-closed therefor. Because, there is an \(\sim \)-open set \(H \) in \(Y \) containing \(y \) such that \(f(\overline{U}) \cap H = \varnothing \). Thus, \(f(\overline{U}) \) has \(\sim \)-closed.

Theorem 5.3: Let \(f : X \to Y \) be given function with \(\sim \)-closed graph, then for each \(x \in X \), \(\{ f(x) \} = \cap \{ \text{Cl}(f(\overline{U})) : U \text{ is an open set of } X \} \).

Proof: Let the graph of the function be \(\sim \)-closed. Then it is claimed that for each \(x \in X \), \(\{ f(x) \} = \cap \{ \text{Cl}(f(\overline{U})) : U \text{ is an open set of } X \} \).

For if not, so, let \(y \neq f(x) \) such that \(y \notin \cap \{ \text{Cl}(f(\overline{U})) : U \text{ is an open set of } X \} \). Which implies that \(y \notin \text{Cl}(f(\overline{U})) \) for each open set of \(x \); it means that, for each \(\sim \)-open set \(V \) of \(y \) in \(Y \), \(V \cap f(\overline{U}) \neq \varnothing \). Thus, we obtain that \((x, y) \notin f(\overline{U}) \) and there exist \(U \) and \(V \) such that \(V \cap f(\overline{U}) \neq \varnothing \) implies that \((x, y) \) is contradiction. Thus, \(y = f(x) \).

Theorem 5.4: Let \(f : X \to Y \) be a function with \(\sim \)-closed graph. If is quasi \(H \)-closed in \(X \), then \(f(E) \) is \(\sim \)-closed in \(Y \).

Proof: Let \(E \) be a quasi \(H \)-closed in \(X \). Suppose that \(f(E) \) is not \(\sim \)-closed in \(Y \). Let \(y \notin f(x) \) for each \(x \in E \). Since, \(y \notin f(E) \). Therefore, there exist \(\overline{U_0} \) \(\sim \)-open set \(B_0 \) containing \(x \) and \(y \), respectively such that \(f(\overline{U_0}) \cap B_0 = \varnothing \), for each \(x \in E \). The family \(Q = \{ U_0 : x \in E \} \) is an open cover of \(E \). Since, \(E \) is quasi \(H \)-closed, there exist a finite subfamily \(\{ U_0,...,U_{m0} \} \) of \(Q \) such that \(V \in \bigcup_{i=1}^{m0} U_{i} \). Put \(H = \cap_{i=1}^{m0} U_{i} \). Then:

\[f(E) \cap H \subset \bigcap_{i=1}^{m0} f(U_{i}) \cap E \subset \bigcap_{i=1}^{m0} (f(U_{i}) \cap E) = \varnothing \]

Since, \(H \) is an \(\sim \)-open set containing \(y \), \(\exists \sim \)-Cl(\(f(E) \)). Therefore, \(\sim \)-Cl(\(f(E) \)).

Corollary 5.2: The image of any quasi \(H \)-closed space in any space is \(\sim \)-closed under functions with \(\sim \)-closed graphs.

Theorem 5.4: Let \(f : X \to Y \) be a given function. Then is \(f \) is \(\sim \)-closed graph if and only if for each filter base \(\Psi \) in \(X \) \(\sim \)-converges to some \(p \) in \(X \), \(f(\Psi) \sim \)-converges to some \(q \) in \(Y \), \(f(p) = q \).

Proof: Suppose that \(\exists \), then \(\sim \)-closed graph and \(\Psi \) be a filter based in \(X \) such that \(\Psi(0) \sim \)-converges to \(p \) and \(f(\Psi(0)) \sim \)-converges to \(q \). If \(f(p) = q \), then \((q, p) \notin f(\sim) \). Thus, there exist open set \(U \subset X \) and \(\sim \)-open set \(V \subset Y \) containing \(p \) and \(q \), respectively, such that \(\overline{U} \cap f(\sim) = \varnothing \). Since, \(\sim \)-converges to \(p \) and \(f(V) \sim \)-converges to \(q \), there exist an \(E \subset \Psi \) such that \(E \subset U \) and \(f(E) \subset V \). Consequently, \(\overline{U} \cap f(\sim) = \varnothing \) which is a contradiction.

Conversely, assume \(f(\sim) \) that is not \(\sim \)-closed graph. Then, there exist a point \((p, q) \notin f(\sim) \) such for each open set \(U \subset X \) and \(\sim \)-open set \(V \subset Y \) containing \(p \) and \(q \), respectively, such that \(\overline{U} \cap f(\sim) = \varnothing \). Define:

\[\Psi_1 = \{ \overline{U} : U \subset X \text{ is an open set containing } p \text{ and } \alpha \in V \} \]
\[\Psi_2 = \{ V : \beta \in \text{ is an } \sim \text{ open set containing } q \} \]
\[\Psi_3 = \{ E(\alpha, \beta) : E(\alpha, \beta) = \{ \overline{U} \times V \} \subset G(f), (\alpha, \beta) \in V \times V \} \]
\[\Psi = \{ \Psi(\alpha, \beta) : (\alpha, \beta) \in V \times V \} \text{ where } \Psi(\alpha, \beta) = \{ x \in U \subset X, (x, f(x)) \in (\Psi)^{*}(\alpha, \beta) \} \}

Then, \(\Psi \) is a filter base in \(X \) with property that \(\Psi \sim \)-converges to \(p \) and \(f(\Psi) \sim \)-converges to \(q \) and \(f(p) \neq q \).

Corollary 5.3: A function \(f : X \to Y \) be has \(\sim \)-closed graph if and only if for each set \(X \) in \(X \) such that \(X \sim \)-open \(X \) and \(f(x) \sim \)-open \(Y \), \(f(x) = q \).

CONCLUSION

This study briefly described the \(\theta \)-open function, quasi \(\theta \)-open and \(\theta \)-open their properties in this research.

REFERENCES

