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New Mathematical Studies for Surface Waves on Multi-Layered Liquid Films
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Abstract: We consider a coupled system of mathematical problem given in the form of two partial differential
equations in viscoelasticities describing the propagation of surface waves on multi-layered liquid films. We
establish the existence of solutions for initial-value problem (1.3) in the linear case by using a priori energy

estimates.
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INTRODUCTION

In recent years, modern technology has seen more
interest in physical sciences and a rapid increase,
especially mn areas that are exploited and dependent on
multiple physical commections. In this research, we
present a broad view, new perspective and a fruitful study
of recent and serious issues in the form of time differential
equations that represent important physical phenomena
inmany fields of application in moderm sciences. We will
consider a mathematical problem given m the form of
partial differential equations related to the appropriate
time for some wnportant physical phenomena in various
fields of application in engineering and modern
technology and try to propose and develop some new
mathematical methods for a new study of the output of
interactions between some associated effects. The
Kuramoto-Sivashinsky (KS) equation in the form, ., »>0:

wun +om v =0 (M
1s a well known model of 1D turbulence which was derived
in different physical contexts, mcluding chemical reaction
waves, propagation of combustion fronts in gases,
surface waves in a film of a viscous liquid owing along a
diagonal level, patterns in thermal convection, rapid
solidification and others.

Recently, a linear coupled Kuramoto-Sivashinsky
KdV equation with an extra linear dissipative equation,
was studies by many researchers Malomed ... (2011),
Feng ... (2003) and Cai ... (2013). The model had the
form:

{u’ﬂmxx +u,, au, HPu,, =0, (2)

' —
V't an YU, =u,

and a studies n wider way are made. Viscoelastic
substances exhibit behavior between exible solids and
Newtornan liquids. In fact, pressures in these media
depend on the entire history of their distortion, not only
on current state of deformation or the state of their current
movement. This is why they are called materials with
memory. Many researchers have studied viscous systems
with faded memory in a specific area. In this study, we
propose and develop mn-depth and useful mathematical
studies related to a new class of Kuramoto-Sivashinsky
system, along with an additional linear equation and of
course we will extend the studies to the viscoelastic
system. These proposed models apply to the description
of surface waves of layer liquid films in different fields of
applied science and modemn technology modeled. Let (x,
V) = R, let us consider the system:

u' o, +A, +uu, AT + _[;u.l (t—sjug(s)ds=v

vt aIDX—YAD+I;M2 (t—s)u(s)ds=u,
(3)

where, uand. are the two real wave fields, the dissipative
parameter >0 accounts for the stabilization and a 15 a
group-velocity mismatch between the two wave modes.
The coefficients . and ; are all positive constants. The
given functions u, p are specified later. The terms
wt-siu(s)ds = su(siu(t-s)ds, i =1, 2 represent the infinite
memories. To deal with infinite history, we assume that
the kernel functions p, p. satisfy the following hypothesis,
P, RR are a non-increasing C functions such that:

1-["w(s)ds =10, 1 (0)>0 ()
And:
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1-["u,(s)ds =T>0, w,(0) >0 (5)
Let, H{:) usual Sobolev space defined by the norm:
[wl, = [ Yo w|" dxay (6)

lizm
Where, H(o) = L{(.) and ||w]|| = ||w||, where:

M

Diw =
1712
d! a;

The main problem is the quantitative studies of
surface waves on multilayered liquid films. Tn particular,
the fundamental of the
consideration by many mathematicians
physicist’s questions to achieve a complex and new
physical structure by merging several phenomena into

cause matter 18 under

to answer

one side and considering their effectiveness. It 1s
therefore, natural to ask whether a comprehensive
presence of strong solutions can arise when the
dissipation changes.

