Assessment of Adenoid Size in Children

Shahin Abdollahi-Fakhim, Masood Naderpoor, Nikzad Shahid, Reza Javadrashid, Omid Mashrabi and Majid Ravaghi

Department of Otolaryngology, Head and Neck Surgery in Tabriz, University of Medical Sciences, Tabriz, Iran

Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran

Family Medicine (MD) in Health Center, Ajabshir, East Azarbayjan Province, Iran

Abstract: Adenoid hypertrophy is one of the most common diseases in the pediatric population, and can cause nasal obstruction, snoring, mouth breathing, and alteration in facial development in children. Flexible fiberoptic nasolaryngoscopy was the gold standard method for evaluation of adenoid and nasopharyngeal obstruction. The aim of this study was evaluation results and agreement of flexible fiberoptic nasolaryngoscopy, Adenoid lateral x-ray and intraoperative observation diagnosis of adenoid hypertrophy and its intensity. In a cross-sectional and descriptive-analytical study, 50 pediatric patients who had suffered from nasal obstruction and mouth breathing were selected in this study to undergo adenoidectomy. The size of adenoid measured by flexible fiberoptic nasolaryngoscopy, lateral neck radiography and intraoperative observation of adenoid size. Results of three studied methods in diagnosis of adenoid hypertrophy and its severity were compared. Twenty two of patients were boy and 28 of them were girl. Mean age of patients was 6.26 ± 1.81 year in the range of 3-12 year. The agreement rate of Lateral Neck Radiography in determination of adenoid hypertrophy with intraoperative observation of adenoid size and flexible fiberoptic nasolaryngoscopy was 70 and 50%, respectively and between flexible fiberoptic nasolaryngoscopy and intraoperative observation of adenoid size was 72% and between three methods was 48%. The agreement rate of each three methods in diagnosis of adenoid hypertrophy was 100%. Significantly strong correlation was found between intraoperative observation of adenoid size with lateral neck radiography and flexible fiberoptic nasolaryngoscopy and poor correlation was found between Lateral Neck Radiography and flexible fiberoptic nasolaryngoscopy.

Key words: Flexible fiberoptic nasolaryngoscopy, adenoid hypertrophy, lateral neck radiography

INTRODUCTION

The adenoid (pharyngeal tonsil) is one of the peripheral lymphoepithelial organs, which play an important role in the immune system where a variety of microorganisms and antigens present in food and inhaled air first come in contact with the body. However, its complete function has remained unknown (Kim et al., 1995; Woo et al., 1995).

The most important diagnostic techniques are recording of obstructive symptoms by tranoral posterior rhinoscopic examination, radiological evaluation, such as lateral radiography of the adenoid and nasopharyngeal magnetic resonance imaging, transnasal fiberoptic examination, acoustic rhinometry and others (Modrzyński et al., 2004).

Recently, flexible fiberoptic nasolaryngoscopy was the gold standard method for evaluation of adenoid and nasopharyngeal obstruction (Kubba and Bingham, 2001; Wormald and Prescott, 1992; Chihsolm et al., 2005).

Adenoid hypertrophy is one of the most common diseases in the pediatric population, and can cause nasal obstruction, snoring, mouth breathing and alteration in facial development in children.

The aim of this study was evaluation results and agreement of flexible fiberoptic nasolaryngoscopy, Adenoid lateral x-ray and intraoperative observation diagnosis of adenoid hypertrophy and its intensity.

MATERIALS AND METHODS

In a cross-sectional and descriptive-analytical study, 50 pediatric patients who had suffered from nasal obstruction and mouth breathing were selected in this study to undergo adenoidectomy (Fig. 1).
The size of adenoid measured by flexible fiberoptic nasolaryngoscopy, lateral neck radiography and intraoperative observation of adenoid size.

Results of three studied methods in diagnosis of adenoid hypertrophy and its severity were compared.

To evaluate the size of the adenoids, the patients were examined by fibrescopy in the sitting position. The size of the adenoid was classified into 4 categories according to the degree to which the adenoid occupied the nasopharyngeal airway.

Mild: Adenoid occupying 25% or less of the nasopharyngeal airway.

Moderate: Adenoid occupying 25-50% of the nasopharyngeal airway.

Moderately severe: Adenoid occupying 50-75% of the nasopharyngeal airway.

Severe: Adenoid occupying 75% or more of the nasopharyngeal airway.

As the gold standard method, flexible fiberoptic nasolaryngoscopy was compared with other methods.

RESULTS

Mean age of patients was 6.26±1.81 year in the range of 3-12 year and 22 of patients were boy and 28 of them were girl. History of allergy in patients, parents and first degree family were 14, 8 and 2%, respectively.

The agreement rate of each three methods in diagnosis of adenoid hypertrophy was 100% and the agreement rate studied methods in determined of hypertrophy intensity were showed in Table 1.

The agreement rate of lateral neck radiography in determination of adenoid hypertrophy with intraoperative observation of adenoid size and flexible fiberoptic nasolaryngoscopy was 70 and 50%, respectively and between flexible fiberoptic nasolaryngoscopy and intraoperative observation of adenoid size was 72% (Table 2).

Significant strong correlation was found between result of intraoperative observation of adenoid size with radiological finding (p<0.001 and R = 0.586) and flexible fiberoptic nasolaryngoscopy (p<0.001 and R = 0.702) (Table 3). The significant poor correlation was found between result of radiological finding and flexible fiberoptic nasolaryngoscopy (p = 0.014 and R = 0.347).

DISCUSSION

After several studies, many authors found that flexible fiber optic nasolaryngoscopy is the best and the most exact method in diagnosis of adenoid hypertrophy (Kubba and Bingham, 2001; Wormald and Prescott, 1992; Chisholm et al., 2005; Kurien et al., 2005).

Dr. Snow and his colleagues introduced flexible fiberoptic nasolaryngoscopy as gold standard method for evaluation of adenoid hypertrophy (Snow and Billenger, 2003).
In our study, a strongly significant correlation was found between Trang's operative examination and flexible fiberoptic nasolaryngoscopy.

Chisholm and his colleagues reported a poor significant correlation between intraoperative observation of adenoid size and flexible fiberoptic nasolaryngoscopy (Chisholm et al., 2005).

In the study of Cohen and his colleagues, a poor significant correlation has been reported between intraoperative observation of adenoid size and lateral adenoid x-ray finding and lateral adenoid x-ray was not enough for preoperative evaluation of patient with adenoid hypertrophy (Cohen et al., 1992).

But in our study, we found a strongly significant correlation between intraoperative observation of adenoid size and lateral adenoid x-ray due to more attention of our surgeons.

Wormald and his colleagues reported lateral x-ray has a great ability in diagnosis of adenoid hypertrophy but not enough effectiveness in determination of the intensity of adenoid hypertrophy (Wormald and Prescott, 1992).

Paradise JL and his colleagues said that lateral x-ray of adenoid was not successful in determination of intensity of adenoid hypertrophy (Paradise et al., 1998).

In our study lateral adenoid x-ray have high potency in diagnosis of adenoid hypertrophy but not enough potency in diagnosis intensity of adenoid hypertrophy. Modrzyński M and his colleagues reported that lateral adenoid x-ray is more effective in diagnosis of adenoid hypertrophy (Modrzyński et al., 2004).

In our study also sensitivity of lateral adenoid x-ray in diagnosis of adenoid hypertrophy was 100%.

The radiological method that best correlated with the endoscopic findings was that of Cohen and Konak (1985). However, obstructive symptomatology had the overall highest correlation to endoscopic findings (Wormald and Prescott, 1992). There was good agreement between the X-ray and endoscopy findings.

Lateral skull radiograph is a noninvasive procedure which is well tolerated by children, unlike a flexible fiberoptic scope. In recent years fiberoptic scope has been quoted to have more information about the adenoid hypertrophy than lateral skull radiography (Kurien et al., 2005). Our study has shown that there is a significant relationship between endoscopic and radiological findings of the children.

CONCLUSION

Three methods studied had the same more effectiveness in diagnosis of adenoid hypertrophy, but regarding diagnosis of intensity of adenoid hypertrophy, sensitivity of flexible fiberoptic nasolaryngoscopy was higher than that of other 2 methods flexible fiberoptic nasolaryngoscopy is the gold standard method in diagnosis of adenoid hypertrophy and determination of its intensity.

With attention to finding results, for evolution of adenoid hypertrophy intensity at the first step, lateral adenoid x-ray was recommended and flexible fiberoptic nasolaryngoscopy was recommended for determination of adenoid hypertrophy intensity.

REFERENCES