It 18 very important to address some scientific 1ssues
through the theories of functional analysis and then
provide numerical simulation of the theoretical study
to obtain a useful and stable convergence. Thus, the
goal here 13 to develop some of the recent results
obtained in research work near to our subject. In this
study we are studying the mathematical question of the
Kuramoto-Sivashinsky-Corteug-de-Fries equation m a
multidimensional field This model was put into study, to
describe surface waves on multilayered liquid films by the
theory of perturbation where the researchers studied
dissipation and acquired acquisition of instability n the
model as small disturbances. Later, two-dimensional
model was proposed and developed by Feng .. (2003). In
fact, the problem was originally proposed by Benney
(1966), attention was focused in particular on the
existence and umqueness of the solution. These studies
were later significantly known by Christov and Velarde
(1995) and Elphiclk .. (1991).

MATERIALS AND METHODS

Linear stability: The proposed system (1.3) describes the
propagation of surface waves in a two-layer liquid with a
single layer dominated by viscosity and nfinite memory.
Let (#.%)be a small perturbation of a bounded C- solution
(u, .) of Eqg. 3:
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u, +eu (7

e<l

To linearize system for(6.%), substituting Eq. 7 in Eq. 3,
we get:

-+ L, + AR+ 10, + BATE+ [ (-8, (s)ds =, +f,
T+ a0, —yAD+ [, (t-5)AD(s)ds =4, + g

(8)
by omitting the higher order terms of .. Under small initial
perturbation, the stability of solution (u, .) is determined
by the energy estimate for(%.9). Let, u be a given
bounded smooth function and . be a given bounded
smooth function We will consider the following lineanzed
system with (i.5):

=0 _+f

i+ o, AT+ g, + AT [ (t-s)i (s)ds =D+,
U +aD, ~¥AD+ [, (t—s)A0(s)ds =i, + g
u(xy.0)=1,{xy), v(x¥.0)=v,(xy)
9
RESULTS AND DISCUSSION

Theorem 2.1: For any solution(6.0)of linearized

system (Eq. 9), the Schwartz rapidly decaying function
space S(R), (Introduced by Renardy and Rogers (2004),
satisfies the estimate:

[ 18 axdy+ [ o] dxdy-+[a]_+ o], <

c( [l 7 + o axdy + [ | dxay+ I@\g\zdxdy)
And:

(10)

o~ ~ T ~ o~
sup _I.Q|u‘2 + ‘D‘dxder _L HuHH + ”DHH ds <

0=t=T
cjg(\ﬁn "+ 1o, dxd + ijTjﬁ|1-“|2 dxdy + [ g/ dxdyds)
Where: (12)

[l = ol = [L{[ar +[a.]Jaxdy + o{w =5, )(t) +

ef {[of" + [vof Jaxdy +e{n, = VO)(t)

Proof; Multiplying (2.3): By ' and (2:3). by * integrating
over , we have:
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2dt-[ | ‘ dxdy — O[J‘ ‘u | dxdy - _[ Vi VudXderI u, 0, Udxdy —

B, Auadidxdy [ ["p(s)d, (t—s)i,dsdxdy = [ ©,fdxdy+ [ fﬁdxdy,%%_[g o[ dxdy +

a,[_B,0dx+v[ |V dxdy - [ ["p, () V0(t -s) Vidsdxdy = [, Ddxdy + [ gidxdy

Summing to get:

Sl (‘u‘ ‘D‘ )dxdy otJ. |u ‘ dxdy — I (B‘Vu| fy|V'U| )dxdy I Vi VudxderI u,u_tdxdy +

alj‘g'l)xf)dxdy - I@.[u M, (s)0, (t —s)d, dsdxdy — L; IU W, (s)VO(t —s) Vodsdxdy = (13)
[, tdxdy + [ G, vdxdy, [ fidxdy + [ gddxdy

For any >0, we have:
[ (BIva]" —v|vo[ Jaxdy < —of (V8 ~|v9[ Jaxdy

And:
U@a|ﬁx\2 + VAL Vil + u, 0 + a,D, Bdxdy + . idxdy + ﬁxf)dxdy‘ <v[ (jau] + Vo[ |aedy + of_(Jaf + [0 Jaxdy (14)
And:
[ fridxdy + [ goaxdy < [ (e[ + lg| ) dxdy + [ {[a]" + o] axdy (15)
We have:
o[ m(s)a,(t—s)dsdxdy < judxdy+ j(j (s)d X(t—s)ds)zdxg

gfgﬁid)‘d“gfg(fu b ()

), (t-s) -1, [+

i, ds)dxdy

By Cauchy-Schwarz and Young inequalities, we obtain, for some >0

IQ(I:MI( )@ \ds) dxdy<j (j:p.l( )i, (t—s) |ds) dxdy +_ (j u (s)), \ds) dedy +
ZIQ(I |u (t—s) |ds)(‘|' M (s )dxdyS{lJré}J.g(J-:ul(s) i (t
(1+v)_|‘ﬂ(_|.;u1(s)ds|ux|) dxdy<[1+i](1—l)_|.gj‘:ul(s)ﬁx(t—s)—ﬁx2dsdxdy+(1+v)(1—1)2 Ja, |

L(t=s)—

) 7ﬁx‘ds) dxdy +

Then:

[ [ (s)a, (t —s)dsdxdy <— (1+(1+v)(11)2)jﬂﬁidxdy+%[1+ﬂ(11)jﬂj:u2(s)|ﬁx(ts)ﬁx|2dsdxdy
And similarly:
IQVTJI:MZ(S)V'D(t—s)dsdxdy<;(1+(1+v)(1—T)2)_[QVﬁzdxdy+;(1+\1}J(l—T)IQI:;.LZ(s)|V1“)(t—s)—V1”)|2dsdxdy

Then, Eq. 13 becomes:

63



Res. J. Applied Sci., 14 (2): 61-66, 2019

1d

24t 2

(10 + o Jaxay + o (Jaf* + [ofaay + 1(1+(1+V)(11)2)jﬁﬁ;dxdy+%[1

ﬂ(ll)(ul o6,)(0)+

v

%(1+ (1+ v)(l—T)Z)IQ|V6|2 dxdy + %{H %J(l ~T)(p, o VE) (1) < j@(|f|2 +gf’ )dxdy+jg(\ﬁf + |ﬁ|2)dxdy

Where:
(bow)(t)= [ olswit—s) —w dscxty
Thus:
P'(t)—cP{t) <M(t) a7
Where:

P(t) = L(|ﬁ\2 + \f)\z)dxdy+ [ [, + o, )dxdyds

And:
M(0) = [ (I + gl Jaxdy

Therefore, we have:

t

exp(—ct)P(t)-P(0) < _[n exp(—cs)M(s)ds
And:
c(t)(P(0)+J-;M(s)ds)2P(t) (18)

this proves Eq. 10 and 11 (Cai «s., 2013).

Theorem 2.2 (Cai . ., 2013): Any solution(%8)of
linearized system Eq. 9, satisfies the estumate, for k.0:

2z

~ T ~ Y
O, |+ [ il + [, + 6+

~||2
sup | Jul?,, +|
02t=T

(19)
ﬁ.idsgc(uﬁn el [ e ids)
Where:
”ﬁ HK+H13 e :(‘ﬁ i+4 +a, z)+c(u1 ofi, )+
offoll. + Vol )+ c(h, - Vo)

Existence for linearized problem: To prove the existence
and uniqueness results for related problem (Eq. 9), we use
the well known continuation method. We assume that:

(1)u,e H*(Q) and v, e H*"'(Q)
f,ge Lz([O,T], H"(Q))

Let us define the Banach space:

&4

(6.0):ie C([O,T],H”Z (Q))mL2 ([O,T],H““(Q)) ~
(Q))ﬁe C([O,T],H"“(Q)) s
L ([0, TLH™ (@)~ H'{[0.T], H* ()

Equipped with the norm:
T
RN

Theorem 3.1: Let kO be any integer and under the
assumption (1), system (Eq. 9) has a unique solution
(4, .) in the Banach space Y satisfying estimate in Theorem
2.2,

2
xt2

- ~ ~ 12
Iil i 0| ds

2
+| +

Hx + Hﬁ Hr + ”ﬁ'

sup D
0=<t=T

K

Proof: We rewrite (Hq. 9) as:

(s)ﬁ(t—s)dsL + Al +u, + BAYE -,
L,(5.0)=a0, —A[yﬁ—fuz(s)ﬁ(t—s)ds}ﬁx
For.[0; 1], we define:

4 AL, (,5)+ (1= M)A = f
D4 AL, (0,0) ~(1-A)AD = g
i(x,y.0)=u,(xy), B(xy.0)=1v,(xy)

(21)

In order to prove our result, let us consider a subset
B0, 1] such that .B. We will show that B 1s not empty and
1t 18 both closed and open.

B is not empty: Atleast, 0.B. Since, for. =0, problem (21)

takes the form:
'+ Afa =1
O+ AD =g (22)

U(xy.0)=u,(xy), 9(x.y.0)=v,(x.y)
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Tt is not hard to see that the Cauchy problem of general
parabolic Eq. 22, admits a solutions (¥.9) (Renardy and
Rogers, 2004).

Let .B and let (&%) be
following

B is closed in [0, 1]:
the solution of the
problem:

mitial value

By Theorem 2.2, we have:

'

2 . —
+ [0 0.
+2 1 1

+ Hf)
Hx J

2 j| T
|
c+1 1]
:(‘

Hx

sup [
0=t=T
Where:

2
+

u K +4

o

+[o

Hrx u X

. ds < c‘(lj _7\»]—1)‘2 _LT

§)+c(p.1 oﬁx)+c(|

i +AL, (ﬁj,”])+(1flJ)A2ﬁ:f

T+ 2Ly (0,.5,) (1) A", =g (23)

0,(%5.0) =0y (x%.y), U(x%0)=vy(%y)

Bu Theorem 2.2: We have (u;,v,) is uniformly bounded in
Y. Let (ﬁ_Jf)_]): (d; -1, -, -, ) with satisfies:

+ E dsSc‘(lJ—lj_l)rK (24)

i
JIHK

Hx

2z

v K+2

+ HVﬁHZ) +c(u, 0 VD)

It follows that (i,,8;) is a Cauchy sequence in Y and ifs limit (u;,v;) is obviously the solution of (Eq. 23). This shows

that B is closed in [0, 1].

B is openin [0, 1]: Let..B and .[0, 1] with |-.J.. Let (i,% ) be the solution of system:

O, + AL, (6.0, )+ (1-2, )AD, =g (25)
i, (%,y,0)=u,(x%y), 0{xy.0)=v,(xy)
We now constract a sequence of solutions for the system:
8+ ALy (8,0, )+ (12 ) A%, = £+ (3 —A)[ L, (6,9, ) -A% ]
' kL, (6,,8,) ~ (1A )0, =g + (2 ~A)[ L, (5,8, ) A0, ] (26)
B (x%3.0)=10,(xy), 9(xy.0)=5,(xy)
As Cail a. (2013) by Theorem 2.2, we have:
—|? —||? TI= - 2T pe—
ussltlgmul e+2 v x+1}jL -[u Hu] Hr * HD] Hic ds < C‘()\‘ o )| -[u HuH Hr * HDH Hic ds Sce’K 7)
Choosing smal enought, so that, cK<1/2 CONCLUSION

and{i, ) is a Cauchy sequence with limit(¥.%)being the
solution of Eq. 21. Hence, B 1s open. This completes the
proof of Theorem 3.1.

Our research methodology or plan includes the
followmg parts. The mamn theme is to give more
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informations about the solution for surface waves on
multi-layer liquid films. Interactions between externally
applied power and dissipation by mfinite memory term
lead to the associated systems which also makes us use
a new mathematical methods in the linear case.
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